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Abstract

In performative prediction, predictions guide

decision-making and hence can influence the dis-

tribution of future data. To date, work on perfor-

mative prediction has focused on finding perfor-

matively stable models, which are the fixed points

of repeated retraining. However, stable solutions

can be far from optimal when evaluated in terms

of the performative risk, the loss experienced by

the decision maker when deploying a model. In

this paper, we shift attention beyond performative

stability and focus on optimizing the performa-

tive risk directly. We identify a natural set of

properties of the loss function and model-induced

distribution shift under which the performative

risk is convex, a property which does not follow

from convexity of the loss alone. Furthermore, we

develop algorithms that leverage our structural as-

sumptions to optimize the performative risk with

better sample efficiency than generic methods for

derivative-free convex optimization.

1. Introduction

Predictions in social settings are rarely made in isolation,

but rather to inform decision-making. This link between

predictions and decisions causes predictive models to often

be performative, meaning they can alter their environment

once deployed. For example, election forecasts impact cam-

paign spending and affect voter turnout, hence influencing

the final election outcome (Westwood et al., 2020). Sim-

ilarly, long-term climate forecasts shape policy decisions

which can then affect future weather patterns.

Performative prediction is a recent framework introduced

by Perdomo et al. (2020) which formalizes the idea that

predictive models can impact the data-generating process.

So far, work in this area has focused on a particular equilib-
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rium notion known as performative stability (Drusvyatskiy

& Xiao, 2020; Mendler-Dünner et al., 2020; Brown et al.,

2020). Stability is a local definition of optimality, by which

a model minimizes the expected risk for the specific dis-

tribution that it induces. However, stability provides no

general guarantees of performance beyond this equilibrium

notion. In fact, stable models can have exceedingly poor

performative risk, the central measure of performance in the

performative prediction framework which captures the true

risk incurred by the learner when deploying the model.

Reasoning by analogy, stable classifiers can be thought of as

an echo chamber in an online platform. In an echo chamber,

one is reassured of their ideas by voicing them, but it’s

not clear whether they are reasonable outside of this niche

community. Similarly, stable classifiers minimize risk on

the distribution that they induce, but they provide no global

guarantees of performance.

Therefore, to develop accurate predictions in performative

settings, we shift attention past performative stability and

study optimizing the performative risk directly. This task

has so far remained elusive due to the complexities of model-

induced distribution shift, i.e. performative effects. In partic-

ular, even in simple settings with convex losses, these distri-

bution shifts can make the performative risk non-convex Per-

domo et al. (2020). Furthermore, optimizing the performa-

tive risk requires a different algorithmic approach than what

was previously studied in performative prediction. For in-

stance, the learner needs to actively anticipate performative

effects rather than myopically retrain until convergence, as

the latter would only lead to stability.

1.1. Our Contributions

In this paper, we provide the first set of results describing

when and how the performative risk may be optimized ef-

ficiently. We identify natural assumptions under which the

performative risk is convex, even in settings where perfor-

mative effects can be arbitrarily strong. Furthermore, we

study optimization algorithms which explicitly model distri-

bution shift and provably minimize the performative risk in

an efficient manner.

To give an overview of our main results, we recall the rele-

vant concepts from the performative prediction framework.

Relative to supervised learning, where the learner observes
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data from a single static distribution, the key conceptual

innovation in the performative prediction framework is the

notion of a distribution map D(·), which maps model param-

eters θ ∈ R
d to a distribution D(θ) over instances z. Given

a loss ℓ, the quality of a predictive model parameterized by

θ is measured according to its performative risk,

PR(θ)
def
= E

z∼D(θ)
ℓ(z; θ).

A classifier θPO is performatively optimal if it minimizes

the performative risk, i.e θPO ∈ argminθ PR(θ). On the

other hand, a classifier θPS is performatively stable if it

satisfies the fixed-point condition,

θPS ∈ argmin
θ

E
z∼D(θPS)

ℓ(z; θ).

In other words, stable classifiers are those which are opti-

mal for the particular distribution they induce. However,

stability has little bearing on whether a classifier has low per-

formative risk. More specifically, the following observation

motivates a large part of our later analysis:

Stable classifiers can maximize the performative

risk even when the loss is well-behaved and per-

formative effects are small.

Not only can stable points maximize the performative risk,

but they can also have an arbitrarily large suboptimality gap,

PR(θPS)−PR(θPO). Consequently, we take an alternative

approach and focus on directly optimizing the performative

risk.

The most natural first step towards optimizing the performa-

tive risk is to ensure that it is convex. Our first main result

states that under an appropriate stochastic dominance con-

dition to ensure the distribution map is well-behaved, there

exists a critical threshold on the strength of performative

effects which guarantees convexity:

Theorem 1.1 (Informal). Assume that the loss is β-smooth

in z and γ-strongly convex in θ. If the map D(·) is ε-

Lipschitz and satisfies a certain stochastic dominance con-

dition, then the performative risk is guaranteed to be convex

if and only if ε 6 γ
2β .

Interestingly, previous work has established that ε < γ/β is

a threshold for repeated retraining to provably converge to

a performatively stable point. Our work proves that if we

halve this quantity, we get another threshold which deter-

mines whether the performative risk is convex.

While Theorem 1.1 suggests that performative effects need

to be small in order to guarantee convexity, we prove that

this need not be the case for the setting of location-scale

families. These are natural classes of distribution maps

in which performative effects enter through an additive or

multiplicative factor that is linear in θ. Many examples of

distribution maps that have appeared in prior work are in

fact location-scale families. For this setting, we generalize

Theorem 1.1 to prove the following structural result.

Theorem 1.2 (Informal). If the loss is smooth, strongly

convex and the map D(·) is a location-scale family, then the

performative risk can be convex irrespective of the Lipschitz

constant of D(·).

Finally, having established these structural properties, we

turn to algorithms for finding performative optima. Under

weak regularity assumptions, convexity alone is sufficient

to apply classical zeroth-order algorithms in order to find

optima in polynomial time. That said, the convergence rate

of these algorithms is typically quite slow.

To address this problem, we propose a two-stage approach,

by which the learner first creates an explicit model of the

distribution map D̂, and then optimizes a proxy objective

for the performative risk obtained by “plugging in” D̂ as

if it were really the true distribution map. We instantiate

this two-stage procedure in the context of location families,

and prove that it optimizes the performative risk with sig-

nificantly better sample efficiency then generic zeroth-order

algorithms.

1.2. Related Work

We build on the recent line of work on performative pre-

diction started by Perdomo et al. (2020). While previous

papers in this area have focused on performative stability

(Mendler-Dünner et al., 2020; Drusvyatskiy & Xiao, 2020;

Brown et al., 2020), we move past this solution concept and

instead analyze conditions under which one can compute

performatively optimal classifiers.

Given that strategic classification is formally a special case

of performative prediction (see Section 5 or discussion in

Perdomo et al. (2020) for further details), the study of per-

formative optimality has been implicitly considered in the

growing body of work on strategic classification (Hardt

et al., 2016; Milli et al., 2019; Hu et al., 2019; Shavit et al.,

2020; Bechavod et al., 2021; Miller et al., 2020; Chen et al.,

2020; Tsirtsis & Gomez Rodriguez, 2020; Haghtalab et al.,

2020). More specifically, performatively optimal classifiers

correspond to Stackelberg equilibria in strategic classifica-

tion. In contrast to papers within this literature, our analysis

relies on identifying macro-level assumptions on the loss

and the distribution shift which make the problem tractable,

rather than specific micro-level assumptions on the costs

or utilities of the agents. For example, Dong et al. (2018)

prove that the institution’s objective (performative risk) is

convex by assuming that the agents are rational and com-

pute best-responses according to particular utilities and cost

functions. On the other hand, our conditions are on the
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distribution map and do not directly constrain behavior at

the agent level.

Similarly, several papers in strategic classification (Dong

et al., 2018; Munro, 2020) and policy design (Wager & Xu,

2021) have recognized that one can apply zeroth-order al-

gorithms (Flaxman et al., 2005; Agarwal & Dekel, 2010;

Shamir, 2013) to find optima of the institution’s risk. The

main challenge in applying zeroth-order optimization is the

fact that, in general, the performative risk might not satisfy

any structural properties which would imply that its station-

ary points have low risk. One of the main contributions of

this paper is precisely to identify under what conditions we

can expect this behavior to hold.

Several works within the economics literature (Frankel &

Kartik, 2021; Munro, 2020) have also contrasted fixed points

of retraining and institutional optima; these analyses resem-

ble our comparisons of stability and optimality, albeit in a

more specific setting. Furthermore, there are other settings

beyond strategic classification that have similarly studied

optimality in the face of performative effects, such as in the

context of rankings or selection bias (Rosenfeld et al., 2020;

Kilbertus et al., 2020; Tabibian et al., 2020).

Lastly, our two-stage approach to minimizing the performa-

tive risk, whereby we first estimate a model of the distri-

bution map and then optimize a proxy objective, is closely

related to ideas in neighboring fields. At a high level, this

general principle has appeared in semiparametric statistics

(Levit, 1976; Ibragimov & Has’ Minskii, 2013; Bickel, 1982;

Robinson, 1988; Newey, 1990) and more recently in double

machine learning (Chernozhukov et al., 2018; 2017; Mackey

et al., 2018). Furthermore, this idea has been extensively

studied in the controls literature where it is referred to as

certainty equivalence (Theil, 1957; Simon, 1956; Mania

et al., 2019; Simchowitz & Foster, 2020), or as model-based

planning in reinforcement learning (Agarwal et al., 2020).

1.3. Additional Preliminaries

As done by previous works in this area, we limit ourselves

to considering predictive models parameterized by a finite-

dimensional vector θ ∈ Θ ⊆ R
d, where Θ is a closed,

convex set. The distribution map D(·) maps parameter vec-

tors to data distributions over real-valued instances z ∈ R
m.

While each model θ can induce a potentially distinct distri-

bution D(θ), we expect similar classifiers to induce similar

distributions. This intuition is captured by the notion of

ε-sensitivity, which is essentially a Lipschitz condition on

the distribution map D(·). We state that D(·) is ε-sensitive

for some ε > 0 if for all θ, θ′ ∈ Θ,

W1(D(θ),D(θ′)) 6 ε ‖θ − θ′‖2 . (A1)

Here, W1 denotes the Wasserstein-1 or earth mover’s dis-

tance between two distributions.

2. Contrasting Optimality and Stability

Up until now, all works within the performative predic-

tion literature have focused on analyzing when different

algorithms converge to stable points. While the primary mo-

tivation for stability was eliminating the need for retraining,

it was observed as a useful byproduct that stable points can

approximately minimize the performative risk.

More specifically, Perdomo et al. (2020) prove that all stable

points and performative optima lie within ℓ2-distance at

most 2Lzε/γ of each other, where ε is the sensitivity of the

distribution map, γ denotes the strong convexity parameter

of the loss, and Lz denotes the Lipschitz constant of the loss

in z. At first glance, this result implicitly suggests that stable

points also have good predictive performance. While this

is sometimes the case, in many settings Lz is large enough

to make the bound vacuous. For example, there exist cases

where the loss function is strongly convex, but stable points

actually maximize the performative risk.

Proposition 2.1. For any γ,∆ > 0, there exists a per-

formative prediction problem where the loss is γ-strongly

convex in θ, yet the unique stable point θPS maximizes the

performative risk and PR(θPS)−minθ PR(θ) > ∆.

Proof. We prove the proposition by constructing an exam-

ple. Let z ∼ D(θ) be a point mass at εθ, and define the loss

to be:

ℓ(z; θ) = −β · θ⊤z +
γ

2
‖θ‖22,

for some β > 0. This loss is γ-strongly convex and the

distribution map is ε-sensitive. A short calculation shows

that the performative risk simplifies to

PR(θ) =
(γ
2
− εβ

)
· ‖θ‖22. (1)

For ε 6= γ/β, there is a unique performatively stable point

at the origin, and if ε > γ
2β this point is the unique max-

imizer of the performative risk. Moreover, for ε > γ
2β ,

minθ PR(θ) = (γ/2− εβ) ·maxθ∈Θ ‖θ‖22. Therefore, de-

pending on the radius of Θ, the suboptimality gap of θPS

can be arbitrarily large. �

In the above example, ∇θℓ(z; θ) is β-Lipschitz in z, a con-

dition commonly referred to as smoothness in prior work

on performativity. The previous proposition thus shows

that stable points can have an arbitrary suboptimality gap

when ε > γ
2β . This is important since ε < γ

β is the regime

where previously studied algorithms for optimizing under

performativity—such as repeated risk minimization or dif-

ferent variants of gradient descent (Perdomo et al., 2020;

Mendler-Dünner et al., 2020)—converge to stability. Apply-

ing these methods when ε ∈ (γ/(2β), γ/β) would hence

maximize the performative risk on this problem.
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Moreover, we remark that the Lipschitz constant Lz is equal

to β ·maxθ∈Θ ‖θ‖2. Therefore, the results of Perdomo et al.

(2020) imply that stable points and optima are at distance at

most 2Lzε
γ = 2βε

γ maxθ∈Θ ‖θ‖2. When ε > γ
2β , as assumed

in the proof of Proposition 2.1, this bound on the distance

becomes vacuous: ‖θPS − θPO‖2 6 maxθ∈Θ ‖θ‖2.

Lastly, we point out that ε = γ
2β is a sharp threshold for

convexity of the performative risk in this example, as can be

seen in equation (1). In the following section, we show that

this threshold behavior is not an artifact of this particular

setting, but rather a phenomenon that holds more generally.

3. Convexity of the Performative Risk

We now introduce our main structural results illustrating

how the performative risk can be convex in various nat-

ural settings, and hence amenable to direct optimization.

Throughout our presentation, we adopt the following con-

vention. We state that the performative risk is λ-convex, for

some λ ∈ R, if the objective,

PR(θ)−
λ

2
‖θ‖22

is convex. In other words, if λ is positive, then PR(θ) is λ-

strongly convex. If λ is negative, then adding the analogous

regularizer λ
2 ‖θ‖2 ensures PR(θ) is convex. Furthermore,

in addition to ε-sensitivity, we will make repeated use of the

following assumptions throughout the remainder of the pa-

per. To facilitate readability, we let Z
def
= ∪θ∈Θsupp(D(θ)).

We say that a loss function ℓ(z; θ) is β-smooth in z if for all

θ ∈ Θ and z, z′ ∈ Z ,

‖∇θℓ(z; θ)−∇θℓ(z
′; θ)‖2 6 β ‖z − z′‖2 . (A2)

Furthermore, a loss function ℓ(z; θ) is γ-strongly convex in

θ if for all θ, θ′, θ′′ ∈ Θ,

E
z∼D(θ′′)

ℓ(z; θ) > E
z∼D(θ′′)

ℓ(z; θ′)

+ E
z∼D(θ′′)

∇θℓ(z; θ
′)⊤(θ − θ′) +

γ

2
‖θ − θ′‖

2
2 .

(A3a)

If γ = 0, this assumption is equivalent to convexity. Simi-

larly, we say that the loss is γz-strongly convex in z if for

all θ ∈ Θ and z, z′ ∈ Z ,

ℓ(z; θ) > ℓ(z′; θ) +∇zℓ(z
′; θ)⊤(z′ − z) +

γz
2

‖z − z′‖
2
2 .

(A3b)

Lastly, we state that a distribution map, loss pair (D(·), ℓ)
satisfies mixture dominance if the following condition holds

for all θ, θ′, θ′′ ∈ Θ and α ∈ (0, 1):

E
z∼D(αθ+(1−α)θ′)

ℓ(z; θ′′) 6 E
z∼αD(θ)+(1−α)D(θ′)

ℓ(z; θ′′)

(A4)

Smoothness and strong convexity are standard and have

appeared previously in the context of performative predic-

tion. The mixture dominance condition is novel and plays

a central role in our analysis of when the performative risk

is convex. To provide some intuition for this condition, we

recall the definition of the decoupled performative risk:

DPR(θ, θ′) = E
z∼D(θ)

ℓ(z; θ′).

Notice that asserting convexity of the performative risk is

equivalent to showing convexity of DPR(θ, θ) when both

arguments are forced to be the same. While convexity (A3a)

guarantees that DPR is convex in the second argument, mix-

ture dominance (A4) essentially posits convexity of DPR
in the first argument. Importantly, assuming convexity in

each argument separately does not directly imply that the

performative risk is convex.

On a more intuitive level, this assumption (A4) is essentially

a stochastic dominance statement: the mixture distribution

αD(θ) + (1 − α)D(θ′) “dominates” D(αθ + (1 − α)θ′)
under a certain loss function. Similar conditions have been

extensively studied within the literature on stochastic orders

(Shaked & Shanthikumar, 2007), which we further discuss

in Appendix A. Part of our analysis relies on incorporat-

ing tools from this literature, and we believe that further

exploring technical connections between this field and per-

formative prediction could be valuable. For example, using

results from stochastic orders we can show that (A4) holds

when the loss is convex in z and the distribution map D(·)
forms a location-scale family of the form:

zθ ∼ D(θ) ⇔ zθ
d
= (Σ0 +Σ(θ))z0 + µ0 + µθ, (2)

where z0 ∼ D0 is a sample from a fixed zero-mean distribu-

tion D0, and Σ(θ), µ are linear maps (see Proposition A.4

for a formal proof). Distribution maps of this sort are ubiq-

uitous throughout the performative prediction literature and

hence satisfy mixture dominance if the loss ℓ is convex. For

instance, the distribution map for the strategic classifica-

tion simulator in Perdomo et al. (2020) is a location family.

Other examples of location families can be found in previ-

ous work on strategic classification (Frankel & Kartik, 2021;

Haghtalab et al., 2020). Mixture dominance can also hold in

discrete settings, e.g. D(θ) = Bernoulli(a⊤θ + b) satisfies

this condition for any loss. Having provided some context

on the mixture dominance condition, we can now state the

main result of this section:

Theorem 3.1. Suppose that the loss function ℓ(z; θ) is γ-

strongly convex in θ (A3a), β-smooth in z (A2), and that

D(·) is ε-sensitive (A1). If mixture dominance (A4) holds,

then the performative risk is λ-convex for λ = γ − 2εβ.

Together with the example from the proof of Proposition 2.1,

this theorem shows that γ
2β is a sharp threshold for convex-

ity of the performative risk. If ε is strictly less than this
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threshold, then under mixture dominance and appropriate

conditions on the loss, the performative risk is strongly con-

vex by Theorem 3.1. On the other hand, if ε is above this

threshold, the example from Proposition 2.1 shows that there

exists a performative prediction instance which satisfies the

remaining assumptions, yet is non-convex; in particular, for

ε > γ
2β the performative risk is strictly concave in that exam-

ple. This threshold was also implicitly observed by Perdomo

et al. (2020) in the proof of Proposition 4.2 as byproduct of

showing that the performative risk can be non-convex for

ε 6 γ
β . However, they provide no general analysis of when

the performative risk is convex. Note that all of the above

examples satisfy mixture dominance.

While the threshold ε = γ/(2β) is in general tight as argued

above, for certain families of distribution maps the conclu-

sion of Theorem 3.1 can be made considerably stronger.

Indeed, in some cases the performative risk is convex regard-

less of the magnitude of performative effects, as observed

for the following location family.

Example 3.2. Consider the following stylized model of pre-

dicting the final vote margin in an election contest. Features

x, such as past polling averages, are drawn i.i.d. from a

static distribution, x ∼ Dx. Since predicting a large mar-

gin in either direction can dissuade people from voting, we

consider outcomes drawn from the conditional distribution:

y|x ∼ g(x) + µ⊤θ + ξ, where g : Rd → R is an arbitrary

map, µ ∈ R
d is a fixed vector, and ξ is a zero-mean noise

variable. If ℓ is the squared loss, ℓ((x, y); θ) = 1
2 (y−x⊤θ)2,

or the absolute loss, ℓ((x, y); θ) = |y − x⊤θ|, then the per-

formative risk is convex for any g and µ.

The proof follows by simply observing that in both cases,

the performative risk can be written as a linear function in

θ composed with a convex function. Another interesting

property of this example is that the distribution map is ε-

sensitive with ε = ‖µ‖2, yet the sensitivity parameter plays

no role in the characterization of convexity. Motivated by

this observation, we specialize the analysis in Theorem 3.1

to the particular case of location-scale families, and obtain

a result that is at least as tight as the previous theorem.

Theorem 3.3. Suppose that ℓ(z; θ) is γ-strongly convex

in θ (A3a), β-smooth (A2), and γz-strongly convex in z
(A3b). Furthermore, suppose that D(θ) forms a location-

scale family (2) with ε as its sensitivity parameter1. Define

Σz0 to be the covariance matrix of z0 ∼ D0, and let

σmin(µ) = min
‖θ‖2=1

‖µθ‖2, σmin(Σ) = min
‖θ‖2=1

‖Σ1/2
z0 Σ(θ)⊤‖F .

Then, the performative risk is λ-convex for λ equal to:

max{γ − β2/γz, γ − 2εβ + γz(σ
2
min(µ) + σ2

min(Σ))}.

1The sensitivity parameter ε for location-scale families can be
explicitly bounded in terms of the parameters µ and Σ(θ); see
Remark C.3 in the Appendix.

Remark 3.4. This tighter bound leverages the fact that

some losses are strongly convex in the performative vari-

ables, such as the squared loss when only the outcome vari-

able exhibits performativity. In general, one can achieve

a tighter analysis of when the performative risk is convex

by distinguishing between variables which are static, whose

distribution is the same under D(θ) for all θ, and performa-

tive variables which are influenced by the deployed classifier.

For example, in strategic classification, the performative ef-

fects are often only present in the strategically manipulated

features, and not in the label. In Example 3.2, on the other

hand, the effects are only present in the label. For simplicity

of exposition, we suppress this distinction between perfor-

mative and static variables, that is, those whose distribution

does not change for different D(θ). However, the reader

should think of all assumptions on z, such as strong con-

vexity or various Lipschitz assumptions, as only having to

apply to the performative variables, while the static ones

can be averaged out. We elaborate on how the analysis can

be strengthened in Appendix B.

We now illustrate an application of Theorem 3.3 on a scale

family example.

Example 3.5. Suppose that x > 0 is a one-dimensional fea-

ture drawn from a fixed distribution Dx with finite second

moment, and let y|x ∼ θx · Exp(1) be distributed as an ex-

ponential random variable with mean θx. Let the loss be the

squared loss, ℓ((x, y); θ) = 1
2 (y − θ · x)2 and let Θ = R+.

Note that this example exhibits a self-fulfilling prophecy

property whereby all solutions are performatively stable. On

the other hand, PR(θ) = θ2 Ex2, and the unique performa-

tive optimum is θPO = 0. Again, we see how stability has

no bearing on whether a solution has low performative risk.

However, we note that the loss is 1-strongly convex in y. Fur-

thermore, by averaging over the static features, we observe

that PR(θ) is Ex2-strongly convex in θ and Ex-smooth

in y. Therefore, according to Theorem 3.3, the performa-

tive risk is convex and hence tractable to optimize, since

γ − β2/γz = Ex2 − (Ex)2 > 0 by Jensen’s inequality.

While this example, like most others in this section, is in-

tended as a toy problem to provide the reader with some

intuition regarding the intricacies of performativity, many

instances of performative prediction in the real world do

exhibit a self-fulfilling prophecy aspect whereby predicting

a particular outcome increases the likelihood that it occurs.

For instance, predicting that a student is unlikely to do well

on a standardized exam may discourage them from studying

in the first place and hence lower their final grade. Settings

like these where stability is a vacuous guarantee of perfor-

mance remind us how developing reliable predictive models

requires going outside the stability echo chamber.

As a final note, to prove the results in this section, we have
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imposed additional assumptions such as mixture dominance,

or analyzed the special case of location-scale families. The

reader might naturally ask whether these settings are so

restrictive that one can optimize the performative risk using

previous optimization methods for performative prediction

which find stable points. Or in particular, whether stable

points and performative optima now identify.

It turns out that both solutions can still have qualitatively

different behavior, regardless of the strength of performa-

tive effects. First, notice that the example in the proof of

Proposition 2.1 is a location family, and as such it satisfies

mixture dominance. In that example, when ε ∈ ( γ
2β ,

γ
β ),

methods for finding stable points converge to a maximizer

of the performative risk; however, this is outside the regime

where the performative risk is convex. In what follows, by

relying on Theorem 3.3, we provide another scale family

example where the performative risk is convex regardless

of ε, yet stable points can be arbitrarily suboptimal.

Example 3.6. Suppose that D(θ) = N (µ, ε2θ2) for some

µ ∈ R and ε > 0. This distribution map is ε-sensitive.

If ℓ is the squared loss, ℓ(z; θ) = 1
2 (z − θ)2, then there

is a unique stable point θPS = µ. We remark how

stability is completely oblivious to the performative ef-

fects, as argminθ′ Ez∼D(θ) ℓ(z; θ
′) = µ regardless of θ.

The performative optimum is θPO = µ/(1 + ε2). De-

pending on µ, the stable point can be arbitrarily subop-

timal, since PR(θPS) − PR(θPO) = Ω(µ2). Note also

that, according to Theorem 3.3, the performative risk is

γ − 2εβ + γzσ
2
min(Σ) = 1 − 2ε + ε2-convex. Since

1 − 2ε + ε2 = (ε − 1)2 > 0, the performative risk is

always convex and hence tractable to optimize.

4. Optimization Algorithms

Having identified conditions under which the performative

risk is convex, we now consider methods for efficiently op-

timizing it. One of the main challenges of carrying out this

task is that, even in convex settings, the learner can only

access the objective via noisy function evaluations corre-

sponding to classifier deployments. Without knowledge of

the underlying distribution map, it is infeasible to compute

gradients of the performative risk. A naive solution is to

apply a zeroth-order method, however, these algorithms are

in general hard to tune, and their performance scales poorly

with the problem dimension.

Our main algorithmic contribution is to show how one can

address these issues by creating an explicit model of the

distribution map and then optimizing a proxy objective for

the performative risk offline. We refer to this as the two-

stage procedure for optimizing the performative risk and

show it is provably efficient for the case of location families.

To develop further intuition, consider the following simple

example. Let z ∼ N (εθ, 1) be a one-dimensional Gaussian

and let ℓ(z; θ) = 1
2 (z − θ)2 be the squared loss. Then,

the performative risk, PR(θ) = 1
2 (ε − 1)2θ2, is a simple,

convex function for all values of ε (as indeed confirmed by

Theorem 3.3, since γ−2εβ+γzσ
2
min(µ) = 1−2ε+ε2 > 0).

However, gradients are unavailable since they depend on the

density of D(θ), denoted pθ, which is typically unknown:

∇θPR(θ) = E
z∼D(θ)

∇θℓ(z; θ) + E
z∼D(θ)

ℓ(z; θ)∇θ log pθ(z)

= E
z∼D(θ)

−(z − θ) + ε(ε− 1)θ.

Despite the simplicity of this example, earlier approaches

to optimization in performative prediction, such as repeated

retraining (Perdomo et al., 2020), fail on this problem. The

reason is that they essentially ignore the second term in the

gradient computation which requires explicitly anticipating

performative effects. For example, retraining computes

the sequence of updates θt+1 = argminθ Ez∼D(θt)
1
2 (z −

θ)2 = εθt, which diverges for |ε| > 1.

4.1. Generic Derivative-Free Methods

Having observed the difficulty of computing gradients, the

most natural starting point for optimizing the performative

risk is to consider derivative-free methods for convex op-

timization (Flaxman et al., 2005; Agarwal & Dekel, 2010;

Shamir, 2013). These methods work by constructing a

noisy estimate of the gradient by querying the objective

function at a randomly perturbed point around the current

iterate. For instance, Flaxman et al. (2005) sample a vector

u ∼ Unif(Sd−1) to get a slightly biased gradient estimator,

∇θPR(θ) ≈
d

δ
E[PR(θ + δu)u],

for some small δ > 0. Generic derivative-free algorithms

for convex optimization require few assumptions beyond

those given in the previous section to ensure convexity.

Moreover, they guarantee convergence to a performative

optimum given sufficiently many samples. However, their

rate of convergence can be slow and scales poorly with

the problem dimension. In general, zeroth-order meth-

ods require Õ(d2/∆2) samples to obtain a ∆-suboptimal

point (Agarwal & Dekel, 2010; Shamir, 2013), which can

be prohibitively expensive if samples are hard to come by.

4.2. Two-Stage Approach

In cases where we have further structure, an alternative

solution to derivative-free methods is to utilize a two-stage

approach to optimizing the performative risk. In the first

stage, we estimate a coarse model of the distribution map,

D̂(·) via experiment design. Then, in the second stage, the

algorithm optimizes a proxy to the performative risk treating
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Algorithm 1 Two-Stage Algorithm for Location Families

Stage 1: Construct a model of the distribution map

// Estimate location parameter µ with experiment design

for i = 1 to n do

-Sample and deploy classifier θi
i.i.d.
∼ N (0, Id).

-Observe zi ∼ D(θi).
end for

-Estimate µ via OLS, µ̂ ∈ argminµ
∑n

i=1 ‖zi − µθi‖
2
2.

// Gather samples from the base distribution

for j = n+ 1 to 2n do

-Deploy classifier θj = 0, and observe zj ∼ D(0).
end for

Stage 2: Minimize a finite-sample approximation of the

performative risk, argminθ∈Θ
1
n

∑2n
j=n+1 ℓ(zj + µ̂θ; θ).

the estimated D̂ as if it were the true distribution map:

θ̂PO ∈ argmin
θ

P̂R(θ)
def
= E

z∼D̂(θ)
ℓ(z; θ).

The exact implementation of this idea depends on the prob-

lem setting at hand; to make things concrete, we instantiate

the approach in the context of location families and prove

that it optimizes the performative risk with significantly bet-

ter sample complexity than generic zeroth-order methods.

For the remainder of this section, we assume the distribution

map D is parameterized by a location family

zθ ∼ D(θ) ⇔ zθ
d
= z0 + µθ,

where the matrix µ ∈ R
m×d is an unknown parameter, and

z0 ∼ D0 is a zero-mean random variable.2

As discussed previously, location-scale families encompass

many formal examples discussed in prior work. They cap-

ture the intuition that in performative settings, the data points

are composed of a base component z0, representing the nat-

ural data distribution in the absence of performativity, and

an additive performative term.

In the first stage of our two-stage procedure we build a

model of the distribution map D̂ that in effect allows us to

draw samples z ∼ D̂(θ) ≈ D(θ). To do this, we perform

experiment design to recover the unknown parameter µ
which captures the performative effects. In particular, we

sample and deploy n classifiers θi, i ∈ [n], observe data

zi ∼ D(θi), and then construct an estimate µ̂ of the location

map µ using ordinary least-squares. We then gather samples

from the base distribution D0 by repeatedly deploying the

zero classifier. In the location-family model, deploying the

zero classifier ensures we observe data points z0, without

2The variable z0 being zero-mean is only to simplify the expo-
sition; the same analysis carries over when there is an additional
intercept term.

performative effects. With both of these components, given

any θ′, we can simulate z ∼ D̂(θ′) by taking z = z0 + µ̂θ′.

In the second stage, we use the estimated model to construct

a proxy objective. Define the perturbed performative risk:

P̂R(θ) = E
z∼D̂(θ)

ℓ(z; θ) = E
z0∼D0

ℓ(z0 + µ̂θ; θ).

Note that PR(θ) = Ez0∼D0
ℓ(z0 + µθ; θ). Using the esti-

mated parameter µ̂ and samples zi ∼ D0, we can construct

a finite-sample approximation to the perturbed performative

risk and find the following optimizer:

θ̂n ∈ argmin
θ∈Θ

P̂Rn(θ)
def
=

1

n

2n∑

i=n+1

ℓ(zi + µ̂θ; θ).

The main technical result in this section shows that, under

appropriate regularity assumptions on the loss, Algorithm 1

efficiently approximates the performative optimum. In par-

ticular, when the data dimensionality m is comparable to

the model dimensionality d, i.e. m = O(d), then comput-

ing a ∆-suboptimal classifier requires O(d/∆) samples. In

contrast, the derivative-free methods considered previously

require Õ(d2/∆2) samples to compute a classifier of simi-

lar quality. The formal statement and proof of this result is

deferred to Appendix C.2.

Theorem 4.1 (Informal). Under appropriate smoothness

and strong convexity assumptions on the loss ℓ, if the distri-

bution of z0 is subgaussian, and if the number of samples

n > Ω (d+m+ log(1/δ)), then, with probability 1 − δ,

Algorithm 1 returns a point θ̂n such that

PR(θ̂n)− PR(θPO) 6 O

(
d+m+ log(1/δ)

n
+

1

δn

)
.

While we analyze this two-stage procedure in the context

of location families, the principles behind the approach

can be extended to more general settings. Whenever the

distribution map has enough structure to efficiently estimate

a model D̂ that supports sampling new data, we can always

use the “plug-in” approach above and construct and optimize

a perturbed version of the performative risk.

5. Experiments

We complement our theoretical findings with an empirical

evaluation of different methods on two tasks: the strategic

classification simulator from Perdomo et al. (2020), and a

synthetic linear regression example.

We pay particular attention to understanding the differences

in empirical performance between algorithms which con-

verge to performative optima, such as the two-stage proce-

dure or derivative-free methods from Section 4.1, versus
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Figure 1. Suboptimality gap versus number of samples collected for the two-stage algorithm, DFO algorithm, greedy SGD, and lazy SGD,

for ε = 0.01 (left) and ε = 100 (right).

existing optimization algorithms for finding stable points,

in particular greedy and lazy SGD due to Mendler-Dünner

et al. (2020). In addition, we focus on highlighting the dif-

ferences in the sample efficiency of the different algorithms

and examine their sensitivity to the relevant structural as-

sumptions outlined in Section 3. To evaluate derivative-free

methods, we implement the “gradient descent without a gra-

dient” algorithm from Flaxman et al. (2005), which we refer

to from here on out as the “DFO algorithm.” For each of the

following experiments, we run each algorithm 50 times and

display 95% bootstrap confidence intervals. We provide a

formal description of all the procedures, as well as a detailed

description of the experimental setup in Appendix D.

5.1. Linear Regression

We begin by evaluating how increasing the strength of per-

formative effects affects the behavior of the different opti-

mization procedures in settings where the performative risk

is convex. We recall the setup from Example 3.2, where the

learner attempts to solve a linear regression with performa-

tive labels. Given a parameter θ, data are drawn from D(θ)
according to:

x ∼ N (0,Σx), Uy ∼ N (0, σ2
y), y = β⊤x+ µ⊤θ + Uy.

This distribution map is a location family, and is ε-sensitive

with ε = ‖µ‖2. Performance is measured according to the

squared loss, ℓ((x, y); θ) = 1
2 (y− θ⊤x)2. Furthermore, the

performative risk is convex for all choices of µ.

For small ε, greedy and lazy SGD converge to a stable

point that approximately minimizes the performative risk

(see left panel in Figure 1). However, as the strength of

performative effects increases, these methods fail to make

progress and are outperformed by the DFO algorithm and

the two-stage approach by a considerable margin (see right

panel in Figure 1). The two-stage procedure efficiently

converges after a small number of samples and its behavior

is largely unaffected as we increase the value of ε, while

the DFO algorithm becomes considerably slower when ε is

large.

5.2. Strategic Classification Simulator

We next consider experiments on the credit scoring simula-

tor from Perdomo et al. (2020), which has been employed

as an empirical benchmark for performative prediction in

several works (Mendler-Dünner et al., 2020; Drusvyatskiy

& Xiao, 2020; Brown et al., 2020). The simulator mod-

els a strategic classification problem between a bank and

individual agents seeking a loan. The bank deploys a lo-

gistic regression classifier fθ to determine the individuals’

default probabilities, while agents strategically manipulate

their features to achieve a more favorable classification.

More specifically, individuals correspond to feature, label

pairs (x, y) drawn i.i.d. from a base distribution D0. Given a

classifier fθ, agents compute a best-response set of features

xBR by solving an optimization problem. The bank then

observes the manipulated data points (xBR, y) ∼ D(θ). For

an appropriate choice of the agents’ objective function, the

distribution map forms a location family, xBR = x + εθ,

where ε is a parameter of the agents’ objective. It also serves

as a measure of performativity, since this distribution map

is ε-sensitive. As a final remark, we add ℓ2-regularization

to the logistic loss to ensure strong convexity. See Perdomo

et al. (2020) and Appendix D for full details.

Since the logistic loss is not strongly convex in the fea-

tures, we only have a certificate of convexity when ε is

small enough (namely, ε 6
γ
2β ). We consider two values

of ε: one which is below this critical threshold, and one

large value for which we do not have theoretical guarantees.
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Figure 2. Classification accuracy versus number of samples collected for the two-stage algorithm, DFO algorithm, greedy SGD, and lazy

SGD, for ε = 0.0001 6
γ

2β
(left) and ε = 100 ≫
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(right).

When ε is small, both the DFO algorithm and the two-stage

method yield significantly higher accuracy solutions com-

pared to the two variants of SGD (see left panel of Figure 2).

Together with the linear regression experiments, this ob-

servation serves as further evidence that stable points have

significantly worse performative risk relative to performa-

tive optima, even in regimes where ε < γ/(2β). Note also

that, although both the DFO algorithm and the two-stage

algorithm improve upon methods for repeated retraining,

the two-stage algorithm converges with significantly fewer

samples and significantly lower variance. Indeed, a few

thousand samples suffice for convergence of the two-stage

method, whereas the DFO algorithm has still not fully con-

verged after a million samples.

Lastly, on the top right plot, we evaluate these methods for

ε ≫ γ/(2β) which is outside the regime of our theoretical

analysis. Consequently, we have no convergence guarantees

for any of the four algorithms. Despite the lack of guaran-

tees and the increased strength of performative effects, we

see that the two-stage procedure achieves only a slightly

lower accuracy than in the previous setting. On the other

hand, as described in our echo chamber analogy, greedy and

lazy SGD rapidly converge to a local minimum and do not

significantly improve predictive performance after the 10k

sample mark. Despite extensive tuning, we were unable to

improve the performance of the DFO algorithm and achieve

nontrivial accuracy with this method.

6. Discussion and Future Work

Given the stark difference between performative stability

and optimality, the goal of our work was to identify the first

set of conditions and algorithmic procedures by which one

might be able to provably optimize the performative risk.

To this end, we focused on analyzing the problem at a broad

level of generality, identifying simple, structural conditions

under which the optimization problem becomes tractable.

However, when applying these ideas in practice, there are

a number of important considerations determined by the

relevant social context that are not explicitly addressed by

our theoretical analysis and which we believe are an im-

portant direction for future work. For example, in social

domains such as credit scoring or election forecasts, the

choice of loss function must balance predictive accuracy

with any possible externalities of the impact of classifier

deployment (i.e. performative effects) on the observed dis-

tribution. In a similar vein, exploration strategies must be

weighed against the relevant costs of deploying a particular

model. We believe that elucidating these tradeoffs and de-

sign choices in the context of specific applications and case

studies on performative prediction would be of high value

to the community.
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