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Abstract

Multi-agent reinforcement learning (MARL) has
become effective in tackling discrete cooperative
game scenarios. However, MARL has yet to pene-
trate settings beyond those modelled by team and
zero-sum games, confining it to a small subset of
multi-agent systems. In this paper, we introduce a
new generation of MARL learners that can handle
nonzero-sum payoft structures and continuous set-
tings. In particular, we study the MARL problem
in a class of games known as stochastic poten-
tial games (SPGs) with continuous state-action
spaces. Unlike cooperative games, in which all
agents share a common reward, SPGs are capable
of modelling real-world scenarios where agents
seek to fulfil their individual goals. We prove
theoretically our learning method, SPot-AC, en-
ables independent agents to learn Nash equilib-
rium strategies in polynomial time. We demon-
strate our framework tackles previously unsolv-
able tasks such as Coordination Navigation and
large selfish routing games and that it outperforms
the state of the art MARL baselines such as MAD-
DPG and COMIX in such scenarios.

1. Introduction

Many real-world systems give rise to multi-agent systems
(MAS); traffic network systems with autonomous vehicles
(Ye et al., 2015; Zhou et al., 2020), network packet rout-
ing systems (Wiering, 2000) and financial trading (Mariano
et al., 2001) are some examples. In these systems, self-
interested agents act in a shared environment, each seeking
to perform some pre-specified task. Each agent’s actions
affect the performance of other agents and may even prevent
them from completing their tasks altogether. For example,
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autonomous vehicles seeking to arrive at their individual
destinations must avoid colliding with other vehicles. There-
fore to perform their task the agents must account for other
agents’ behaviours.

There is therefore a great need for reinforcement learning
(RL) agents with their own goals to learn to perform in
MAS. In these scenarios, agents are not required to behave
as a team nor as perfect adversaries. These settings are
modelled by nonzero-sum stochastic games (SGs) whose
solution concept is a fixed point known as Nash equilibrium
(NE). An NE describes the stable point in which all agents
respond optimally to the actions of other agent. Computing
the NE is therefore central to solving MAS.

Despite its fundamental importance for solving many MAS,
computing the NE of any SG with a general payoff structure
remains an open challenge (Yang & Wang, 2020). Presently,
methods to compute NE in SGs that are neither zero-sum
nor team settings are extremely scarce and impose limiting
assumptions. As such, the application of these methods
is generally unsuitable for real world MAS (Shoham &
Leyton-Brown, 2008). Moreover, finding NE even in the
simple case of normal form games (where agents take only
a single action) is generally intractable when the game is
nonzero-sum (Chen et al., 2009).

Among multi-agent reinforcement learning (MARL) meth-
ods are a class of algorithms known as independent learners
e.g. independent Q learning (Tan, 1993). These algorithms
ignore actions of other agents and are ill-suited to tackle
MAS and often fail to learn (Hernandez-Leal et al., 2017).
In contrast, algorithms such as MADDPG (Lowe et al.,
2017), COMA (Foerster et al., 2018) and QDPP (Yang et al.,
2020) include a centralised critic that accounts for the ac-
tions of all agents. To date none of these algorithms have
been proven to converge in SGs that are neither team nor
zero-sum (adversarial). Additionally, these methods suffer
from combinatorial growth in complexity with the num-
ber of agents (Yang et al., 2019) leading to prohibitively
expensive computations in some systems. There is also a
noticeable lack of MARL methods that can handle contin-
uous spaces which is required for tasks such as physical
control (Bloembergen et al., 2015). This has left MARL
largely unable to solve various practical tasks such as multi-
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agent Mujoco (de Witt et al., 2020) which remains an open
challenge. This is in contrast to discrete counterpart settings
e.g. Starcraft micro-management in which MARL has had
notable success (Peng et al., 2017).

In this paper, we address the challenge of solving MAS
with payoff structures beyond zero-sum and team game
settings in continuous systems. In particular, we develop a
MARL solver that computes the NE within a new subclass of
continuous nonzero-sum SGs, namely continuous stochastic
potential games (c-SPGs) in which the agents’ interaction at
each stage has a potential game property. Lastly, our solver
avoids combinatorial complexity with the number of agents.

Our framework is developed through theoretical results that
enable the NE of some SGs to be found tractably. First, we
formalise a construction of continuous SGs in which the
interaction between agents at each stage can be described
by a PG. Thereafter, we show that the NE of the SG can
be computed by solving a dual Markov decision process
(MDP) whose solution exactly coincides with the NE of
the original SG. This converts the problem of finding a
fixed point NE of an (a priori unknown) nonzero-sum SG
to solving an (unknown) MDP whose solution as we show,
can be found tractably using a new distributed variant of
actor-critic methods, which we call SPot-AC.

The paper is organised as follows: after the related work
next, we present our construction of c-SPGs in Sec. 3. We
continue in Sec. 4 to present a simple planner when the
environment model is given and prove that c-SPGs have
dual representations as MDPs. A polynomial-time fitted Q-
learning solver (SPotQ) is then given to find the NE in this
setting. In Sec. 5, we extend the learning method and pro-
pose an actor-critic variant (SPot-AC) that solves c-SPGs
in unknown environments. A fully distributed variant is
also provided that scales with the number of agents. Ro-
bustness analysis is followed and we show that the method
closely approximates the NE solution when the construc-
tion of the potential function has small estimation errors.
Lastly in Sec. 6, we conduct detailed ablation studies and
performance tests on various tasks and conclude the paper.

2. Related Work

MARL has been successful in zero-sum scenarios (Grau-
Moya et al., 2018) and settings of homogeneous agents with
population sizes that approach infinity (Mguni et al., 2018;
Yang et al., 2018) and team game scenarios (Peng et al.,
2017). However, the restrictions on the payoffs therein
means that these models are usually far away from many
real-world scenarios, prohibiting the deployment of MARL
therein. There have been few attempts at computing NE in
settings outside of team and zero-sum SGs. Most notably
is Nash Q-learning (Hu & Wellman, 2003); it however im-

poses stringent assumptions that force the SG to resemble a
team game. For example, in (Hu & Wellman, 2003) at each
iteration a unique Pareto dominant NE must exist and be
computed which is generally unachievable. ‘Friend or foe’
learning (Littman, 2001) establishes convergence to NE in
two-player coordination games but requires known reward
functions and solving a linear program at each time step.
Zhang et al. (2020) adopts the stackelberg equilibrium as
the learning target. More recently, Lowe et al. (2017) sug-
gests an actor-critic method (MADDPG) with centralised
training on the critic. Nevertheless Lowe et al. (2017) do
not tackle SGs outside of the zero-sum or cooperative cases
in either theoretical results or experiments. In particular, the
experiments in (Lowe et al., 2017) are all aimed at either
adversarial (zero-sum) or the fully cooperative settings.

Very recently (Zhang et al., 2021) consider an SG setting in
which all agents’ value functions are assumed to satisfy a
global PG condition, that is, the incentive of all agents to
change their policies can now be expressed using a single
global function. As noted in their discussion, without further
qualification, this assumption is rather strong and difficult to
verify except in the case in which all agents share the same
objective. In a later work, (Leonardos et al., 2021) consider
an SG setting with a PG game property while imposing con-
ditions that either i) reduce the SG to a linear combination
of normal form games and removes all planning aspects
or ii) limit the agents’ interaction to a term in their reward
that does not depend on either the state or the agent’s own
actions. The latter condition (ii) results in an SG which is
a restrictive case of our SG, in particular, our SG captures
a richer, more general set of strategic interactions between
agents (see Sec. 3.1 for a more detailed discussion).

We tackle a subclass of SGs which satisfy a PG condition
at each stage game. We then show that with this construc-
tion, a potentiality property can be naturally extrapolated to
the value functions of the SG without imposing restrictive
assumptions. With this we prove that the NE of the game
can be learned by independent agents without the need to
impose restrictive assumptions as in (Hu & Wellman, 2003;
Littman, 2001) and in a way that scales with the number of
agents; in contrast to centralised critic methods that scale
combinatorially.

3. Continuous Stochastic Potential Games

Continuous Stochastic Games

MAS are modelled by SGs (Shoham & Leyton-Brown,
2008; Shapley, 1953). An SG is an augmented MDP in-
volving two or more agents {1,2,..., N} =: W that si-
multaneously take actions over many (possibly infinite)
rounds. Formally, a continuous SG is a tuple € =
(NS, (i) » P (Ri) ;e »v) Where S is the set of states,
od; C R%is an action setand R; : § x d — P (D) is the
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Figure 1. a) Coordination Navigation: selfish agents (purple) seek
to reach rewards (black) whilst minimising contact with each other.
b) Routing Networks: agents split their own commodity flow
between edges in a network over a sequence of time-steps. Starting
at a source (node 1) and arriving at a target node (8), paths that
have more commodity incur higher congestion costs.

distribution reward function for agent ¢ € N where D is a
compact subset of R and lastly, P : S x o x § — [0,1] is
the probability function P : § x o x § — [0, 1] describing
the system dynamics where of := x X, of;.

In an SG, at each time ¢ € 0,1, ..., the system is in state
s¢ € § and each agent 7 € N takes an action ai € d;. The
joint action ay = (a},...,al) € & produces an immedi-
ate reward R;(s;, a;) for agent i € N and influences the
next-state transition which is chosen according to P. Using
a (parameterised) Markov strategy' Timi + S x dy — [0,1]
to select its actions, each agent ¢ seeks to maximise its indi-
vidual expected returns as measured by its value function:
o ) = B3 Rils an]an ~ (wh mD)|
where n € E; C R! and I1; is a compact Markov strategy
space. A pure strategy (PS) is amap 7; : § — d;, for any
i € N that assigns to any state an action in ;.

We denote the space of joint policies by II := x;cy1L;
where it will not cause confusion (and with a minor

abuse of notation) we use the shorthands m; = 7r§] and

fEm ) (s) = f(s, 78, 7)) = Epi i [f (5,0, a7 ).
SGs can be viewed as a sequence of stage games
{J/l(s)}ses that take place at each time step where M (s) =
((Ai);cn s (Ri(8));cn V). Therefore, at each time step a
stage game is played and then the game transitions to the
next stage game which is selected according to P.

Continuous Stochastic Potential Games

We now introduce a new subset of SGs namely c-SPGs
which is the framework of our approach.

Definition 1. An SG is a c-SPG if for all states there ex-
ists a function ¢ : & x d — R such that the follow-
ing holds for any (a',a™%), (a’",a™") € o where a; ' :=

! A Markov strategy requires as input only the current state (and
not the game history or other agents’ actions or strategies).

(at,...a" a1, ... aN), Vi e N,VsES:
Ri(sv (aia aii)) - Ri('S? (a/ia aii))
= ¢(s,(a’,a™")) — (s, (a",a™")). (D

Condition (1) says that the difference in payoff from a devi-
ation by one of the agents is exactly quantified by a global
function ¢ that does not depend on the agent’s identity. We
call ¢ the potential function or potential for short. The con-
dition extends the notion of static one-shot potential games
(PGs) (Monderer & Shapley, 1996b) to a continuous SG
setting that now includes states and transition dynamics.

To complete the construction we introduce a condition
which is a natural extension of PGs to state-based settings:

Definition 2. A stage game JL(s) is state transitive if there
existsa ¢ : S x d — Rsth V(a,a™") € d,Vi €
N, Vs, s' €8:

Ri(s, (a',a™")) = Ri(s', (a',a™"))
= (b(s, (aiv a_i)) - ¢(SI’ (aia a_i»' 2

The intuition is that the difference in rewards for chang-
ing state is the same for each agent. Some classic ex-
amples of where state transitivity holds are anonymous
games (Daskalakis & Papadimitriou, 2007), symmetric SGs
(Jaskiewicz & Nowak, 2018), team SGs (Cheng et al., 2017).

Our results are built under the assumption? that state transi-
tivity assumption holds.

Fig. 1 illustrates two examples of c-SPGs. For instance,
in Coordination Navigation, one can verify that the state
transitivity assumption is satisfied: a collection of agents
seeks to arrive at some destination z* € RP. Crucially, the
agents must avoid colliding with other agents. Each agent’s
value function is given by:

o0
> {Ki - allwi, - o)
t=0

—8 Y (lwia —wjl® + )72 — o, - pn%f}]

JEN/{i}

A7

7

(@) = 3E

where || - || and || - || s are Euclidean and Mahalanobis norms
respectively, z; ; € RP is the position of agent 7 at time ¢ €
Nand &, = (z14,...,2n5:) € RP; ¢, p, H, o, B{K; }ien
are constants and a; ; is vector representing the action taken
by agent :. It can be readily verified that the game is poten-
tial with the following potential function: ¢™ () = —aljz—
|2=B T ey (o =2yl + €)'+ Be 2~ Ja” —p
Similarly, it can be readily verified that the game satisfies
the state transitivity assumption.

“Statements of the technical assumptions are in the Appendix.
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In our Ablation experiments (see Sec. 6) we show that our
method is able to tackle settings in which the potentiality
and state transitivity conditions are mildly violated.

C-SPGs also hold in SGs in which the agents have the
same reward functions (identical interest games)(Monderer
& Shapley, 1996a) such as anonymous games (Daskalakis
& Papadimitriou, 2007), team games (Wang & Sandholm,
2003) and mean field games (Mguni et al., 2018). Such SGs
are widely used to study distributive systems and coordina-
tion problems in MAS such as Starcraft (Samvelyan et al.,
2019) and Capture the Flag (Jaderberg et al., 2019). MARL
frameworks such as COMA (Foerster et al., 2018), QMIX
(Rashid et al., 2018) and QDPP (Yang et al., 2020) are fully
cooperative settings and therefore fall within this category.

A key result we prove is that c-SPGs enjoy a dual represen-
tation as MDPs therefore enabling their solution to be com-
puted by tackling MDPs. To construct a solution method
for c-SPGs, we resolve a number of challenges: i) The first
involves determining the dual MDP whose solution is to be
learned through interaction with the environment. ii) The
second involves developing a tractable learning procedure
that ensures convergence to the game solution. To do this
we develop a method that finds the solution of the dual MDP
distributively, in doing so we also resolve the problem of
combinatorial complexity that afflict MARL methods. iii)
The method of determining the dual MDP (i)) can incur
small errors. Our last challenge is to show that small errors
in the construction of the dual MDP induce only small errors
in the agents’ best response actions.

3.1. Link to Potential Games and Discussion

We briefly continue the discussion on related works with a
relevant review of PGs. The first systematic treatment of
PGs appeared in (Monderer & Shapley, 1996b) in a static
setting. PGs constitute a fundamental building block of
general-sum games - any general-sum game can be decom-
posed into two (strategic) parts; PGs and harmonic games
(Candogan et al., 2011). PGs model many real-world sce-
narios including traffic network scenarios, network resource
allocation (Zazo et al., 2015)) social conflicts (La et al.,
2016) and consensus problems (Marden et al., 2009). PGs
also encompass all team games and some zero-sum games
(Balduzzi et al., 2018).

C-SPGs extend PGs to settings with dynamics and future
uncertainty. This enables PGs to capture real-world scenar-
ios that involve sequential decision-making and dynamics.
Example of these settings traffic networks models, routing
and packet delivery problems.

The analysis of dynamic PGs is extremely sparse and does
not cover (reinforcement) learning settings in which the sys-
tem is a priori unknown. In the direction of incorporating

potentiality property within an SG, (Gonzalez-Sinchez &
Herndndez-Lerma, 2013; Macua et al., 2018) consider an SG
in which the potentiality property is imposed on the value
functions which results in the need for highly restrictive
assumptions. In (Gonzdlez-Sanchez & Herndndez-Lerma,
2013) the SG is restricted to concave reward functions (in
the state variable) and the transition function is required to
be invertible (and known). These assumptions are generally
incompatible with many MAS settings of interest.> Simi-
larly, (Macua et al., 2018) study a discrete Markov game in
which the value function is assumed to satisfy a PG property.
Their construction requires that the agents’ policies depend
only on disjoint subcomponents of the state which prohibits
non-local (strategic) interactions.

Very recently (Zhang et al., 2021) consider an SG setting
in which all agents’ value functions are assumed to satisfy
a global PG property, that is, the incentive of all agents to
change their policies can now be expressed using a single
global function. To construct this relationship using condi-
tions on the stage game, in a later work (Leonardos et al.,
2021) consider an SG setting and embed either of two prop-
erties into the game structure namely, an agent-independent
transition assumption (C.1) or an equality of individual
dummy term assumption (C.2). Using either of these condi-
tions and the stage game PG condition (Condition (1)), they
show that the PG condition can be extrapolated to a global
PG condition on the value functions.

Conditions C.1. and C.2. in (Leonardos et al., 2021) impose
heavy restrictions since Condition C.1. reduces the SG to
a linear combination of normal form games and removes
all planning aspects (hence extrapolating the potentiality of
stage games to the agents’ value functions is deduced triv-
ially). Condition C.2. restricts the noncooperative (strategic)
interaction part of the game to a term that does not depend
on the state or the agent’s own action. Moreover imposing
condition C.2. produces an SG that is a special case of our
SG (this can be seen using the equivalence expression in
Lemma B (see Sec. H in Appendix) by setting k(s) = 1
and restricting h; to depend only on other agents’ actions in
the reward functions of our SG). Therefore, the generalisa-
tion of the PG condition to SGs in (Leonardos et al., 2021)
requires strong limitations on the structure of the SG not
present in our analysis.

With our new construction which has a PG at each stage
game we show that the PG condition can be naturally extrap-
olated to the value functions of the SG. This provides veri-
fiable assumptions on the game while imposing relatively
weak assumptions on the SG in comparison to (Leonardos
et al., 2021). With this we prove that the equilibrium of

3The result in (Gonzdlez-Sénchez & Herndndez-Lerma, 2013)
also requires verifying the policy satisfies sufficiency conditions
which is generally difficult given the size of the space of functions.
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the SG can be found by merely solving an (unknown) MDP
without imposing either state disjointness as in (Macua et al.,
2018) or concavity as in (Gonzélez-Sanchez & Hernandez-
Lerma, 2013).

4. Planning in c-Stochastic Potential Games

We now show that the stable point solution of a c-SPG can
be computed tractably by solving a dual MDP with reward
function ¢. This leads to a vast reduction in complexity
for finding NEs in our c-SPG subclass of nonzero-sum. In
what follows, we assume that the environment is known; in
Sec. 5 we extend the analysis of this section to unknown
environments. We defer the proofs of the results of the
following sections to the Appendix.

As SGs are noncooperative settings, the solution cannot
be described as an optimisation of a single objective. The
appropriate solution concept is the following NE variant
(Fudenberg & Tirole, 1991):

Definition 3. A strategy profile # = (7t;,7—;) € Il is a
Markov perfect equilibrium (MPE) ifVi € N:

vl@’%’i)(s) > v?g’ﬁ”')(s), Vs € 8, Vrl e II,.

The condition characterises a fixed point in strategies in
which no agent can improve their expected payoff by uni-
laterally deviating from their current policy. We denote the
set of NE of € by NE{%}. Finding NE of nonzero-sum
SGs in general involves using fixed point methods which are
generally intractable (Chen et al., 2009). Indeed, finding NE
in SGs is PPAD complex (Polynomial Parity Arguments on
Directed graphs) (Chen et al., 2009) for which brute force
methods are intractable. Finding efficient solution meth-
ods for nonzero-sum SGs is an open challenge (Shoham &
Leyton-Brown, 2008).

We now show that c-SPGs exhibit special properties that
enable their NE to be computed tractably. In particular, we
show that computing the NE of c-SPGs can be achieved
by solving an MDP. With this, solving c-SPGs can be ap-
proached with stochastic approximation tools. We then
present a new Q-learning variant that solves c-SPGs in poly-
nomial time.

To begin, we construct the Bellman operator of €. Let
g:8xd —Rand F : § — R, for any s € S the Bellman
operator of the game € is given by the following:

(1,8 1= sup lg(s,0) +7 [ ds'P(s'ia,9)FLS))
acd s'es

We now state our first key result which reveals a striking
property of the c-SPG class of games:

Theorem 1. LetV : 8§ x d — R be a test function, then &
possesses a fixed point NE in pure (deterministic) Markov

strategies characterised by:

lim T(fV7r = sup V7™,

k—o0 #EIl

where ¢ is the potential of §.

The result states that the MPE of the game exist and in
pure strategies and correspond to solution of a (dual) MDP
M = (p, xiend;, P,S, 7). In fact, it is shown that any
MPE is a local optimum of the value function associated to
A . The value function of .# which we call the dynamic
potential function (DPF), B, is constructed by B™(s) =
E[Y 207 d(se,ar)|ar ~ ], Vs € 8§,V € I

The theorem is proven inductively within a dynamic pro-
gramming argument to extrapolate the potentiality property
to the entire SG then showing € is continuous at infinity.

Theorem 1 enables us to compute the MPE by solving an
MDP, a task which can be performed in polynomial time.*
Moreover, Theorem 1 enables a Q-learning approach (Bert-
sekas, 2012) for finding the MPE of the game. The fol-
lowing fitted Q-learning method computes the approximate
B function and the corresponding optimal policy for each
agent.

First, let us define by

Yi, (slk )y Qg Szk) = ¢lk’ﬁ(slk ) alk) + WSulp Ep [Bl] (S;k, al)
(3)

At each iteration k£ = 0, 1, ... we solve the minimisation:

Nk

F; € arginf Z

2
(Ylk (Slk’alkVS;k) - [?] (Slk’a’lk)) 4)
FeH [

Algorithm 1 SPotQ: Stochastic POTential Q-Learning

Input: discount factor v and PF ¢.
1: fork€0,1,2,---do

2:  foric N do
3: Set the local target Y;, by (3)
4 Update F' by minimizing Eq. (4)

5:  end for
6: end for
Output: F, (75);cn.

The minimisation seeks to find the optimal action-value
function @*. Using this, we can construct our SPotQ algo-
rithm that works by mimicking value iteration. By Theorem
1, the algorithm converges to the MPE of the game.

Theorem 1 does not establish uniqueness of B which could
lead to ambiguity in the solution. The following result
reduces the set of candidates to a single family of functions:

*The MDP lies is in a complexity class known as P~SPACE
which can be solved tractably (Papadimitriou & Tsitsiklis, 1987).
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Lemma 1. If By, Bs are value functions of the dual MDP
Mt then (BT — BF)(s) = ¢,V € I1,Vs € S wherec € R

Therefore, the set of candidate functions are limited to a
family of functions that differ only by a constant.

Computing the Potential Function ¢

Theorem 1 requires knowledge of ¢. Existing methods to
find ¢ in PGs e.g. MPD method (Candogan et al., 2013) are
combinatorial in actions and agents. Indeed, directly apply-
ing (1) to compute ¢ requires checking all deviations over
pure strategies (deterministic policies) which is expensive
since it involves sweeping through the joint action space .
We now demonstrate how to compute ¢ while overcoming
these issues by transforming (1) into a differential equation.
To employ standard RL methods we require parameterised
policies and, in anticipation of tackling an RL setting we
extend our coverage to parameterised stochastic policies.

Proposition 1. In any c-SPG the following result holds
Vs € 8,Va € d,¥(n',n~") € EP*:

olnm, 0 0
E. — -+ — | (R; — , =0. (§
(77) |: anZ (8042 + 88) ( ¢)(8 CL):| ( )
The PDE serves as an analogue to the PG condition (1)
which now exploits the continuity of the action space and
the fact that they agents’ actions are sampled from stochastic

policies. Therefore Prop. 1 reduces the problem of finding
¢ to solving a PDE.

So far we have considered a planning solution method that
solves the game when the agents reward functions are known
upfront. In Sec 5, we consider settings in which the reward
functions and the transition function are a priori unknown
but the agents observe their rewards with noisy feedback.

5. Learning in c-Stochastic Potential Games

In RL, an agent learns to maximise its total rewards by
repeated interaction with an unknown environment. The un-
derlying problem is typically formalised as an MDP (Sutton
& Barto, 2018). MARL extends RL to a multi-player setting
(Yang & Wang, 2020). The underlying problem is modelled
as an SG in which the rewards of each agent and transition
dynamics are a priori unknown.

We have shown the MPE of a c-SPG can be computed by
solving a Markov team game ., an SG in which all agents
share the same reward function ¢. We now discuss how to
solve .1 from observed data in unknown environments
(i.e. if P, {R;} are not known). Additionally, we discuss our
approach to enable easy scaling in the number of agents (and
avoid combinatorial complexity) using distributive methods.

The scheme can be summarised in the following steps:

i) Compute the potential estimate ngS by solving the PDE in
Prop. 1 using a distributed supervised learning method.

ii) Solve the team game .1 := (V. S, o, P, ¢, ~) with a
distributed actor-critic method. The critic is updated with a
distributed variant of the fitted Q-learning method in Sec. 4.

5.1. Learning the Potential Function ¢

Though Prop. 1 reveals that ¢ can be found by solving a
PDE, it involves evaluations in pure strategies which can be
costly. Moreover, the result cannot be applied directly to
estimate ¢ since the agents sample their rewards but not ¢.

We now show how each agent can construct an approxima-
tion of ¢ in a way that generalises across actions and states
by sampling its rewards. First, we demonstrate how the
potential condition (1) can be closely satisfied using almost
pure strategies. The usefulness of this will become apparent
when we solve the PDE in Prop. 1 to find ¢.

Lemma 2. Let F' be a bounded and continuous func-
tion and let AF (s, (af,ay'),a, ") := F(ss, (af',a; ")) —
F(s¢, (ay,a; ")) then there exists ¢ > 0 such that

|AF (st (@, af), a ) = AF(si, (i, 7)), m-)) | < el Flloc?

where the policy T;  is a nascent delta function® and 62 :=
max{Var(m;), Var(n])}.

Since the bound approaches 0 in the limit as policies become
pure strategies, the potential condition (5) is closely satisfied
in nascent stochastic policies.

We now put Lemma 2 to use with a method to com-
pute g% that inexpensively solves the PDE condition (5)
over the policy parameter space E. Indeed, thanks to
Lemma 2, we can learn ¢ through an optimisation over
E. The method uses a PDE solver over a set of ran-
domly sampled points across E x § using the observed data
{(sk ae, (r1 k- 7N k)) e>0 Where 7 1, ~ R;(sk, a).®

Therefore, define by:

(61 8) = T s(a'lsi) (o + 2 )[R = (s,

where 7 (a|s;n) := 7 ;(a’|s;n")me _i(a™s;n 7).
Following Prop. 1 we consider the following problem to

A nascent delta function g. has the property
hf(r)l Jx gef(x)dz = f(0) for any function f. They enable

pure strategies to be approximated by stochastic policies with
small variance. We denote a nascent policy by m¢ ;, Ve > 0.

®As with methods with sharing networks (e.g. COMIX, Fac-
MADDPG (de Witt et al., 2020)), agents observe other agents’
rewards. The method can be performed using only each agent’s
data {(sk, at, rs,k) }, however this requires more trajectory data.
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compute QZASI

miQHG(S?n;‘%P)HZEX&w (6)
pER

where G(s,m; 6) = [ 55 0)s g (5,5 9))7 and
1F)I? == [y [f(w)|*v(y)dy and v(y) is a positive prob-
ability density on Y and p € R* are parameters. The opti-
misation performs evaluations in mixed strategies which
is computationally inexpensive. Using a weighted ex-
ponential sum method (Chang, 2015), the objective re-
duces to a least squares problem on a single objective

1 n 2 . .
G(S, n, p) = N1 Zie/\f (gz(s, n, ¢p’)) . The optimi-
sation can be solved with a function approximator on ¢3p
e.g. a deep neural network (NN). Under mild conditions
(Bertsekas & Tsitsiklis, 2000) the method converges to a
critical point of G, that is hm VoG = 0. We defer the

details of the method to the the Appendlx

Actor-Critic Method

We now return to tackling the problem of solving the team
game .#1 := (N,8,d, P,$,7). To enable the method to
scale and handle continuous actions, we adapt the fitted Q-
learning method in Sec. 4 to an actor-critic method (Konda
& Tsitsiklis, 2000) for which each agent learns its own
policy ; ,,, using the estimate of B. The policy parameter 7;
of the policy at the k*" iteration is updated through sampled
deterministic policy gradients (DPGs) (Silver et al., 2014):

A(‘“’f w”liq‘ )
Vi BT ()

i k
alkNﬂ—i»T/i

L
~ % > VaTim, (lsi) Vai Fi (s, a1,) | )
=1

Equation (7) describes the actor update via a DPG. The
complete process is described in Algorithm 1. It involves
two optimisations in sequence: the agents individually com-
pute the approximation (;3 which is then used for computing
B, which approximates the optimal value function B by a
Q-learning + decentralised DPG method and outputs each
agent’s MPE policy. Crucially the method avoids optimisa-
tions over the joint space X ;e y9; enabling easy scaling (in
the number of agents) in this component of the algorithm.

Scaling in /V using Consensus Optimisation

Although the above method represents progress for solving
SGs, a scalability issue remains since estimating g{) involves
a computation over the joint space E. This becomes in-
creasingly expensive with large numbers of agents. We
now devise a fully distributed version of the method that
scales with the number of agents. In this version, each
agent ¢ constructs an independent estimate of g% by sampling
across E; x § at each step using only its own observed data
{(sks @i, 7i k) }e>0. The method includes a consensus step

Algorithm 2 SPot-AC: Stochastic POTential Actor-Critic
Input: discount factor v, DPF and PF approximation maps
F,P, € % (resp.) (p € RF).
1: fork€0,1,2,---do

2:  Using (7¥);cx to rollout, collect the trajectory data
and save it in the buffer .
3: forie N do
4: // Learn the potential function qAS
5: Sample a random minibatch of L samples
{(Slu (a:;t)i@\h Sty (Tlit)iEN} from .
6: Compute g?) by solving Expression (6)
7: // Compute the value function B
8: Set the local target Y;, by (3)
9: Update the shared critic F' by minimizing Eq. (4)
10: // Learn the individual policy
11: Update the policy by minimizing Eq. (7)
12: end for
13: end for
Output: F, (r}),cy.

that enables qZ; (and hence B ) to be accurately computed ef-
ficiently in a fully distributed fashion (Tutunov et al., 2019).

To enable efficient scaling with the number of agents, we
use distributed optimisation (DO) with consensus (Nedic
& Ozdaglar, 2009) to find é Each agent produces its own
estimate B based on its observed rewards. DO methods
efficiently solve large scale optimisation problems (Macua
et al., 2010) and yields two major benefits:

i) efficiency: computing ¢ uses feedback from all agents’
reward samples.

ii) consensus on Q: agents learn ¢ distributively but have
identical Q iterates (for computing B).

The common objective which each agent solves individually,
is expressed with a set of local variables {p;};cy and a
common global variable z:

=N"! Zieﬂ(gi(57 p))?
st.pl —2=0, i=1,...,N,
where the gradient descent is according to: p{, = pi, ;| —

aVgi(s, p') for some step size o > 0. Note that the con-
straint prevents convergence to any R;.

minimise G(s, p)

The algorithm works by constructing an estimate gf) then
solving .7 in a distributed fashion allowing the method to
scale with the number of agents.

Algorithm Analysis

Our SPot-AC algorithm inherits many useful properties of
Q-learning (Antos et al., 2008).” Nevertheless, it is neces-
sary to ensure the output of the algorithm still yields good

"By Prop. 5 (see Appendix) any MPE is a local optimum of B.
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performance when the supervised learning approximation
of L' has small errors. We now analyse the SPot-AC algo-
rithm and show that provided errors in approximating
are small the error in the algorithm output is also small.

Our first result bounds the error on the estimate for the DPF
from using the approximation method for ¢.

Proposition 2. Define by the following Fy(s,m,p) =
Ja ﬂe(da,n,s)aimm7e(az,m,s)VFp(s,a) and
U(S, m, p) = f&q We(dav n, s)aimﬂ—i,e(aiv um S)VRz(sa (1,)
then the following bound holds for some ¢ > 0:

Y IFi(s,m,p) = Us,m)|| < eN€,
1EN

where € is the approximation error from the SL procedure.

Our next result ensures that if the estimates of ¢ have only
small errors, SPot-AC generates policy performances that
closely match that of the MPE policies.

Proposition 3. Define by BF = klim T} B™ and let the
—o0 €

policy 7 be an MPE strategy i.e. & € NE{%§} (so that
klirn T(;fB7T = B¥) then for any € > 0 the following holds:
—00

IBT = BF| < (2-7)1-7)""e
whenever ||¢¢ — ¢|| < e.

The result ensures that given close approximations of ¢
SPot-AC in turn yields outputs close to B*. The result ex-
ploits the fact that the dual MDP Jl of Theorem 1 exhibits a
continuity property so that small errors in the approximation
of ¢ and B incur only small changes to the MPE of €.

6. Experiments

We evaluate SPot-AC in three popular multi-agent environ-
ments: the particle world (Lowe et al., 2017), a network
routing game (Roughgarden, 2007) and a Cournot duopoly
problem (Agliari et al., 2016). These environments have
continuous action and state spaces, and the agents seek to
maximise their own interest e.g. reaching target without
collisions on particle world and minimising the cost for
transporting commodity on routing game. To solve these
problems successfully, the agents must learn Markov per-
fect equilibrium policies in order to respond optimally to
the actions of others.

We consider two groups of state-of-the-art MARL baselines
that handle continuous actions. The first group use indi-
vidual rewards for learning: MADDPG (Lowe et al., 2017)
and DDPG (Lillicrap et al., 2015). The second group use
the collective rewards of all agents: COMIX and COVDN
(de Witt et al., 2020). Further details are in the Appendix.

We use two evaluation metrics:
Exploitability (Davis et al., 2014) describes how much

additional payoff players can achieve by playing a best-
response policy BR (defined in the Appendix). It measures
the proximity of the agents’ policies to the MPE strategy,
defined as § = + >, (u; (7%, BR(7 7)) — u;(m)).

Social welfare is the collective reward of all agents: r =
Zﬁvzl 74, this is most relevant in tasks such as team games,
where agents seek to maximise total reward.

ABLATION STUDIES

To test the robustness of SPot-AC and the baselines, we
perform a set of ablation studies within routing games.
Ablation 1 analyses SPot-AC in SGs that progressively de-
viate from c-SPGs, showing that SPot-AC can handle SGs
that mildly violate the c-SPG conditions (i.e. the potentiality
requirement).

Ablation 2 analyses SPot-AC in SGs that progressively
deviate from team games but retain the potential game prop-
erty. We demonstrate that, unlike other methods, SPot-AC
is able to converge to the Markov Perfect Equilibrium in
non-cooperative SGs. We also report results on the classic
Cournot Duopoly and show convergence of SPot-AC to NE.

Non-atomic Routing Games involve a set of NV selfish
agents seeking to transport their commodity from a source
node to a goal node in a network. This commodity can be
divided arbitrarily and sent between nodes along edges.

At each time step, each agent has a distribution of commod-
ity over the nodes of the graph. It assigns a fraction of its
commodity in each node to travel along the edges emerg-
ing from those nodes. There are multiple agents (given
by N € {2,4,6,8}), using the same network (number of
nodes K € {20,40}) and agents pay a cost related to the
total congestion of every edge at each time step. We design
the game so that the MPE is socially efficient, i.e. playing
an MPE strategy leads to high individual returns. We repeat
the experiments for 5 independent runs and report the mean
and standard deviation of the rewards. Further details on the
settings can be found in Appendix.

RESULTS

Exploitability: We test SPot-AC in a simple Braess’ para-
dox game. The exploitability of SPot-AC (Fig. 2) quickly
converges to close to 0, indicating it learns NE policies (neg-
ative values are due to the fact that we are approximating
best-responses). In contrast, the high exploitability values of
existing MARL methods indicate that they fail to converge
to NE policies. The algorithms that involve reward shar-
ing (COMIX, COVDN) attempt to maximise social welfare,
which is incompatible with this non-cooperative setting, so
can be exploited by a best-response strategy.

Social welfare: In the cooperative, non-atomic routing
game environment, we see in Fig. 3, using SPot-AC (or-
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(a) SPot-AC'’s policy on Braess’ paradox

Algorithms

COMIX

COVDN N0.0372623314
MADDPG [ 0.0274403547
DDPG B 0.0233852689
IQL B 0.0121880476
SPot-AC B 0.0083672427

(b) Exploitability of different methods.

Figure 2. Results of exploitability. (a) a visualization of learned
policy flows by SPot-AC. (b) Exploitability results of all methods.

ange), each agent learns how to split their commodity G
in a way that maximises rewards (minimises costs) and
matches the shared reward baselines. Conversely, MAD-
DPG (orange) and DDPG (blue) yield low rewards with
high variance.

Coordination Navigation An OpenAl Multi Agent Particle
Environment task (Lowe et al., 2017) involves n agents
and n landmarks. Each agent must reach the target while
avoiding collisions with other agents and fixed landmarks.
Agents can observe the relative positions of other agents and
landmarks, and have five actions {up, down, left, right, stay}.
The reward is calculated as the agent’s distance to each
landmark with penalties for collisions with other agents.

This is a non-cooperative SG, so we compare SPot-AC to
DDPG and MADDPG, algorithms that are able to learn
policies in which agents can act selfishly. We perform the
exploitability analysis as above. Fig. 4 shows SPot-AC
achieves the best performance in terms of minimum distance
to target and number of collisions, demonstrating that SPot-
AC enables agents to learn to coordinate while pursuing
their own goals.

7. Conclusion

In this paper, we describe the first MARL framework that
tackles MAS with payoff structures beyond zero-sum or
team games. In doing so, the results we establish pave the
way for a new generation of solvers that are able to tackle
classes of SGs beyond cases in which the payoff structures
lie at extremes. Therefore, the results of this paper open

—— SPot-AC —— SPot-Q COMIX  —— DDPG MADDPG ~ —— IQL —— COVDN
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Figure 3. Top Average agent returns in Network with N = 4,6, 8
agents, K = 20 nodes. Bottom Average agent returns in Network
with N = 4,6, 8 agents, K = 59 nodes.
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Figure 4. Coordination Navigation problem.

the door for MARL techniques to address a wider range of
multi-agent scenarios. By developing theory that shows a
class of SGs, namely c-SPGs have a dual representation as
MDPs, we showed that c-SPGs can be solved by MARL
agents using a novel distributed method which avoids the
combinatorial explosion therefore allowing the solver to
scale with the number of agents. We then validated our
theory in experiments in previously unsolvable scenarios
showing our method successfully learns MPE policies in
contrast to existing MARL methods.
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