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Abstract

Credit assignment in reinforcement learning is
the problem of measuring an action’s influence on
future rewards. In particular, this requires sepa-
rating skill from luck, i.e. disentangling the effect
of an action on rewards from that of external fac-
tors and subsequent actions. To achieve this, we
adapt the notion of counterfactuals from causality
theory to a model-free RL setup. The key idea
is to condition value functions on future events,
by learning to extract relevant information from
a trajectory. We formulate a family of policy gra-
dient algorithms that use these future-conditional
value functions as baselines or critics, and show
that they are provably low variance. To avoid the
potential bias from conditioning on future infor-
mation, we constrain the hindsight information
to not contain information about the agent’s ac-
tions. We demonstrate the efficacy and validity
of our algorithm on a number of illustrative and
challenging problems.

1. Introduction

Reinforcement learning (RL) agents act in their environ-
ments and learn to achieve desirable outcomes by maximiz-
ing a reward signal. A key difficulty is the problem of credit
assignment (Minsky, |1961), i.e. to understand the relation
between actions and outcomes, and to determine to what
extent an outcome was caused by external, uncontrollable
factors. In doing so we aim to disentangle the relative as-
pects of ‘skill’ and ‘luck’ in an agent’s performance. One
possible solution to this problem is for the agent to build a
model of the environment, and use it to obtain a more fine-
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grained understanding of the effects of an action. While this
topic has recently generated a lot of interest (Heess et al.
2015 Ha & Schmidhuber, 2018; [Hamrick, 2019; Kaiser
et al.,[2019; Schrittwieser et al., [2019)), it remains difficult
to model complex, partially observed environments.

In contrast, model-free reinforcement learning algorithms
such as policy gradient methods (Williams|, [1992} Sutton
et al.}2000) perform simple time-based credit assignment,
where events and rewards happening after an action are
credited to that action, post hoc ergo propter hoc. While
unbiased in expectation, this coarse-grained credit assign-
ment typically has high variance, and the agent will require
a large amount of experience to learn the correct relation
between actions and rewards. Another issue is that existing
model-free methods are not capable of counterfactual rea-
soning, i.e. reasoning about what would have happened had
different actions been taken with everything else remaining
the same. Given a trajectory, model-free methods can in
fact only learn about the actions that were actually taken to
produce the data, and this limits the ability of the agent to
learn efficiently.

As environments grow in complexity due to partial observ-
ability, scale, long time horizons, and increasing number of
agents, actions taken by an agent will only affect a vanishing
part of the outcome, making it increasingly difficult to learn
from classical reinforcement learning algorithms. We need
better credit assignment techniques.

In this paper, we investigate a new method of credit assign-
ment for model-free reinforcement learning which we call
Counterfactual Credit Assignment (CCA). CCA leverages
hindsight information to implicitly perform counterfactual
evaluation—an estimate of the return for actions other than
the ones which were chosen. These counterfactual returns
can be used to form unbiased and lower variance estimates
of the policy gradient by building future-conditional base-
lines. Unlike classical Q functions, which also provide an
estimate of the return for all actions but do so by averaging
over all possible futures, our methods provide trajectory-
specific counterfactual estimates, i.e. an estimate of the
return for different actions, but keeping as many of the ex-
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ternal factors constant between the return and its counterfac-
tual estimateﬂ Such a method would perform finer-grained
credit assignment and could greatly improve data efficiency
in environments with complex credit assignment structures.
Our method is inspired by ideas from causality theory, but
does not require learning a model of the environment.

Our main contributions are: a) introducing a family of novel
policy gradient estimators that leverage hindsight informa-
tion and generalizes previous approaches, b) proposing a
practical instantiation of this algorithm with sufficiency con-
ditions for unbiasedness and guarantees for lower variance,
¢) introducing a set of environments which further our un-
derstanding of when credit assignment is made difficult due
to exogenous noise, long-term effects and task interleaving,
and thus leads to poor policy learning, d) demonstrating
the improved performance of our algorithm on these envi-
ronments, e) formally connecting our results to notions of
counterfactuals in causality theory, further linking the causal
inference and reinforcement learning literatures.

2. Counterfactual Credit Assignment
2.1. Notation

We use capital letters for random variables and lower-
case for the value they take. Consider a generic MDP
(X, A,p,r,7v). Given a current state z € X and assum-
ing an agent takes action a € A, the agent receives reward
r(x,a) and transitions to a state y ~ p(-|z,a). The state
(resp. action, reward) of the agent at step ¢ is denoted X}
(resp. A, R;). The initial state of the agent X is a fixed
. The agent acts according to a policy m, i.e. action A;
is sampled from the policy 7y (+|X;) where 6 are the policy
parameters, and aims to optimize the expected discounted
return E[G] = E[}_, 7" R¢]. The return G, from step ¢ is
Gi = Y sy 7" ~tR,. Note G = Go. Finally, we de-
fine the score function sy(mg, a,z) = Vg log me(alz); the
score function at time ¢ is denoted Sy = Vg log g (A:| X}).
In the case of a partially observed environment, we as-
sume the agent receives an observation E; at every time
step, and simply define X, to be the set of all previ-
ous observations, actions and rewards X; = (O<;), with
O, = (Ey, A1, Rt—1)EI P(X) will denote the probability
distribution of a random variable X.

2.2. Policy gradient algorithms

We begin by recalling two forms of policy gradient algo-
rithms and the credit assignment assumptions they make.
The first is the REINFORCE algorithm introduced by

"From from a causality standpoint, one-step action-value func-
tions are interventional concepts (““What would happen if") instead
of counterfactuals (“What would have happened if").

2Previous actions and rewards are provided as part of the obser-
vation as it is generally beneficial to do so in partially observable
Markov decision processes.

Williams| (1992), which we will also call the single-action
policy gradient estimator. The gradient of E[G] is given by:

VoE[G] =E[> 7' S (G -V(X)]. )

t>0

where V(X;) = E[G:|X;]. Let’s note here that V(X;)
(resp. Q(Xi, A:) = E[Gt|X¢, Az]) is the value function
(resp. Q-function) for the policy 7y but for notation simplic-
ity the dependence on the policy will be implicit through
the rest of this paper.

The appeal of this estimator lies in its simplicity and gen-
erality: to evaluate it, the only requirement is the ability to
simulate trajectories, and compute both the score function
and the return.

Note that subtracting the value function V' (X;) from the
return GG; does not bias the estimator and typically reduces
variance, since the resulting estimate makes an action Ay
more likely proportionally not to the return, but to which
extent the return was higher than what was expected before
the action was taken (Williams), [1992). Such a function will
be called a baseline in the following. In theory, the baseline
can be any function of X;. It is however typically assumed
that it does not depend on any variable ‘from the future’
(including the action about to be taken, A4;), i.e. with time
index greater than ¢, since including variables which are
(causally) affected by the action generally results in a biased
estimator (Weber et al., 2019)).

This estimator updates the policy through the score term;
note however the learning signal only updates the policy
mg(a| X¢) for the taken action A; = a (other actions are only
updated through normalization of action probabilities). The
policy gradient theorem from Sutton et al.|(2000), which we
will also call all-action policy gradient, shows it is possible
to provide learning signal to all actions, given we have
access to a Q-function, Q(z,a) = E[G¢|X; = z, A; = al,
which we will call a critic in the following. The gradient of
E[G] is given by:

VoE[G] = E|[ "' Y Vor(alX)Q(Xia)|. @)

t>0 acA

2.3. Intuitive example on hindsight reasoning and skill
versus luck

Imagine a scenario in which Alice just moved to a new city,
is learning to play soccer, and goes to the local soccer field
to play a friendly game with a group of other kids she has
never met. As the game goes on, Alice does not seem to play
at her best and makes some mistakes. It turns out however
her partner Megan is a strong player, and eventually scores
the goal that makes the game a victory. What should Alice
learn from this game?

When using the single-action policy gradient estimate, the
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outcome of the game being a victory, and assuming a £1 re-
ward scheme, all her actions taken during the game are made
more likely; this is in spite of the fact that during this partic-
ular game she may not have played well and that the victory
is actually due to her strong teammate. From an RL point
of view, her actions are wrongly credited for the victory and
positively reinforced as a result; effectively, Alice was lucky
rather than skillful. Regular baselines do not mitigate this
issue, as Alice did not a priori know the skill of Megan, re-
sulting in an assumption that Megan was of average strength
and therefore a guess that their team had a 50% chance of
winning. This could be fixed by understanding that Megan’s
strong play were not a consequence of Alice’s play, that her
skill was a priori unknown but known in hindsight, and that
it is therefore valid to retroactively include her skill level in
the baseline. A hindsight baseline, conditioned on Megan’s
estimated skill level, would therefore be closer to 1, driving
the advantage estimate (and corresponding learning signal)
close to 0.

As pointed out by Buesing et al.|(2019), situations in which
hindsight information is helpful in understanding a trajec-
tory are frequent. In that work, the authors adopt a model-
based framework, where hindsight information is used to
ground counterfactual trajectories (i.e. trajectories under
different actions, but same randomness). Our proposed
approach follows a similar intuition, but is model-free: we
attempt to measure—instead of model— information known
in hindsight to compute a future-conditional baseline, but in
a way that maintains unbiasedness. As we will see later, this
corresponds to a constraint that the captured information
must not have been caused by the agent.

2.4. Future-conditional (FC-PG) and Counterfactual
(CCA-PG) Policy Gradient Estimators

Intuitively, our approach for assigning proper credit to ac-
tion A, relies on measuring statistics ®; that capture rel-
evant information from the trajectory (e.g. including ob-
servations Oy at times ¢’ greater than ). We then learn
value functions or critics which are conditioned on the ad-
ditional hindsight information contained in ®;. In general,
these future-conditional values and critics would be biased
for use in a policy gradient algorithm; we therefore use an

importance correction term to eliminate this bias.

Theorem 1 (Future-Conditional Policy Gradient (FC-PG)
estimators). Let ®; be an arbitrary random variable. As-
suming that % < oo for all a, the following is the

single-action unbiased estimator of the gradient of E|G|:

5[5 (00 g

\Y% E
0 P(A(| X, ®,)

v a5V (X, @t))}

3)

where V(x,¢) = E[Gi| Xy = x,D; = ¢)] is the future
®-conditional value function .

With no requirements on ®;, we also have an all-action
unbiased estimator:

VQE[ Z’y V@ logﬂ'(a|Xt (a‘Xh(bt)Q(Xt,(bt,a)]
t,a
where Q(z,¢,a) = E[G¢| Xy = z,®, = ¢, Ay = a] is

the future-conditional Q function (critic). Furthermore, we

have Q(Xt’a) =E [Q(Xta (Dtaa)% .

Intuitively, the % < 0o condition means that know-
ing ®; should not preclude any action a which was possi-
ble for m from having potentially produced ®;. A coun-
terexample is ®; = A;; knowing ¥, precludes any action
a # A; from having produced ®;. Typically, &, will be
chosen to a function of the present and future trajectory
(Xs, Ag, Rs)s>¢. The estimators above are very general and
generalize similar estimators (HCA) introduced by [Haru-
tyunyan et al.| (2019) (see App. [C]for a discussion of how
HCA can be rederived from FC-PG) and different choices of
® will have varying properties. ® may be hand-crafted using
domain knowledge, or, as we will see later, learned using
appropriate objectives. Note that in general an FC-PG esti-
mator doesn’t necessarily have lower variance (a good proxy
for fine-grained credit assignment) than the classical policy
gradient estimator; this is due to the variance introduced
by the importance weighting scheme. It would be natural
to study an estimator where this effect is nullified through
independence of the action and statistics ® (resulting in a
ratio of 1).

The resulting advantage estimate could thus be interpreted
not just as an estimate of ‘what outcome should I expect’,
but also a measure of "how (un)lucky did I get?’ and ‘what
other outcomes might have been possible in this precise
situation, had I acted differently’. It will in turn provide
finer-grained credit for action A; in a sense to be made
precise below.

Corollary 1 (Counterfactual Policy Gradient (CCA-PQG)).
If Ay is independent from ®; given X4, the following is an
unbiased single-action estimator of the gradient of E[G]:

ZW S (G —

Furthermore, the hindsight advantage estimate has no
higher variance than the forward one:

E[(G - vx,e)7] <E ]G -

Similarly, for the all-action estimator:
{Z’y Z Vor(al X0)Q(Xe, @1,a)|. (5)

Also, we have for all a,

Q(X¢,a) = E[Q(Xy, Py, a)| Xy, A = al

VoE[G V(Xy, ©1)) “4)

V(Xt))z] .

VoE[G
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The benefit of the first estimator (equation[d) is clear: under
the specified condition, and compared to the regular policy
gradient estimator, the CCA estimator also has no bias, but
the variance of its advantage estimate G; — V (X3, ®;) (the
critical component behind variance of the overall estimator)
is no higher.

For the all-action estimator, the benefits of CCA (equa-
tion@) are less self-evident, since this estimator has higher
variance than the regular all action estimator (which has
variance 0). The interest here lies in bias due to learning
imperfect Q functions. Both estimators require learning
a Q function from data; any error in Q leads to a bias in
7. Learning (X, a) requires averaging over all possible
trajectories initialized with state X; and action a: in high
variance situations, this will require a lot of data. In contrast,
Q(X¢, @t a) predicts the average of the return Gy condi-
tional on (X, ®¢,a); if ®; has a high impact on Gy, the
variance of that conditional return will be lower, and learn-
ing its average will in turn be far easier and data efficient.

2.5. Learning the relevant statistics: practical
implementation of CCA-PG

The previous section proposes a sufficient condition on ®
for useful estimators to be derived. A question remains -
how to compute such a ® from the trajectory? While useful
® could be handcrafted using expert knowledge, we propose
to learn to extract @ from the trajectory. The learning signal
will be guided by two objectives: first, we will encourage
®, to be conditionally independent from Ay, as it is required
for the estimator to be valid. Second, corollary [T|highlights
that hindsight features which are predictive of the return
lead to a decreased variance of the advantage estimate. To
summarize, we want ® to be predictive of the return while
being independent of the action being currently credited.
The corresponding hindsight conditional baseline would
capture the ‘luck’ part of the outcome while the advantage
estimate would capture the ‘skill” aspect of it. We detail our
agent components and losses below. See also Fig.[I|for a
depiction of the resulting architecture and Appendix [A] for
more details.

Agent components:

¢ Agent network: Our algorithm can generally be ap-
plied to arbitrary environments (e.g. POMDPs), so we
assume the agent constructs an internal state X; from
past observations (Oy )y <, using an arbitrary network,
for instance an RNN, i.e. X; = RNNy, (O, Xt_l)ﬂ
From X; the agent computes a policy g, (a|Xy),
where 6¢ denotes the parameters of the representation
network and policy.

* Hindsight network: Additionally, we assume the

3Obviously, if the environment is fully observed, a feed-
forward network suffices.

agent uses a hindsight network ¢ with parame-
ters fps which computes a hindsight statistic &, =
»((X, A, R)) which may depend arbitrarily on the vec-
tors of observations, agent states and actions (in par-
ticular, it may depend on observations from timesteps
t' > t).

* Value network: The third component is a future-
conditional value network Vp, (X¢, ®;), with param-
eters Oy.

* Hindsight predictor: The last component is a prob-
abilistic predictor h,, with parameters w that takes
Xy, ®; as input and outputs a distribution over A,
which is used to enforce the independence condition.

Learning objectives:

e The first loss is the hindsight baseline loss Ly, =
Zt(Gt - V9v (Xta (I)t))z'

e The second loss is the independence loss, which
ensures the conditional independence between A,
and ®,. There exists multiple ways to measure
dependence between random variables; we assume
a surrogate independence maximization (IM) loss
Liv(X:) which is non-negative and zero if and only
if Ay and ®, are conditionally independent given
X;. An example is to choose the Kullback-Leibler
divergence between the distributions P(A;|X;) and
P(A¢|X¢, ;). In this case, the KL can be estimated
by >, P(a|Xy) (logP(a|X;) — log P(a| Xy, ®4));
logP(a|X}) is simply the policy 7(a|X;); the pos-
terior P(a|X;, ®;) is generally not known exactly,
but we estimate it with the probabilistic predictor
he (A¢| Xy, @), which we train with the next loss.

e The third loss is the hindsight predictor loss, which
we train by minimizing the supervised learning
loss Lap = — >, E[log he,(A¢|X¢, ®¢)] on samples
(Xt, Ay, ®;) from the trajectory (note that this is a
proper scoring rule, i.e. the optimal solution to the
loss is the true probability P(a| Xy, ®;)).

e The last loss is the policy gradients sur-
rogate objective, implemented as Lpg =
> logme (A Xi)(Ge — V(Xy, ®¢)), where the
bar notation indicates that the quantity is treated
as a constant from the point of view of gradient
computation, as is standard.

The overall loss is therefore £ = Lpg + AsLns 4 Asup Lsup +
AmmLiv. We again want to highlight the very special role
played by w here: only Ly, is optimized with respect to w
(the parameters of the probabilistic predictor), while all the
other losses are optimized treating w as a constant.
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Hindsight Classifier Loss
Laup = — Y Ellog h(Ar| Xy, @,)]
t

Action Independence Loss

h(Ay| Xy, ®r)

Hindsight Baseline Loss Policy Gradient Loss

V(X;,CI%)——.

Figure 1: Counterfactual Credit Assi t in a nutshell: (1) The

backward RNN which in this example computes the hindsight features is

shaped by the hindsight baseline loss. This ensures that it is predictive of
the return. (2) However, to have an unbiased baseline, this hindsight fea-
ture P, needs to be independent from the action A;. To that end, we first
train a hindsight predictor that tries to predict what action has been taken
a time ¢ from X; and ®. (3) Then the action independence loss helps
removing any information about A; from the hindsight feature ®; (This
only enforces that the output of the backward RNN & is independent of
the action A;. However, this could potentially translate in ®; being inde-
pendent from further actions). This loss only impacts the backward RNN

[\mep

@ Forward RNN

(O)sackwardraN 2 320

and no gradient is being applied to the hindsight predictor MLP. (4) Finally,

Gradient

3. Connections to causality

In this section we provide a formal connection between the
CCA-PG estimator and counterfactuals in causality theory
(this connection is investigated in greater depth in appen-
dices[Hand [G).

To this end, we assume that the MDP (X, A, p,r,v) in
question is generated by an underlying structural causal
models (SCM) analogous to (Buesing et al.}, 2019} [Zhang],
2020). In this setting the trajectory (X, A, Rq)s>¢ and
return GG resulting from the agent-environment interaction
is represented as the output of a deterministic function f
taking as input the current state X, the action A;, and a
set of exogenous random variables £ which do not have
any causal ancestors (in the graph). The latter represent
the randomness required for sampling all future actions,
transitions, and rewards. Such a "reparametrization" of
trajectories and return is always possible, i.e. there is always
an SCM (possibly non unique) that induces the same joint
distribution P as the original MDP. Intuitively, £ represent
all factors external to A; which affect the outcomeﬂ

SCMs allow to formally define the notion of counterfactual.
Given an observed trajectory 7 = (X, Ag, Rs)s>t, We
define the counterfactual trajectory 7’ for an alternative
action A} = a} as a the output of the following procedure:

* Abduction: infer the exogenous noise variables € under
the factual observation: € ~ P(&|7).

* Intervention: Fix the value of A} to a) (mutilating
incoming causal arrows).

* Prediction: Evaluate the counterfactual outcome 7’
conditional on the fixed values £ and A; = a; yielding

7 = f(z4,a},€)
The counterfactual distribution will be denoted
P(7'|observe(T),do(A; = a})). Note that it typi-
cally requires knowledge of the model (SCM) to be
computed; samples from the models which do not expose

“Note that from this point of view, actions at future time-step
are effectively ‘chance’ from the point of view of computing credit
for action Ay

the policy gradient loss helps improving the policy while no gradient is
being sent to the hindsight baseline (i.e as expressed by the bar notation).

the exogenous variables £ are not typically not sufficient to
identify the SCM, as several SCMs may correspond to the
same distribution. However, under the CCA assumptions
and an additional faithfulness assumption, we can show that
the counterfactual return is indeed identifiable and is equal
to the future conditional state-action value function:

Theorem 2. Assume the causal model is faithful (i.e. that
conditional independence assumptions are reflected in the
graph structure and not only in the parameters). If ®;
is conditionally independent from Ay given X, then the
counterfactual distribution, having observed only ¥y, is
identifiable from samples of (X, 4, A¢), and we have

E[G(')|7" ~ P(T'|X; = z, 0observe(®; = ¢),do(A}, = a)} =

Q(Xt =z,A =a,® = Qf)) (6)

4. Numerical experiments

Given its guarantees on lower variance and unbiasedness,
we run all our experiments on the single action version of
CCA-PG and leave the all-action version for future work.
We first investigate a bandit with feedback task, then a task
that requires short and long-term credit assignment (i.e. Key-
to-Door), and finally an interleaved multi-task setup where
each episode is composed of randomly sampled and inter-
leaved tasks. All results for Key-to-Door and interleaved
multi-task are reported as median performances over 10
seeds with quartiles represented by a shaded area.

4.1. Bandit with Feedback

We first demonstrate the benefits of hindsight value func-
tions in a toy problem designed to highlight these. We
consider a contextual bandit problem with feedback. At
each time step, the agent receives a context —N < C < N
(where N is an environment parameter), and based on the
context, chooses an action —N < A < N. The agent
receives a reward R = —(C — A)? + ¢,, where the ex-
ogenous noise ¢, is sampled from N (0, ,.), as well as a
feedback vector F' which is a function of C, A and ¢,.. More
details about this problem as well as variants are presented

in Appendix BT}
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For this problem, the optimal policy is to choose A = C,
resulting in average reward of 0. However, the reward sig-
nal R is corrupted by the exogenous noise ¢,., uncorrelated
to the action. The higher the standard deviation, the more
difficult proper credit assignment becomes, as high rewards
are more likely due to a high value of ¢, than an appropri-
ate choice of action. On the other hand, the feedback F'
contains information about C', A and e,.. If the agent can ex-
tract information ¢ from F’ in order to capture information
about €, and use it to compute a hindsight value function,
the effect of the perturbation €, may be removed from the
advantage estimate, resulting in a significantly lower vari-
ance estimator. However, if the agent blindly uses F' to
compute the hindsight value information, information about
the action will ‘leak’ into the hindsight value, leading to an
advantage estimate of 0 and no learning.

We investigate the proposed algorithm with N = 10. As
can be seen on Fig. 2] increasing the variance of the exoge-
nous noise leads to dramatic decrease of performance for
the vanilla PG estimator without the hindsight baseline; in
contrast, the CCA-PG estimator is generally unaffected by
the exogenous noise. For very low level of exogenous noise
however, CCA-PG suffers from a decrease in performance.
This is due to the agent computing a hindsight statistic
which is not perfectly independent from A, leading to bias
in the policy gradient update. To demonstrate this effect,
and evaluate the importance of the independence constraint
on performance, we run an ablation where we test lower
values of the weight Apy of the independence maximization
loss (leading to a larger mutual information between ® and
A) and indeed observed that the performance is dramatically
degraded, as seen in Fig.
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Figure 2: Top: Comparison of CCA-PG and PG in contextual ban-
dits with feedback, for various levels of reward noise o,-. Results
are averaged over 6 independent runs with standard deviation rep-
resented by a shaded area. Bottom: Performance of CCA-PG on
the bandit task, for different values of Av. Properly enforcing the
independence constraint prevents the degradation of performance.

4.2. Key-to-Door environments

Task Description. We investigate new versions of the
Key-To-Door family of environments, initially proposed
by Hung et al.| (2019), as a testbed of tasks where credit

assignment is hard and is necessary for success. In this par-
tially observable grid-world environment (cf. Fig.[7|in the
appendix), the agent has to pick up a key in the first room,
for which it has no immediate reward. In the second room,
the agent can pick up 10 apples, that each give immediate
rewards. In the final room, the agent may open a door (only
if it is carrying a key), and receive a small reward for doing
so. In this task, a single action (i.e picking up the key) has
a direct impact on the reward it receives in the final room,
however this signal is hard to detect as the episode return
is largely driven by its performance in the second room (i.e
picking up apples).

We now consider two instances of the Key-To-Door fam-
ily that illustrate the difficulty of credit assignment in the
presence of extrinsic variance. In the Low-Variance-Key-
To-Door environment, each apple is worth a reward of 1 and
opening the final door also gets a reward of 1. Thus, an agent
that solves the apple phase perfectly sees very little variance
in its episode return and the learning signal for picking up
the key and opening the door is relatively strong.

High-Variance-Key-To-Door keeps the overall structure of
the Key-To-Door task. The door keeps giving a deterministic
reward of 1 when the key was grabbed but now the reward
for each apple is randomly sampled to be either 1 or 10,
and fixed within the episode. In this setting, even an agent
that is skilled at picking up apples sees a large variance in
episode returns, and thus the learning signal for picking
up the key and opening the door is comparatively weaker.
Appendix [B.2.T|has some additional discussion illustrating
the difficulty of learning in such a setting.

Results We test CCA-PG on these environments, and com-
pare it against Actor-Critic (Williams, |1992)), as well as
State-conditional HCA and Return-conditional HCA (Haru-
tyunyan et al.,2019) as baselines. An analysis of the relation
between HCA and CCA is described in Appendix [C| We
test using both a backward-LSTM (referred to as CCA-PG
RNN) or an attention model (referred to as CCA-PG Attn)
for the hindsight function. Details for experimental setup
are provided in Appendix [B.2.2]

We evaluate agents both on their ability to maximize total
reward, as well as to solve the specific credit assignment
problem of picking up the key and opening the door. Fig.
compares CCA-PG with the baselines on the High-Variance-
Key-To-Door task. Both CCA-PG architectures outperform
the baselines in terms of total reward, as well as probability
of picking up the key and opening the door.

This experiment highlights the capacity of CCA-PG to learn
and incorporate trajectory-specific external factors into its
baseline, resulting in lower variance estimators. Despite
being a difficult task for credit assignment, CCA-PG is
capable of solving it quickly and consistently. On the other
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Figure 3: Probability of opening the door and total reward ob-
tained on the High-Variance-Key-To-Door task (top two) and the
Low-Variance-Key-To-Door task (bottom two).

hand, vanilla actor-critic is greatly impacted by this external
variance, and needs around 3.10° environment steps to have
an 80% probability of opening the door. CCA-PG also
outperforms State- and Return- Conditional HCA, which do
use hindsight information but in a more limited way than
CCA-PG.

On the Low-Variance-Key-To-Door task (Fig. [3), due to
the lack of extrinsic variance, standard actor-critic is able
to perfectly solve the environment. However, it is interest-
ing to note that CCA-PG still matches this perfect perfor-
mance. On the other hand, the other hindsight methods
struggle with both door-opening and apple-gathering. This
might be explained by the fact that both these techniques
do not guarantee lower variance, and rely strongly on their
learned hindsight classifiers for their policy gradient esti-
mators, which can be harmful when these quantities are
not perfectly learned. See Appendix [B.2.3]for additional
experiments and ablations on these environments.

These experiments demonstrate that CCA-PG is capable of
efficiently leveraging hindsight information to mitigate the
challenge of external variance and learn strong policies that
outperform baselines. At the same time, it suffers no drop
in performance when used in cases where external variance
is minimal.

4.3. Task Interleaving

Motivation. In the real world, human activity can be seen
as solving a large number of loosely related problems. At an
abstract level, one could see this lifelong learning process
as solving problems not in a sequential, but an interleaved
fashion instead. These problems are not solved sequentially,
as one may temporarily engage with a problem and only
continue engaging with it or receive feedback from its earlier
actions significantly later. The structure of this interleaving
will also typically vary over time.

To better understand the effects of interleaving on agent
learning, we introduce a new class of environments captur-
ing the structural properties mentioned above. In contrast to
most work on multi-task learning, we do not assume a clear
delineation between subtasks, nor focus on skill retention.
The agent will encounter multiple tasks in a single episode
in an interleaved fashion (switching between tasks will oc-
cur before a task gets completed), and will have to detect
the implicitly boundaries between them.

Task Description. This task consists of pairs of query-
answer rooms with different visual contexts that each indi-
cates a different subtask. In the query room, the agent gets
to pick between two colored boxes (out of 10 possible col-
ors). Later, in the answer room, the agents gets to observe
which of the two boxes was rewarding in the first room,
and receives a reward if it picked the correct box (there
is always exactly one rewarding color in the query room).
The mapping of colors to whether it is rewarding or not
is specific to each subtask and fixed across training. Each
subtask would be relatively easy to solve if encountered in
an isolated fashion. However, each episode is composed of
randomly sampled subtasks and color pairs within those sub-
tasks. Furthermore, query rooms and answer rooms of the
sampled subtasks are presented in a random (interleaved) or-
der which differs from one episode to another. Each episode
are 140 steps long and it takes at least 9 steps for the agent to
reach one colored square from its initial position. A visual
example of what an episode looks like can be seen in Fig. 4]

There are six tasks, each classified as ‘easy’ or ‘hard’; easy
tasks have high reward signals (i.e. easier for agents to pick
up on), while hard tasks have low rewards. In the 2 tasks
setup (resp. 4 tasks and 6 tasks), there is one (resp. two and
two) ‘easy’ and one (resp. two and four) ‘hard’ task. More
details about the experimental setup can be found in[B.3]

In addition to the total reward, we record the probability of
picking up the correct square for the easy and hard tasks sep-
arately. Performance in the hard tasks will indicate ability
to do fine-grained credit assignment.

Results. While CCA-PG is able to perfectly solve both
the ‘easy’ and ‘hard’ tasks in the three setups in less than
5.10® environment steps (Fig. , actor-critic is only capable
to solve the ’easy’ tasks for which the associated rewards
are large. Even after 2.10° environment steps, actor-critic
is still greatly impacted by the variance and remains inca-
pable of solving ‘hard’ tasks in any of the three settings.
CCA-PG also outperforms actor-critic in terms of the to-
tal reward obtained in each setting. State-conditional and
Return-conditional HCA were also evaluated on this task
but results are not reported as almost no learning was tak-
ing place on the "hard’ tasks. More results along with an
ablation study can be found in Appendix
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Figure 4: Task Interleaving Description. Top left: Delayed feedback contextual bandit problem. Given a context shown as a
surrounding visual pattern, the agent has to decide to pick up one of the two colored squares where only one will be rewarding. The
agent is later teleported to the second room where it is provided with the reward associated with its previous choice and a visual cue
about which colored square it should have picked up. Top right: Different tasks with each a different color mapping, visual context and
associated reward. Bottom: Example of a generated episode, composed of randomly sampled tasks and color pairs.
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807 g generate counterfactual trajectories and perform off-policy
8os 240 evaluation for RL. Their results however require an ex-

05 220 plicit model of the environment. In contrast, our work

o " 6 Tasks proposes a model-free approach, and focuses. on pplicy
vos 0 improvement. |Oberst & Sontag (2019) also investigate
f‘@ ' Lo counterfactuals in reinforcement learning, point out the is-
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%‘” L e sufficient condition for identifiability; we discuss this issue
Sos 150 in appendix [G| Closely related to our work is Hindsight

o T M0 s 10 15 20 Credit Assignment, a concurrent approach from Harutyun-

environment steps  1¢9 environment steps  1e9 yan et al.| (2019). In this paper, the authors also investigate

Fi . s S oo value functions and critics that depend on future information.
igure 5: Probability of solving ‘easy’ and ‘hard’ tasks (left) : . ; .
and total reward (right) obtained for the Multi Task Interleaving. ~ However, the information the estimators depend on is fixed
Left plots: Median over 10 seeds after doing a mean over the (future state or return) instead of being an arbitrary func-
performances in ‘easy” or ‘hard” tasks. tions of the trajectory. Our FC estimators generalizes both
the HCA and CCA estimators while CCA further character-
izes which statistics of the future provide a useful estimator.
Through efficient use of hindsight, CCA-PG is able to take ~ Relations between HCA, CCA and FC are discussed in ap-
into account trajectory-specific factors such as the kinds ~ pendix[C} The HCA approach is further extended by [Young
of rooms encountered in the episode and their associated ~ (2019), and Zhang et al.|(2019) who minimize a surrogate
rewards. for the variance of the estimator, but that surrogate cannot
be guaranteed to actually lower the variance. Similarly to

In the case of the Multi-Task Interleaving environment, an state-HCA, it treats each reward separately instead of taking

informative hindsight function would capture the reward for



Counterfactual Credit Assignment

a trajectory-centric view as CCA. |Guez et al.| (2019) also in-
vestigate future-conditional value functions. Similarly to us,
they learn statistics of the future ® from which returns can be
accurately predicted, and show that doing so leads to learn-
ing better representations (but use regular policy gradient
estimators otherwise). Instead of enforcing a information-
theoretic constraint, they bottleneck information through
the size of the encoding ®. In domain adaptation (Ganin
et al.|, |2016; Tzeng et al.,|2017)), robustness to the training
domain can be achieved by constraining the agent repre-
sentation not to be able to discriminate between source and
target domains, a mechanism similar to the one constraining
hindsight features not being able to discriminate the agent’s
actions. Also closely related to our paper, Bica et al.|(2020)
also leverages a similar mechanism to compute counterfac-
tuals, for a different purpose than ours (computing treatment
effects vs. policy improvement operators).

Both|Andrychowicz et al.|(2017) and [Rauber et al.| (2017)
leverage the idea of using hindsight information to learn
goal-conditioned policies. Hung et al.| (2019) leverages
attention-based systems and episode memory to perform
long term credit assignment; however, their estimator will in
general be biased. [Ferret et al.| (2019) looks at the question
of transfer learning in RL and leverages transformers to de-
rive a heuristic to perform reward shaping. |Arjona-Medina
et al.|(2019) also addresses the problem of long-term credit
assignment by redistributing delayed rewards earlier in the
episode but their approach still fundamentally uses time as
a proxy for credit.

Previous research also leverages the fact that baselines can
include information unknown to the agent at time ¢ (but po-
tentially revealed in hindsight) but not affected by action A;:
for instance, when using independent multi-dimensional ac-
tions, the baseline for one dimension of the action vector can
include the actions in other dimensions (Wu et al., [2018);
or when the dynamic of the environment is partially driven
by an exogenous and stochastic factor, independent of the
agent’s actions, which can be included in the baseline (Mao
et al.,2018)). Similarly, in multi-agent environments, actions
of other agents at the same time step (Foerster et al.l 2018])
can be used; and so can the full state of the simulator when
learning control from pixels (Andrychowicz et al., [2020),
or the use of opponent observations in Starcraft IT (Vinyals
et al [2019). Note however that all of these require privi-
leged information, both in the form of feeding information
to the baseline inaccessible to the agent, and in knowing that
this information is independent from the agent’s action A,
and therefore won’t bias the baseline. Our approach seeks
to replicate a similar effect, but in a more general fashion
and from an agent-centric point of view, where the agent
learns itself which information from the future can be used
to improve its baseline at time .

6. Conclusion

In this paper we have considered the problem of credit
assignment in RL. Building on insights from causality the-
ory and structural causal models, we have investigated the
concept of future-conditional value functions. Contrary to
common practice these allow baselines and critics to con-
dition on future events thus separating the influence of an
agent’s actions on future rewards from the effects of other
random events thus reducing the variance of policy gradient
estimators. A key difficulty lies in the fact that unbiasedness
relies on accurate estimation and minimization of mutual
information. Learning inaccurate hindsight classifiers will
result in miscalibrated estimation of luck, leading to bias in
learning. Future research will investigate how to scale these
algorithms to more complex environments, and the benefits
of the more general FC-PG and all-actions estimators.
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