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Abstract 
Optimization of non-convex loss surfaces contain-
ing many local minima remains a critical problem 
in a variety of domains, including operations re-
search, informatics, and material design. Yet, cur-
rent techniques either require extremely high iter-
ation counts or a large number of random restarts 
for good performance. In this work, we propose 
adapting recent developments in meta-learning to 
these many-minima problems by learning the op-
timization algorithm for various loss landscapes. 
We focus on problems from atomic structural 
optimization—finding low energy configurations 
of many-atom systems—including widely stud-
ied models such as bimetallic clusters and disor-
dered silicon. We find that our optimizer learns a 
‘hopping’ behavior which enables efficient explo-
ration and improves the rate of low energy minima 
discovery. Finally, our learned optimizers show 
promising generalization with efficiency gains 
on never before seen tasks (e.g. new elements 
or compositions). Code is available at https: 
//learn2hop.page.link/github. 

1. Introduction 
Efficient global optimization remains a problem of gen-
eral research interest, with applications to a range of fields 
including operations design (Ryoo & Sahinidis, 1995), 
network analysis (Abebe & Solomatine, 1998), and bio-
informatics (Liwo et al., 1999). Within the fields of chemical 
physics and material design, efficient global optimization 
is particularly important for finding low potential energy 
configurations of isolated groups of atoms (clusters) and 
periodic systems (crystals); identifying low energy minima 
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Figure 1. Schematic diagram of the difficulties of global optimiza-
tion on rough loss landscapes. In contrast to prior work where loss 
surfaces are approximately convex, this paper focuses on global 
optimization problems where minima are numerous and there is 
unlikely to be a low loss path between local minima. 

in these cases can yield new stable structures to be experi-
mentally produced and tested for a wide variety of industrial 
or scientific applications (Wales & Doye, 1997; Flikkema & 
Bromley, 2004). However, even simple examples with a few 
atoms have quite complex minima structures. Numeric ap-
proximations suggest that systems of only 147 atoms could 
have 1060 distinct minima (Tsai & Jordan, 1993). 

Global optimization problems can also be quite difficult 
when high loss barriers exist between local minima, as de-
picted in Figure 1.1 Despite being NP-hard in the worst case, 
significant work has been put into developing optimization 
techniques for these structure prediction tasks. Nonetheless, 
classical approaches to this problem continue to face a num-
ber of drawbacks including requirements of: a significant 
number of steps (Wales & Doye, 1997; Pickard & Needs, 
2011), carefully selected hand-crafted features, or sensitive 
dependence on learning rate schedules (Bitzek et al., 2006). 

In this work, we propose adopting a new class of strategies 
to these global optimization problems: learned optimization 
(Bengio et al., 1992; Andrychowicz et al., 2016; Metz et al., 
2018). Here, hand-designed update equations are replaced 
with a learned function parameterized by a neural network 
and trained via meta-optimization. While this strategy has 
shown promise for training neural networks (Metz et al., 
2020) where falling into bad local minima is not a con-
cern (Choromanska et al., 2015; Luo et al., 2018), current 
techniques fail to prioritize global minimum discovery or 
have not been tested on rough loss landscapes with many 
unconnected local minima. 

Proceedings of the 38 th International Conference on Machine 1See Wales & Doye (1997) for examples of difficulties in opti-
Learning, PMLR 139, 2021. Copyright 2021 by the author(s). mizing Lennard-Jones potentials. 
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Figure 2. Schematic diagram of a learned optimizer for atomic structural optimization. Positions and forces are computed from physical 
simulations (i.e. empirical potentials). Gradients are accumulated, featurized, and inputted to a shallow neural network that updates 
positions. Although the diagram specifies a problem in R3, the learned optimizer framework can be applied to arbitrary global optimization 
problem. 

In this paper, we show that learned optimizers can offer a 
substantial improvement over classical algorithms for these 
sorts of global optimization problems. To this end, we 
present several modifications of learned optimizers required 
to effectively train models which can find low energy states 
of many-minima loss surfaces. Using several canonical 
problems in atomic structural optimization, we demonstrate 
that the learned optimizers outperform their classical coun-
terparts when trained and tested on similar systems and— 
more surprisingly—are able to generalize to unseen systems. 
The specific contributions of this paper are as follows: 

1. Novel parameterizations of learned optimizers priori-
tize global minimum discovery (Section 3) and yield 
improvements on benchmark tasks consisting of single 
atom types (Section 4). 

2. Analysis of learned optimizer behavior showcases an 
automatically-learned ‘hopping’ behavior which en-
ables efficient exploration of minima (Section 5). 

3. Results for bimetallic systems show that our learned 
optimizers can generalize beyond the examples seen 
during training, yielding gains in efficiency and per-
formance over commonplace optimization techniques 
such as Basin Hopping (Section 6). 

2. Background / Related Work 
2.1. Atomic Empirical Potentials 

Atomic structure optimization often requires finding the low-
est energy configuration of a system (Oganov et al., 2019). 
However, accurate calculation of energies is expensive, of-
ten requiring quantum mechanical simulations such as DFT 
(Hohenberg & Kohn, 1964). In this work, we instead use 
approximations of the potential energy known as empirical 
potentials, that are not only simple and efficient to calcu-
late but also have minima that correlate to those found by 

more accurate calculations (Tran & Johnston, 2011). The 
empirical potentials studied in this paper are as follows: 

Lennard-Jones Clusters are often used in the modelling of 
spherically-symmetric particles in free-space such as noble 
gasses or methane and are the archetypal model for a simple-
to-compute potential (Jones & Chapman, 1924; Doye et al., 
1999). The total energy of the system is defined only by 
pairwise distances, denoted dij : "� #�12 � �6XX d0 d0

� − 2 (1)
dij diji j>i 

where � is the minimum two-particle energy and d0 is the 
distance where this occurs. Despite the apparent simplicity, 
the minima structures of these systems are complex and 
vary significantly based on the number of atoms (Doye et al., 
1999; Wales & Doye, 1997).2 For example, the 13 and 19 
atom systems display concentrated “funnels”, where many 
local minima and the global minimum are connected via low 
energy paths. In contrast, the 38 and 75 atom counts display 
complex “double-funneled” landscapes, where there are two 
distinct sets of minima that are dynamically inaccessible 
due to a high energy barrier between the two. 

Gupta Clusters are similar to the Lennard-Jones model in 
approximating the energy of sets of atoms in free-space, yet 
they are significantly more complex due to the inclusion 
of a second-moment approximation of the tight-binding 
Hamiltonian (Gupta, 1981; Michaelian et al., 1999; Sutton, 
1993; Rosato et al., 1989). In this paper, we focus on both 
single element and bimetallic forms using the elements Ag, 
Au, Pd, and Pt. Energy equations and the constant values 
for all systems are provided in Appendix A.2. 

2Diagrams depicting the local minima structures and the lowest 
energy paths between minima for particularly interesting cluster 
sizes can be viewed at http://doye.chem.ox.ac.uk/research/ 
forest/LJ.html 

http://doye.chem.ox.ac.uk/research/forest/LJ.html
http://doye.chem.ox.ac.uk/research/forest/LJ.html
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Stillinger-Weber (SW) potentials (Stillinger & Weber, 
1985) provide more accurate estimations for energies of 
semiconductors. This empirical potential introduces a three-
body angular term between atoms, making the correspond-
ing loss landscape significantly more difficult to optimize. 
In this paper, the SW potential is used to model silicon 
crystals. This benchmark is distinct from the others in the 
use of periodic boundary conditions, so that atomic struc-
tures are tiled in space. The associated energy equation and 
parameters are provided in Appendix A.3. 

2.2. Optimization Methods from Structure Prediction 

Early approaches to structure prediction problems simply 
initialized the particle positions at hand-crafted, physically-
motivated structures, before applying gradient descent 
(Hoare & Pal, 1971; Farges et al., 1985; Doye et al., 1995). 
This technique proved effective for simple cluster systems 
such as Lennard-Jones but faced difficulty scaling to more 
complex potentials (such as those with angular dynamics). 
Classic optimization approaches such as Basin Hopping 
(Wales & Doye, 1997) and Simulated Annealing (Kirk-
patrick et al., 1983; Biswas & Hamann, 1986) resulted in 
significant improvements and helped discover the minima 
for a variety of structures. However, these techniques end 
up requiring high step counts and may only find the global 
minimum in the limit of infinite optimization steps. 

Modern molecular dynamics systems use a variety of tech-
niques for optimization. Quasi-Newton techniques such as 
BFGS and damped Beeman dynamics (Beeman, 1976) are 
popular within libraries such as QuantumEspresso (Gian-
nozzi et al., 2009). Alternate strategies include Fast Inertial 
Relaxation Engine–referred to as FIRE (Bitzek et al., 2006)– 
which adaptively modifies the velocity over the course of 
training and Ab Initio Random Structure Search (Pickard 
& Needs, 2006; 2011; Zilka et al., 2017). However, these 
techniques often rely on heuristics or require a large number 
of restarts before reaching the global minimum. 

While this work only uses traditional empirical potentials, 
machine learning has also been used to create empirical po-
tentials, such as those utilizing graph convolutions (Gilmer 
et al., 2017; Schütt et al., 2017; Cheon et al., 2020). These 
models are becoming a popular option for speeding up opti-
mization. However, we note that the approach presented in 
this paper is complementary; the two could be combined so 
that both the potential and optimizer are learned. 

2.3. Learned Optimization 

Learned optimization (Bengio et al., 1992; Andrychowicz 
et al., 2016; Wichrowska et al., 2017; Lv et al., 2017; Metz 
et al., 2018; 2019b; Gu et al., 2019; Metz et al., 2020), has 
recently become a popular meta-optimization task, where 
updates are a function of the gradients, parameterized by a 

neural network. In the traditional setup depicted in Figure 
2, training a learned optimizer consists of an inner-loop of 
optimization problems which are used to compute meta-
updates to the learned optimizer parameters, referred to as 
the outer-loop (Wichrowska et al., 2017; Metz et al., 2018) . 

In our case, the inner-loop consists of instantiations of 
atomic structure optimization problems, including a ran-
dom initialization for atoms and a corresponding empirical 
potential to minimize. At each step in the inner-loop of 
meta-training, atomic forces are computed, featurized, and 
then input to the learned optimizer which computes updates 
to the particles. These steps are then repeated, which is 
often referred to as an inner-trajectory or unroll. 

For each inner-loop, a meta-loss is defined based on the opti-
mization trajectory, commonly the average loss over the tra-
jectory in prior work. If the unrolls were short, meta-training 
could be performed by gradient descent (Andrychowicz 
et al., 2016; Wichrowska et al., 2017). However, due to 
memory requirements and often ill-conditioned outer-loss 
surfaces (Metz et al., 2019a), meta-gradients are instead 
approximated via Evolutionary Strategies (ES) using an-
tithetic samples (Williams, 1992; Salimans et al., 2017; 
Metz et al., 2019a). A central controller collects batches of 
meta-gradient estimates and updates the learned optimizer 
parameters, typically using Adam (Kingma & Ba, 2014). 

A variety of architectures have been proposed for learned op-
timizers. Early work utilized RNNs in order to provide the 
network a state that can be automatically updated throughout 
the course of training (Andrychowicz et al., 2016). These 
models were quickly developed into optimizers that scale 
(Wichrowska et al., 2017), and are compute-efficient (Metz 
et al., 2018). Most closely related to our work is that of 
(Metz et al., 2019a; 2018) which is novel in its parameriza-
tion of the state and input features of the learned optimizer. 
Instead of providing an explicit memory (e.g. in a GRU), 
the learned optimizer is simplified to an MLP that is applied 
per parameter and is provided relevant features, such as the 
first and second moment estimates for the gradients. See 
Table 1 for all features used in the MLPs. 

3. Modifications for Rough Landscapes 
Adapting these learned optimizers to many-minima land-
scapes requires modifications to both the training and model 
itself to improve global optimization. For example, instead 
of the average loss of the optimization trajectory, the learned 
optimizer for atomic structure optimization only uses the 
final step loss. This training strategy prioritizes global min-
imum discovery at the expense of greater variance of the 
gradient with respect to learned optimizer weights. Addi-
tional modifications are detailed in the following sections 
and training details are in Appendix B. 
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Table 1. Features inputted into the learned optimizers. MLPOpt 
refers to the model by Metz et al. (2019a). 

FEATURES DESCRIPTION IN MLPOPT 

GRADIENTS GRADIENTS 

POSITIONS PARTICLE POSITIONS 

DECAYS EMA OF 1ST AND 2ND MOMENTS 
INVERSE NORM AND 

ADAM-LIKE MOMENT CORRECTION 

SINGULAR NUMBER OF PARTICLES 

SPECIES SPECIES IDENTITY 

STEP TRAINING STEP SINE FEATURES 

RADIAL RADIAL SYMMETRY FEATURES 

3.1. Features 

We follow prior work (Metz et al., 2019a) in parameterizing 
the learned optimizer as an MLP. The input features are often 
inspired by popular optimization techniques and include 
estimates of the first and second moments to mimic Adam 
(Kingma & Ba, 2014). Table 1 describes all inputted features 
that are adopted from “MLPOpt”, the learned optimizer 
described in Metz et al. (2019a). 

Novel to our learned optimizers is the inclusion of Behler-
Parrinello radial symmetry features (Behler & Parrinello, 
2007; Artrith et al., 2013; Cubuk et al., 2015). Traditional 
learned optimizers update each parameter independently, 
yet in the case of atomic structure problems, particle behav-
ior should depend on interactions with nearest neighbors. 
Radial symmetry functions provide these sorts of two-body 
interactions for a central atom by allowing updates to be de-
fined by local neighborhoods. Simply put, these features φ 
are computed using a Gaussian kernel and summing over all 
neighbors of a central atom. Smooth cutoffs Γ are applied 
using the formulation by Behler & Parrinello (2007): X � � 

φi = exp −ηd2 Γ(dij )ij (j 6=i 

0 if dij > c 
Γ(dij ) = 

0.5 (cos (π · dij /c) + 1) otherwise 

where c is a pre-defined cutoff set to 2.5 angstroms and η 
is a hyperparameter controlling the scale. η is set to one 
of {0.0009, 0.01, 0.02, 0.035, 0.06, 0.1, 0.2, 0.4}, yielding 
8 radial features per atom type. 

These features are then parameterized into a log-magnitude 
and direction representation (Andrychowicz et al., 2016): ( 

(log|x|/p, sign(x)) if x > exp(−p)
features = 

(−1, x exp(p)) if x ≤ exp(−p) 

where p = 10 is the default hyperparameter. These fea-
tures are then input to the learned optimizer, a small 2-layer 

dense neural network (with a hidden size of 32), that acts 
component-wise. The network outputs magnitude m and 
unnormalized direction d per component, converted to the 
final update via: 

α · d · sigmoid(β · m + γ) (2) 

where α, β, γ are scalars learned via meta-optimization.3 

3.2. Meta-Training Stability 

The rough loss landscapes discussed in this paper 
present two significant challenges with regards to meta-
optimization: high curvature and infrequent training signal. 

High curvature is an intrinsic problem to atomic structures. 
For example, with the Lennard-Jones potentials, the energy 
increases at a rate of d−12 as dij → 0 for all i, j. Whenij 
the optimizer happens to bring two particles too close to-
gether, energy (loss) spikes can yield meta-gradients that 
destabilize learned optimizer training. Traditional strate-
gies such as gradient norm clipping (Pascanu et al., 2013) 
were found to be ineffective in preventing divergence of the 
meta-optimization objective. 

Infrequent and noisy training signals are also problematic 
as learned optimizers can find simple, stable optimization 
strategies such as gradient descent early in training. Most 
perturbations to gradient-descent methods will be noise and 
increase the final loss. The meta-optimization model must 
be sensitive enough to learn from the infrequent signal oc-
curring when few individual instantiations of a learned opti-
mizer find better minimia structure, rather than being pushed 
back to descent-like methods due to noise. 

As mentioned in the background, many learned optimizers 
are trained with antithetic ES sampling (Salimans et al., 
2017; Metz et al., 2019a) where meta-gradients are esti-
mated via perturbations of the parameters: � � 

L(θ + �) − L(θ − �) rmeta = E�∼N (0,Iσ2) 
2σ2 

� (3) 

where L is the loss, θ the learned optimizer parameters, and 
σ is the perturbation scale, set to 0.1. This strategy is partic-
ularly vulnerable to the optimization difficulties, as either 
direction of the parameter perturbation may lead to explod-
ing gradients. Also, the variance of the estimator makes it 
more difficult to learn from the sparse rewards when optimiz-
ers find better local minima. To overcome these issues, we 
present two modifications to the meta-update which enable 
stable meta-training: 

3Note, this output parameterization contrasts from Metz et al. 
(2019a), but experimental evidence showed that the traditional 
exponential update leads to divergent optimization trajectories. 
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Meta-loss Clipping (ESMC) 
In order to prioritize signal from perturbations that find bet-
ter minima and improve the meta-loss, we propose clipping 
the loss functions in the meta-gradient computation at the 
value found by the unperturbed parameters. � � 

min [L(θ), L(θ + �)] − min [L(θ), L(θ − �)]
E� � (4)

2σ2 

where again � ∼ N (0, Iσ2). Intuitively, this biases against 
directions of high curvature in meta-optimization and empir-
ically showed improved results. This strategy has the added 
benefit of heavily clipping the gradients of examples where 
loss spikes when atoms become too close, at the cost of an 
additional meta-loss calculation for L(θ).4 

Genetic Algorithms (GA) 
Instead of relying on approximate meta-gradients, a simpler 
strategy perhaps is to adopt the perturbed parameters when 
they improve the meta-loss on a batch of random examples 
(Holland, 1992; Goldberg & Holland, 1988). To match the 
number of estimators of the meta-gradient used in ESMC, 
we use a population of size 80. At the end of each outer 
loop, the best performing parameters θ are kept and used 
for creating the next population by drawing from N (θ, Iσ2) 
where σ = 0.1. By default, θ is kept constant when all 
samples perform worse than the baseline. 

Comparison of Methods 
A comparison of these strategies on a simplified learned 
optimizer setup is shown in Figure 3. The genetic-algorithm 
approach shows improvement early in meta-training which 
steadily converges to an optimizer where almost all ini-
tialization find the global minimum. In contrast, both ES 
and ESMC show a distinct transition in behavior around 
steps 300-400, which demarcates a transition from simple-
to-learn descent behavior to more complex global minima 
discovery. The ESMC method is able to retain this behav-
ior throughout meta-optimization, whereas traditional ES 
appears unstable and forgets. Overall, both learned opti-
mizer modifications show significant improvements in con-
vergence speed and stability when compared to vanilla ES. 
Details for this experiment can be found in Appendix B. 

3.3. Additional Details 

In order to provide consistent scaling when averaging meta-
losses across tasks, we divide energies by the best minimum 
found from applying Adam to 150 random initializations. 
This normalizes all losses to so that −1 is the best minimum 
found by Adam, ensuring that optimizers trained on multiple 
particle counts are not biased towards larger systems where 

4In practice, this does not require a 50% increase in meta-
training time due to parallelization. On V100 GPUs, the increase 
in training time was as small as 15%. 

Figure 3. Comparison of training strategies for learned optimizers 
on Lennard-Jones clusters highlights the need for ESMC or GA. 
Here, we see that our learned optimizers improve performance 
with respect to stability and averaged meta-loss. 

the energy scales are lower. For each inner-loop, we apply 
50000 optimization steps before computing meta-gradients. 
Batched training occurs with 80 random initializations of 
atomic structure problems. Once meta-gradients are aver-
aged, a central controller meta-updates the parameters of 
the learned optimizer via Adam with a learning rate of 10−2 

(which decays exponentially by 0.98 every 10 steps). This 
repeats for a total of 1000 meta-updates. 

Finally, as the learned optimizer training does not guarantee 
a local minimum is found at the end of an optimization 
trajectory, we add 1000 steps of GD at learning rate of 0.001. 
We evaluate all strategies using 150 random initializations 
and report the mean and minimum energies found. 

3.4. Implementation Details 

The aforementioned potentials are coded using JAX-MD 
(Schoenholz & Cubuk, 2019). The learned optimizers are 
built in JAX (Bradbury et al., 2018) to take advantage of au-
tomatic differentiation and vectorization of the optimization 
simulation. The associated training and evaluation utilized 
V100 GPUs. For distributed training, the controller batches 
computation on up to 8 GPUs. 

4. Experimental Results - Single Atom 
We start with a simplified set of potentials comprised of a 
single type of atom. For Lennard-Jones, we present results 
when a model is trained on a diverse set of atom counts, 
specifically {13, 19, 31, 38, 55, 75}, which helps stabilize 
learned optimizer training and improve generalization be-
yond the training set. In the results, starting with Figure 4, 
the learned optimizer shows significant performance gains 
when compared to the benchmark optimization algorithms 
of Adam and FIRE. This improvement not only takes the 
form of better minima but also better average energy per 
initialization. Note, the dotted lines correspond to the atom 
counts used during training; that the learned optimizers per-
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Figure 4. Comparison of the learned optimizers and baseline meth-
ods on Lennard-Jones clusters. The learned optimizers are trained 
on a subset of the atom counts (demarcated by dashed lines) and 
evaluated via 150 random initializations. When compared to Adam 
and FIRE, the learned optimizers generically improve both the aver-
age energy per initialization (top) and best minima found (bottom) 
on atom counts unseen during training. 

form better between these lines shows that these learned 
optimizers generalize to tasks unseen during training yield-
ing significant improvements over Adam and FIRE. Further-
more, the models generalize beyond the training distribution 
to tasks of up to 100 atoms. 

Figure 5 analyzes the distribution of minima in greater detail 
for two canonical tasks: the 13 and 75 atom Lennard-Jones 
systems. The loss surface of the former is best described 
as a “funnel” and even traditional algorithms can find the 
global minimum in about 20/150 random initializations. On 
the other hand, the 75 atom Lennard-Jones system has a 
glassy, optimization landscape, where high energy barriers 
exist between local minima (Wales & Doye, 1997) and the 
global minimum is difficult to find. 

Interestingly, we first find that the baselines of Adam and 
FIRE yield similar performance per task after extensive 
hyper-parameter tuning.5 Nevertheless, both of our learned 
optimizer models show significant progress. With 13 atoms, 
the learned optimizers drastically increase the rate of global 
minimum discovery from 20/150 to above 140/150. With 
75 atoms, the learned optimizers shift the distribution of 
minima found, finding minima within 1 eV of the global 
minimum compared to the 7 eV for Adam and FIRE. 

5While this trend was common in our experiments, additional 
work would be necessary to thoroughly compare these optimizers. 

Figure 5. Distribution of minima found when baseline optimizers 
and the learned models are applied to 150 random initializations. 
For the Lennard-Jones task with 13 atoms (top), the learned opti-
mizer find the global minimum in approximately 140 out of 150 
trials, significantly better than the 20 of Adam and FIRE. Similar 
improvements are seen for the Lennard-Jones task with 75 atoms 
(bottom) where learned optimizers improve the minima found. 

Similar results were obtained when learned optimizers were 
extended to the Gupta or SW potentials, when modeling 55-
atom gold clusters and 64-atom silicon crystals respectively. 
Table 2 shows that the learned optimizers routinely surpass 
Adam and FIRE baselines and outperform Basin Hopping in 
a step-matched comparison.6 For silicon crystals, we note 
that the large gap between the global minimum and energies 
found arises from the difficulty of optimizing 64 atoms; due 
to the size, the problem reduces to finding finding stable 
amorphous structures (low energy local minima) rather than 
the true global minimum (Barkema & Mousseau, 1996). 

5. Behavioral Analysis 
As the update function is parameterized by a neural network, 
it is unclear how learned optimizers improve atomic struc-
tural prediction. To explore the behavior, we provide three 
analyses showcasing an emergent ‘hopping’ behavior and 
what features are critical for learned optimizer performance. 

5.1. Loss Trajectories 

In Figure 6 (top), we show loss trajectories when the learned 
optimizer is applied to the Lennard-Jones task with 13 atoms. 
Interestingly, the behavior of the loss function is not mono-
tonic. While the model does rapidly descend into individual 

6Step-matched refers to an equivalent number of inner opti-
mization steps. For details, please see the Appendix C.2 
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Table 2. Learned optimizers show improvement across all tested potential types. For each model and evaluation, the average and minimum 
are computed across 150 random initializations. All energies are reported in units of eV, and GM denotes the global minimum energy. 

POTENTIAL 
EVALUATION 

# ATOMS GM METRIC 

STEP-MATCHED BASELINES 
BASIN 

ADAM FIRE HOPPING7 

LEARNED OPTIMIZER 

ESMC GA 

LENNARD-JONES 13 -44.33 MIN -44.33 -44.33 -44.33 -44.33 -44.33 
MEAN -40.58 -40.45 -43.49 -44.26 -44.31 

75 -397.49 MIN 
MEAN 

-390.34 
-380.52 

-389.12 
-380.23 

-392.16 
-381.49 

-396.24 
-390.33 

-396.28 
-390.92 

GUPTA GOLD 55 -181.89 MIN 
MEAN 

-180.94 
-179.94 

-181.75 
-180.94 

-181.89 
-181.38 

-181.89 
-181.51 

-181.89 
-181.61 

SW SILICON 64 -277.22 MIN 
MEAN 

-60.08 
-256.83 

-261.44 
-257.01 

-261.64 
-259.14 

-262.95 
-260.14 

-264.17 
-261.81 

basins, many of these models display spikes in loss or ‘hop-
ping’ behavior where the model transitions between basins 
of different local minima at an erratic interval. More over, 
the optimizers have discovered characteristics that deter-
mine when to leave their basin. Figure 6 (bottom) explores 
these trajectories in greater details, by filtering the ‘lucky’ 
intializations that lead to the correct global minimum via 
Adam only. In cases where the parameters start in the cor-
rect basin, the learned optimizers performs better, acting 
like traditional Adam. For worse random starts, the learned 
optimizer will descend and then ‘hop’ between basins. 

5.2. Behavior at Minima 

This ‘hopping’ behavior appears to be key to the learned 
optimizer performance. Inspired by Maheswaranathan et al. 
(2021), we fix the position at the global minimum and com-
pute the learned optimizer update over the course entire 
optimization trajectory. This strategy removes the influ-
ence of gradients in the learned optimizer (as they are zero) 
and helps visualize the behavior, as a function of the opti-
mization step. In Figure 6 (middle), repeatedly applying 
the learned optimizer and measuring the update magnitude 
displays these ‘hops,’ indicating that the model places em-
phasis on exploration and hopping between basins midway 
through these optimization trajectories (despite not receiv-
ing gradient signal to do so). 

5.3. Feature Importance 

Table 3 provides an ablation study to explain what input 
features to the learned optimizer are most important. To 
clarify the difference in performance, results are presented 
for a learned optimizer trained only on the 75 atom Lennard-
Jones system (similar results were found for other clusters 
and crystals). To account for training instability, each result 
is the median over 10 shortened runs of 650 meta-updates. 

We first see slight improvements coming from the addi-
tion of exponential moving averages of the gradient, similar 
to the benefits of momentum in stochastic optimization. 

Table 3. Improvement arising from additional features shows that 
SINE and RADIAL features boost model performance, suggesting 
information about step count and local neighborhoods of atoms 
are helpful for optimization. Results are the median performance 
out of 10 random training seeds. Note results are worse than Table 
2 due to shortened training schedules. Lower is better. 

OPTIMIZERS MINIMUM ENERGY (EV) 

BASELINE 
ADAM -390.3 -390.3 

Δ FROM ADAM Δ FROM ADAM 
LEARNED OPTIMIZER ESMC (OURS) GA (OURS) 
(1) GRADIENTS +0.2 -0.8 
(2) POSITIONS +0.2 -1.2 
(3) DECAYS -2.0 -2.0 
(4) ADAM-LIKE -1.0 -2.8 
(5) SINGULAR -1.0 -2.9 
(6) SPECIES -0.5 -2.4 
(7) SINE -2.3 -3.6 

(8) RADIAL -3.4 -4.4 

However, what is most critical to model performance is 
the training step sine features and the radial symmetry func-
tions. The sine features encode the optimization step via sine 
waves of various timescales ({1, 3, 10, 30, 100, 300, 1000, 
3000, 10000}), and we hypothesize that these are helpful as 
they provides signal for when the learned optimizer should 
perform exploration and exploitation. Otherwise, the mod-
els tend to learn monotonic behavior that is similar in spirit 
to the Adam solutions. Finally, the newly introduced radial 
symmetry features also provide significant improvement, 
suggesting that per-position optimization is sub-optimal and 
rather information about particle neighbors (other than just 
gradients) is informative for optimization. 

Overall, the behavioral analyses show that ‘hopping’ be-
havior is critical to the performance of learned optimizers; 
however, given that an equivalent number of traditional 
Basin Hopping steps yields worse performance suggests 
more complex behavior also occurs. 
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Figure 6. Behavioral analyses of learned optimizers find that ex-
amples ‘hop’ between basins rather than descent behavior. This 
is seen in the behavior of individual trajectories (top), where each 
trajectory has an opacity of 0.02 (so darker regions corresponds a 
greater number of examples). These ‘hops’ are further supported 
by the spiking update magnitudes when fixed to a local minimum, 
suggesting that learned optimizers prioritize exploration of various 
basins (middle). For both of these diagrams, we zoom-in on a 
single trajectory, showing how the ‘hops’ arise from large updates, 
followed by periods of descent. We also find that this hopping 
behavior corrects unlucky, random initializations that would not 
find the global minimum via Adam (bottom). 

6. Experimental Results - Bimetallic Clusters 
Having found that learned optimizers perform well in 
the case of single atom systems, we introduce additional 
complexity and explore generalization performance of the 
learned optimizers using bimetallic clusters. These systems 
are particularly interesting as purely gradient-based opti-
mization methods such as Adam or FIRE fail, unable to 
pass the large energy barriers between local minima. These 
potentials also allow for exploration of whether the learned 
behavior can transfer, a promising sign for the usage of these 
models in material design or crystal discovery. 

For the bimetallic clusters, we focus on the Gupta potential, 
whose parameters are modified to correspond to specific 
pairwise interactions (Gupta, 1981). The constant values 
used can be found in Appendix A.2. First, the results of 

Figure 7. Results for the bimetallic AgAu (top) and PdPt (bottom) 
clusters. For ESMC (AgAu), the learned optimizer is trained on 
only a subset of the possible ratios between Ag and Au. ESMC 
(AgAu, AgPt, PdAu) is trained only with AgAu, AgPt, PdAu 
clusters. On both AgAu and PdPt systems, both of our learned 
optimizers significantly outperform the baselines of Adam, FIRE, 
and step-matched Basin Hopping, which shows that the learned 
optimizers can generalize to new ratios or combinations of seen 
elements and new elements entirely unseen during training. 

training learned optimizers on bimetallic clusters compris-
ing of Silver (Ag) and Gold (Au) are shown in Figure 7 (top). 
Fixing the total number of atoms at 38, we train the learned 
optimizer on Ag38−mAum for m ∈ {3, 7, 15, 22, 30, 38}
and test on all values of m. We present the convex hull 
of the formation energies of the clusters, as in equilibrium 
when excess silver and gold particles are present, only these 
clusters will be stable. The graphs show the robust empiri-
cal performance of learned optimizers, significantly outper-
forming Adam, FIRE, and a step-matched Basin Hopping 
benchmark. Only after 10x evaluation steps does Basin Hop-
ping compete with the performance of the learned optimizer. 
This result indicates that the learned optimizers generalize 
as few of the AgAu clusters were used in training. 

In the context of material design and crystal discovery, an-
other core question is whether the learned optimizers will 
generalize beyond the set of atoms used for training. In 
Figure 7 (bottom) we show the results from both the AgAu 
model described above and a second model trained on AgAu, 
AgPt, and PdAu. For both, we test on clusters of PdPt, which 
is not in the training set of either model. The learned op-
timizers show successful transfer performance, exceeding 
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the step-matched Basin Hopping results. Only after 10x 
the number of evaluation steps can Basin Hopping compete 
with the learned optimizers (even after tuning, see Appendix 
C.2. While increasing the diversity of training tasks does 
improve generalization performance, both optimizers show 
an ability to transfer to unseen elements or combinations, a 
promising sign for this strategy of learning to optimize.8 

7. Conclusion 
With current optimization techniques in material design and 
chemical physics requiring hand-crafted features or signifi-
cant evaluation time, this paper explores the idea of global 
minimum discovery using learned optimizers. Although 
novel adaptations are required from the current state-of-the-
art learned optimizers, we show that the resulting models 
can beat current baseline optimization techniques such as 
Adam and FIRE, not only in terms of minima discovery but 
also in terms of average energy per initialization. Better yet, 
these learned optimizers show signs of transference between 
potentials of similar varieties (ex: clusters parameterized 
by the Lennard-Jones and Gupta potentials), even on never 
before seen elements or combinations. Although a single 
optimizer for all task remains a goal for future work, learned 
optimizers show promise in automatically finding minima 
in complex optimization landscapes. We hope that the re-
sulting models can aid in the design of new materials (e.g. 
for addressing energy challenges). 
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