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Abstract

For machine learning systems to be reliable, we

must understand their performance in unseen, out-

of-distribution environments. In this paper, we

empirically show that out-of-distribution perfor-

mance is strongly correlated with in-distribution

performance for a wide range of models and distri-

bution shifts. Specifically, we demonstrate strong

correlations between in-distribution and out-of-

distribution performance on variants of CIFAR-

10 & ImageNet, a synthetic pose estimation task

derived from YCB objects, FMoW-WILDS satel-

lite imagery classification, and wildlife classi-

fication in iWildCam-WILDS. The correlation

holds across model architectures, hyperparame-

ters, training set size, and training duration, and

is more precise than what is expected from exist-

ing domain adaptation theory. To complete the

picture, we also investigate cases where the cor-

relation is weaker, for instance some synthetic

distribution shifts from CIFAR-10-C and the tis-

sue classification dataset Camelyon17-WILDS.

Finally, we provide a candidate theory based on a

Gaussian data model that shows how changes in

the data covariance arising from distribution shift

can affect the observed correlations.

1. Introduction

Machine learning models often need to generalize from

training data to new environments. A kitchen robot should

work reliably in different homes, autonomous vehicles

should drive reliably in different cities, and analysis software

for satellite imagery should still perform well next year. The
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standard paradigm to measure generalization is to evaluate a

model on a single test set drawn from the same distribution

as the training set. But this paradigm provides only a narrow

in-distribution performance guarantee: a small test error

certifies future performance on new samples from exactly

the same distribution as the training set. In many scenarios,

it is hard or impossible to train a model on precisely the dis-

tribution it will be applied to. Hence a model will inevitably

encounter out-of-distribution data on which its performance

could vary widely compared to in-distribution performance.

Understanding the performance of models beyond the train-

ing distribution therefore raises the following fundamental

question: how does out-of-distribution performance relate

to in-distribution performance?

Classical theory for generalization across different distri-

butions provides a partial answer (Mansour et al., 2009;

Ben-David et al., 2010). For a model f trained on a distribu-

tion D, known guarantees typically relate the in-distribution

test accuracy on D to the out-of-distribution test accuracy

on a new distribution D1 via inequalities of the form

|accDpfq ´ accD1 pfq| ď dpD,D1q

where d is a distance between the distributions D and D1

such as the total variation distance. Qualitatively, these

bounds suggest that out-of-distribution accuracy may vary

widely as a function of in-distribution accuracy unless the

distribution distance d is small and the accuracies are there-

fore close (see Figure 1 (top-left) for an illustration). More

recently, empirical studies have shown that in some set-

tings, models with similar in-distribution performance can

indeed have different out-of-distribution performance (Mc-

Coy et al., 2019; Zhou et al., 2020; D’Amour et al., 2020).

In contrast to the aforementioned results, recent dataset re-

constructions of the popular CIFAR-10, ImageNet, MNIST,

and SQuAD benchmarks showed a much more regular pat-

tern (Recht et al., 2019; Miller et al., 2020; Yadav & Bottou,

2019; Lu et al., 2020). The reconstructions closely followed

the original dataset creation processes to assemble new test

sets, but small differences were still enough to cause substan-

tial changes in the resulting model accuracies. Nevertheless,

the new out-of-distribution accuracies are almost perfectly
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Figure 1. Out-of-distribution accuracies vs. in-distribution accuracies for a wide range of models, datasets, and distribution shifts. Top left:

A sketch of the current bounds from domain adaptation theory. These bounds depend on distributional distances between in-distribution

and out-of-distribution data, and they are loose in that they limit the deviation away from the y = x diagonal but do not prescribe a

specific trend within these wide bounds (see Section 7). Remaining panels: In contrast, we show that for a wide range of models and

datasets, there is a precise linear trend between out-of-distribution accuracy and in-distribution accuracy. Unlike what we might expect

from theory, the linear trend does not follow the y “ x diagonal. The different panels represent different pairs of in-distribution and

out-of-distribution datasets. Within each panel, we plot the performances of many different models, with different model architectures

and hyperparameters. These datasets capture a variety of distribution shifts from dataset reproduction (CIFAR-10.2, ImageNet-V2); a

real-world spatiotemporal distribution shift on satellite imagery (FMoW-WILDS); using a different benchmark test dataset (CINIC-10);

synthetic perturbations (CIFAR-10-C and YCB-Objects); and a real-world geographic shift in wildlife monitoring (iWildCam-WILDS).

Interestingly, for iWildCam-WILDS, models pretrained on ImageNet follow a different linear trend than models trained from scratch

in-distribution, and we plot a separate trend line for ImageNet pretrained models in the iWildCam-WILDS panel. We explore this

phenomenon more in Section 5.

linearly correlated with the original in-distribution accura-

cies for a range of deep neural networks. Importantly, this

correlation holds despite the substantial gap between in-

distribution and out-of-distribution accuracies (see Figure

1 (top-middle) for an example). However, it is currently

unclear how widely these linear trends apply since they

have been mainly observed for dataset reproductions and

common variations of convolutional neural networks.

In this paper, we conduct a broad empirical investigation to

characterize when precise linear trends such as in Figure 1

(top-middle) may be expected, and when out-of-distribution

performance is less predictable as in Figure 1 (top-left).

Concretely, we make the following contributions:
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• We show that precise linear trends occur on several

datasets and associated distribution shifts (see Figure 1).

Going beyond the dataset reproductions in earlier work,

we find linear trends on

– popular image classification benchmarks (CIFAR-10

(Krizhevsky, 2009), CIFAR-10.1 (Recht et al., 2019),

CIFAR-10.2 (Lu et al., 2020), CIFAR-10-C (Hendrycks

& Dietterich, 2018), CINIC-10 (Darlow et al., 2018),

STL-10 (Coates et al., 2011), ImageNet (Deng et al.,

2009), ImageNet-V2 (Recht et al., 2019)),

– a pose estimation testbed based on YCB-Objects (Calli

et al., 2015),

– and two distribution shifts derived from concrete appli-

cations of image classification: satellite imagery and

wildlife photos via the FMoW-WILDS and iWildCam-

WILDS variants from WILDS (Christie et al., 2018;

Beery et al., 2020; Koh et al., 2020).

• We show that the linear trends hold for many models rang-

ing from state-of-the-art methods such as convolutional

neural networks, visual transformers, and self-supervised

models, to classical methods like logistic regression, near-

est neighbors, and kernel machines. Importantly, we find

that classical methods follow the same linear trend as

more recent deep learning architectures. Moreover, we

demonstrate that varying model or training hyperparam-

eters, training set size, and training duration all result in

models that follow the same linear trend.

• We also identify three settings in which the linear trends

do not occur or are less regular: some of the synthetic dis-

tribution shifts in CIFAR-10-C (e.g., Gaussian noise), the

Camelyon17-WILDS shift of tissue slides from different

hospitals, and a version of the aforementioned iWildCam-

WILDS wildlife classification problem with a different

in-distribution train-test split (Beery et al., 2020). We

analyze these cases in detail via additional experiments to

pinpoint possible causes of the linear trends.

• Pre-training a model on a larger and more diverse dataset

offers a possibility to increase robustness. Hence we

evaluate a range of models pre-trained on other datasets

to study the impact of pre-training on the linear trends.

Interestingly, even pre-trained models sometimes follow

the same linear trends as models trained only on the in-

distribution training set. Two examples are ImageNet

pre-trained models evaluated on CIFAR-10 and FMoW-

WILDS. In other cases (e.g., iWildCam-WILDS), pre-

training yields clearly different relationships between in-

distribution and out-of-distribution accuracies.

• As a starting point for theory development, we provide a

candidate theory based on a simple Gaussian data model.

Despite its simplicity, this data model correctly identi-

fies the covariance structure of the distribution shift as

one property affecting the performance correlation on the

Gaussian noise corruption from CIFAR-10-C.

Overall, our results show a striking linear correlation be-

tween the in-distribution and out-of-distribution perfor-

mance of many contemporary ML models on multiple dis-

tribution shift benchmarks. This raises the intriguing pos-

sibility that, despite their different creation mechanisms,

a diverse range of distribution shifts may share common

phenomena. In particular, improving in-distribution perfor-

mance reliably improves out-of-distribution performance

as well. However, it is unclear whether improving in-

distribution performance is the only way, or even the best

way, to improve out-of-distribution performance. More re-

search is needed to understand the extent of the linear trends

observed in this work and whether robustness interventions

can improve over the baseline given by empirical risk mini-

mization. We hope that our work serves as a step towards a

better understanding of how distribution shifts affect model

performance and how we can train models that perform

robustly out-of-distribution.

2. Experimental setup

In each of our main experiments, we compare performance

on two data distributions. The first is the training distribu-

tion D, which we refer to as “in-distribution” (ID). Unless

noted otherwise, all models are trained only on samples

from D (the main exception is pre-training on a different

distribution). We compute ID performance via a held-out

test set sampled from D. The second distribution is the “out-

of-distribution” (OOD) distribution D1 that we also evaluate

the models on. For a loss function ℓ (e.g., error or accu-

racy), we denote the loss of model f on distribution D with

ℓDpfq “ Ex,y„D rℓpfpxq, yqs.

Experimental procedure. The goal of our paper is to

understand the relationship between ℓDpfq and ℓD1 pfq for

a wide range of models f (convolutional neural networks,

kernel machines, etc.) and pairs of distributions D,D1 (e.g.,

CIFAR-10 and the CIFAR-10.2 reproduction). Hence for

each pair D,D1, our core experiment follows three steps:

1. Train a set of models tf1, f2, . . .u on samples drawn

from D. Apart from the shared training distribution, the

models are trained independently with different training

set sizes, model architectures, random seeds, optimiza-

tion algorithms, etc.

2. Evaluate the trained models fi on two test sets drawn

from D and D1, respectively.

3. Display the models fi in a scatter plot with each model’s

two test accuracies on the two axes to inspect the result-

ing correlation.



Accuracy on the Line: On the Strong Correlation Between Out-of-Distribution and In-Distribution Generalization

An important aspect of our scatter plots is that we apply a

non-linear transformation to each axis. Since we work with

loss functions bounded in r0, 1s, we apply an axis scaling

that maps r0, 1s to r´8,`8s via the probit transform. The

probit transform is the inverse of the cumulative density

function (CDF) of the standard Gaussian distribution, i.e.,

ltransformed “ Φ´1plq. Transformations like the probit or

closely related logit transform are often used in statistics

since a quantity bounded in r0, 1s can only show linear

trends for a bounded range. The linear trends we observe in

our correlation plots are substantially more precise with the

probit (or logit) axis scaling. Unless noted otherwise, each

point in a scatter plot is a single model (not averaged over

random seeds) and we show each point with 95% Clopper-

Pearson confidence intervals for the accuracies.

We assembled a unified testbed that is shared across exper-

iments and includes a multitude of models ranging from

classical methods like nearest neighbors, kernel machines,

and random forests to a variety of high-performance convo-

lutional neural networks. Our experiments involved more

than 3,000 trained models and 100,000 test set evaluations

of these models and their training checkpoints. Due to the

size of these experiments, we defer a detailed description of

the testbed used to Appendix A.

3. The linear trend phenomenon

In this section, we show precise linear trends between

in-distribution and out-of-distribution performance occur

across a diverse set of models, data domains, and distri-

bution shifts. Moreover, the linear trends holds not just

across variations in models and model architectures, but

also across variation in model or training hyperparameters,

training dataset size, and training duration.

3.1. Distribution shifts with linear trends

We find linear trends for models in our testbed trained on five

different datasets—CIFAR-10, ImageNet, FMoW-WILDS,

iWildCam-WILDS, and YCB-Objects—and evaluated on

distribution shifts that fall into four broad categories.

Dataset reproduction shifts. Dataset reproductions involve

collecting a new test set by closely matching the creation

process of the original. Distribution shift arises as a result

of subtle differences in the dataset construction pipelines.

Recent examples of dataset reproductions are the CIFAR-

10.1 and ImageNet-V2 test sets from Recht et al. (2019),

who observed linear trends for deep models on these shifts.

In Figure 1, we extend this result and show both deep and

classical models trained on CIFAR-10 and evaluated on

CIFAR-10.2 (Lu et al., 2020) follow a linear trend. In Ap-

pendix B, we further show linear trends occur for deep and

classical CIFAR-10 models evaluated on CIFAR-10.1 and

for ImageNet models evaluated on ImageNet-V2.

Distribution shifts between machine learning bench-

marks. We also consider distribution shifts between distinct

benchmarks which are drawn from different data sources,

but which use a compatible set of labels. For instance,

both CIFAR-10 and CINIC-10 (Darlow et al., 2018) use the

same set of labels, but CIFAR-10 is drawn from TinyIm-

ages (Torralba et al., 2008) and CINIC-10 is drawn from Im-

ageNet (Deng et al., 2009) images. We show CIFAR-10

models exhibit linear trends when evaluated on CINIC-10

(Figure 1) or on STL-10 (Coates et al., 2011) (Appendix B).

Synthetic perturbations. Synthetic distribution shifts arise

from applying a perturbation, such as adding Gaussian noise,

to existing test examples. CIFAR-10-C (Hendrycks & Di-

etterich, 2018) applies 19 different synthetic perturbations

to the CIFAR-10 test set. For many of these perturbations,

we observe linear trends for CIFAR-10 trained models, e.g.

the Fog shift in Figure 1. However, there are several ex-

ceptions, most notably adding isotropic Gaussian noise. We

give further examples of linear trends on synthetic CIFAR-

10-C shifts in Appendix B, and we more thoroughly discuss

non-examples of linear trends in Section 4. In Figure 1, we

also show that pose-estimation models trained on rendered

images of YCB-Objects (Calli et al., 2015) follow a linear

trend when evaluated on a images rendered with perturbed

lighting and texture conditions.

Distribution shifts in the wild. We also find lin-

ear trends on two of the real-world distribution shifts

from the WILDS benchmark (Koh et al., 2020): FMoW-

WILDS and iWildCam-WILDS. FMoW-WILDS is a satel-

lite image classification task derived from Christie et al.

(2018) where in-distribution data is taken from regions (e.g.,

the Americas, Africa, Europe) across the Earth between

2002 and 2013, the out-of-distribution test-set is sampled

from each region during 2016 to 2018, and models are eval-

uated by their accuracy on the worst-performing region. In

Figure 1, we show models trained on FMoW-WILDS ex-

hibit linear trends when evaluated out-of-distribution under

both of these temporal and subpopulation distribution shifts.

iWildCam-WILDS is an image dataset of animal photos

taken by camera traps deployed in multiple locations around

the world (Koh et al., 2020; Beery et al., 2020). It is a

multi-class classification task, where the goal is to identify

the animal species (if any) within each photo. The held-out

test set comprises photos taken by camera traps that are

not seen in the training set, and the distribution shift arises

because different camera traps vary markedly in terms of

angle, lighting, and background. In Figure 1, we show

models trained on iWildCam-WILDS also exhibit linear

trends when evaluated OOD across different camera traps.
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Figure 2. The linear trend between ID and OOD accuracy is invariant to changes in model hyperparameters, the number of training steps,

and training set size. In each panel, we compare models with the linear fit from Figure 1. Left: For each model family, we vary model-size,

regularization, and optimization hyperparameters. Middle: We evaluate each network after every epoch of training. Right: We train

models on randomly sampled subsets of the training data, ranging from 1% to 80% of the CIFAR-10 training set size. In each setting,

variation in hyperparameters, training duration, or training set size moves models along the trend line, but does not affect the linear fit.

3.2. Variations in model hyperparameters, training

duration, and training dataset size

The linear trends we observe hold not just across different

models, but also across variation in model and optimization

hyperparameters, training dataset size, and training duration.

In Figure 2, we train and evaluate both classical and neural

models on CIFAR-10 and CIFAR-10.2 while systematically

varying (1) model hyperparameters, (2) training duration,

and (3) training dataset size. When varying hyperparameters

controlling the model size, regularization, and the optimiza-

tion algorithm, the model families continue to follow the

same trend line (R2 “ 0.99). We also find models lie on

the same linear trend line throughout training (R2 “ 0.99).

Finally, we observe models on trained on random subsets of

CIFAR-10 lie on the same linear trend line as models trained

on the full CIFAR-10 training set, despite their correspond-

ing drop in in-distribution accuracy (R2 “ 0.99). In each

case, hyperparameter tuning, early stopping, or changing

the amount of i.i.d. training data moves models along the

trend line, but does not alter the linear fit.

While we focus here on CIFAR-10 models evaluated on

CIFAR-10.2, in Appendix B, we conduct an identical set

of experiments for CINIC-10, CIFAR-10-C Fog, YCB-

Objects, and FMoW-WILDS. We find the same invariance to

hyperparameter, dataset size, and training duration shown in

Figure 2 also holds for these diverse collection of datasets.

4. Distribution shifts with weaker correlations

We now investigate distribution shifts with a weaker cor-

relation between ID and OOD performance than the ex-

amples presented in the previous section. We will discuss

the Camelyon17-WILDS tissue classification dataset and

specific image corruptions from CIFAR-10-C. Further dis-

cussion of a version of the iWildCam-WILDS wildlife clas-

sification dataset with a different in-distribution train-test

split can be found in Appendix C.4.

4.1. Camelyon17-WILDS

Camelyon17-WILDS (Bandi et al., 2018; Koh et al., 2020)

is an image dataset of metastasized breast cancer tissue

samples collected from different hospitals. It is a binary

image classification task where each example is a tissue

patch. The corresponding label is whether the patch contains

any tumor tissue. The held-out OOD test set contains tissue

samples from a hospital not seen in the training set. The

distribution shift largely arises from differences in staining

and imaging protocols across hospitals.

In Figure 3, we plot the results of training different Ima-

geNet models and random features models from scratch

across a variety of random seeds. There is significant vari-

ation in OOD performance. For example, the models with

95% ID accuracy have OOD accuracies that range from

about 50% (random chance) to 95%. This high degree of

variability holds even after averaging each model over ten

independent training runs (see Appendix C.1).

Appendix C.1 also contains additional analyses exploring

the potential sources of OOD performance variation, includ-

ing ImageNet pretraining, data augmentation, and similarity

between test examples. Specifically, we observe that Ima-

geNet pretraining does not increase the ID-OOD correlation,

while strong data augmentation significantly reduces, but

does not eliminate, the OOD variation. Another potential

reason for the variation is the similarity between images

from the same slide / hospital, as similar examples have

been shown to result in analogous phenomena in natural
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Figure 3. A range of neural network and random feature models

trained on Camelyon17-WILDS and evaluated on the ID and OOD

test sets. OOD accuracy is highly variable across the spectrum of

ID accuracies, and there is no precise linear trend.

language processing (Zhou et al., 2020). We explore this

hypothesis in a synthetic CIFAR-10 setting, where we simu-

late increasing the similarity between examples by taking

a small seed set of examples and then using data augmen-

tations to create multiple similar versions. We find that in

this CIFAR-10 setting, shrinking the effective test set size in

this way increases OOD variation to a substantially greater

extent than shrinking the effective training set size.

4.2. CIFAR-10-Corrupted

CIFAR-10-C (Hendrycks & Dietterich, 2018) corrupts

CIFAR-10 test images with various image perturbations.

The choice of corruption can have a significant impact on

the correlation between ID and OOD accuracy. Interestingly,

the mathematically simple corruption with Gaussian noise

is one of the corruptions with worst ID-OOD correlation.

Appendix C.2 details experiments for each corruption.

In Appendix C.3, we also investigate how the relationship

between the ID and OOD data covariances impacts the

linear trend. We find the linear fit is substantially better

when the ID and OOD covariances match up to a scaling

factor, which is consistent with the theoretical model we

propose and discuss in Section 6.

5. The effect of pretrained models

In this section we expand our scope to methods that leverage

models pretrained on a third auxiliary distribution different

from the ones we refer to in-distribution (ID) and out-of-

distribution (OOD). Fine-tuning pretrained models on the

task-specific (ID) training set is a central technique in mod-

ern machine learning (Donahue et al., 2014; Razavian et al.,

2014; Kornblith et al., 2019; Peters et al., 2018; Devlin et al.,

2018), and zero-shot prediction (using the pretrained model

directly without any task-specific training) is showing in-

creasing promise as well (Brown et al., 2020; Radford et al.,

2021). Therefore, it is important to understand how the use

of pretrained models affects the robustness of models to

OOD data, and whether fine-tuning and zero-shot inference

differ in that respect.

The dependence of the pretrained model on auxiliary data

makes the ID/OOD distinction more subtle. Previously,

“ID” simply referred to the distribution of the training set,

while OOD referred to an alternative distribution not seen

in training. In this section, the training set includes the

auxiliary data as well, but we still refer to the task-specific

training set distributions as ID. This means, for example,

that when fine-tuning an ImageNet model on the CIFAR-10

training set, we still refer to accuracy on the CIFAR-10 test

set as ID accuracy. In other words, the “ID” distributions we

refer to in this section are precisely the “ID” distributions of

the previous sections (displayed on the x-axes in our scatter

plots), but the presence of auxiliary training data alters the

meaning of the term.

With the effect of auxiliary data on the meaning of “ID” in

mind, it is reasonable to expect that ID/OOD linear trends

observed when training purely on ID data will change or

break down when pretrained models are used. In this sec-

tion we test this hypothesis empirically and reveal a more

nuanced reality: the task and the use of the pretrained model

matter, and sometimes models pre-trained on seemingly

broader distributions still follow the same linear trend as

the models trained purely on in-distribution data. We first

present our findings for fine-tuning pretrained ImageNet

models and subsequently discuss results for zero-shot pre-

diction. See Appendix D for more experimental details.

Fine-tuning pretrained models on ID data. Figure 4

plots OOD performance vs. ID performance for models

trained from-scratch (purely on ID data) and fine-tuned mod-

els whose initialization was pretrained on ImageNet. Across

the board, pretrained models attain better performance on

both the ID and OOD test sets. However, fine-tuning affects

ID-OOD correlations differently across tasks. In particu-

lar, for CIFAR-10 reproductions and for FMoW-WILDS,

fine-tuning produces results that lie on the same ID-OOD

trend as purely ID-trained models (Figure 4 left and center).

On the other hand, a similar fine-tuning procedure yields

models with a different ID-OOD relationship on iWildCam-

WILDS than models trained from scratch on this dataset.

Moreover, the weight decay used for fine-tuning seems to

also affect the linear trend (Figure 4 right).

One conjecture is that the qualitatively different behavior

of fine-tuning on iWildCam-WILDS is related to the fact

that ImageNet is a more diverse dataset that may encode
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Figure 4. The effect of pre-training with additional data on CIFAR-10.2 (left), FMoW-WILDS (middle), and iWildCam-WILDS (right).

On CIFAR-10.2 and FMoW-WILDS, fine-tuning pretrained models moves the models along the predicted ID-OOD line. However, on

CIFAR-10.2, zero-shot prediction using pretrained models deviates from this line. On iWildCam-WILDS, fine-tuning pretrained models

changes the ID-OOD relationship observed for models trained from scratch. Moreover, the weight decay hyperparameter affects the

ID-OOD relationship in fine-tuned models.

robustness-inducing invariances that are not represented in

the iWildCam-WILDS ID training set. For instance, both

ImageNet and iWildCam-WILDS contain high-resolution

images of natural scenes, but the camera perspectives in

iWildCam-WILDS may be more limited compared to Ima-

geNet. Hence ImageNet classifiers may be more invariant

to viewpoint, which may aid generalization to previously

unseen camera viewpoints in the OOD test set of iWildCam-

WILDS. On the other hand, the satellite images in FMoW-

WILDS are all taken from an overhead viewpoint, so learn-

ing invariance to camera viewpoints from ImageNet might

not be as beneficial. Investigating this and related conjec-

tures (e.g., invariances such as lighting, object pose, and

background) is an interesting direction for future work.

Zero-shot prediction on pretrained models. A common

explanation for OOD performance drop is that training on

the ID training set biases the model toward patterns that

are more predictive on the ID test set than on its OOD

counterpart. With that explanation in mind, the fact that

fine-tuned models maintain the same ID/OOD linear trend

as from-scratch models is surprising: once could reasonably

expect that an initialization determined independently of

either ID or OOD data would produce models that are less

biased toward the former. Indeed, in the extreme scenario

that no fine-tuning takes place, the model should have no

bias toward either distribution, and we therefore expect to

see a different ID/OOD trend.

The CIFAR-10 allows us directly test this expectation di-

rectly by performing zero-shot inference on models pre-

trained on ImageNet: since the CIFAR-10 classes form a

subset of the ImageNet classes, we simply feed (resized)

CIFAR-10 images to these models, and limit the prediction

to the relevant class subset. The resulting classifiers have

no preference for either the ID or OOD test set because they

depend on neither distribution. We plot the zero-shot predic-

tion results in Figure 4 (left) and observe that, as expected,

they deviate from the basic linear trend. Moreover, they

form a different linear trend closer—but not identical—to

x “ y. The fact that the zero-shot linear trend is closer to

x “ y supports the hypothesis that the performance drop

partially stems from bias in ID training. However, the fact

that this trend is still below x “ y suggests that the drop is

also partially due to CIFAR-10 reproductions being harder

than CIFAR-10 for current methods (interestingly, humans

show similar performance on both test sets (Recht et al.,

2019; Miller et al., 2020; Shankar et al., 2020)). These

finding agree with prior work (Lu et al., 2020).

As another test of zero-shot inference, we apply two

publically-available CLIP models on CIFAR-10 by creat-

ing last-layer weights out of natural language descriptions

of the classes (Radford et al., 2021). As Figure 4 (left)

shows, these models are slightly above the basic ID/OOD

linear trend, but below the trend of zero-shot inference with

ImageNet models.

Additional experiments. In Appendix D we describe ad-

ditional experiments with pretrained models. To explore a

middle ground between zero-shot prediction and full-model

fine-tuning, we consider a linear probe on CLIP for both

CIFAR-10 and FMoW-WILDS. For CIFAR-10, we also con-

sider models trained on a task-relevant subset of ImageNet

classes (Darlow et al., 2018) and models trained in a semi-

supervised fashion using unlabeled data from 80 Million

Tiny Images (Torralba et al., 2008; Carmon et al., 2019; Au-

gustin & Hein, 2020). Generally, we find that, compared to

zero-shot prediction, these techniques deviate less from the

basic linear trend. We also report results on additional OOD

settings, namely CIFAR-10.1 and different region subsets

for FMoW-WILDS, and reach similar conclusions.
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6. Theoretical models for linear fits

In this section we propose and analyze a simple theoretical

model that distills several of the empirical phenomena from

the previous sections. Our goal here is not to obtain a gen-

eral model that encompasses complicated real distributions

such as the images in CIFAR-10. Instead, our focus is on

finding a simple model that is still rich enough to exhibit

some of the same phenomena as real data distributions.

6.1. A simple Gaussian distribution shift setting

We consider a simple binary classification problem where

the label y is distributed uniformly on t´1, 1u both in

the original distribution D and shifted distribution D1.

Conditional on y, we consider D such that x P R
d is an

isotropic Gaussian, i.e.,

x | y „ N pµ ¨ y; σ2Idˆdq,

for mean vector µ P R
d and variance σ2 ą 0.

We model the distribution shift as a change in σ and µ.

Specifically, we assume that the shifted distribution D1 cor-

responds to shifted parameters

µ1 “ α ¨ µ ` β ¨ ∆ and σ1 “ γ ¨ σ (1)

where α, β, γ ą 0 are fixed scalars and ∆ is uniformly

distributed on the sphere in R
d. Note that in our setting D1

is a random object determined by the draw of ∆.

Within the setup describe above, we focus on linear classi-

fiers of the form x ÞÑ signpθJxq. The following theorem

states that, as long as θ depends only on the training data

and is thereby independent of the random shift direction

∆, the probit-transformed accuracies on D and D1 have

a near-linear relationship with slope α{γ. (Recall that the

probit transfrom is the inverse of the standard Normal cdf

Φpxq “
şx

´8
1?
2π

e´t2{2dt). The deviation from linearity is

of order d´1{2 and vanishes in high dimension.

Theorem 1. In the setting described above where ∆ is

independent of θ, let δ P p0, 1q. With probability at least

1 ´ δ, we have

∣

∣

∣

∣

Φ´1paccD1 pθqq ´
α

γ
Φ´1paccDpθqq

∣

∣

∣

∣

ď
β

γσ

c

2 log 2{δ

d
.

The theorem is a direct consequence of the concentration of

measure; see proof in Appendix E.1.

We illustrate Theorem 1 by simulating its setup and training

different linear classifiers by varying the loss function and

regularization. Figure 5 shows good agreement between

the performance of linear classifiers and the theoretically-

predicted linear trend. Furthermore, conventional nonlinear

classifiers (nearest neighbors and random forests) also sat-

isfy the same linear relationship, which does not directly
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Figure 5. Illustration of the theoretical distribution shift model in

Section 6.1 with d “ 10
5, α “ 0.7, β “ 0.5 and γ “ 1 (see

Appendix E.3 for details). The accuracies for linear models (logis-

tic and ridge regression) agree with the prediction of Theorem 1.

Moreover, nonlinear models (nearest neighbors and random fea-

tures) exhibit the same probit trend we prove for linear classifiers.

follow from our theory. Nevertheless, if the decision bound-

ary of the nonlinear becomes nearly linear in our setting a

similar theoretical analysis might be applicable. Our simple

Gaussian setup thus illustrates how linear trends can arise

across a wide range of models.

6.2. Modeling departures from the linear trend

In the previous section, we identified a simple Gaussian

setting that showed linear fits across a large range of models.

Now we discuss small changes to the setting that break linear

trends and draw parallels to the empirical observations on

complex datasets presented in this paper. In Appendix E.2,

we discuss each of these modifications in further detail.

Adversarial distribution shifts. Previously, the direction

∆ which determines the distribution shift as defined above

in eq. (1), was chosen independent of the tested models

θ1, . . . ,θk. However, when ∆ is instead chosen by an ad-

versary with knowledge of the tested models, the ID-OOD

relationship can be highly non-linear. This is reminiscent

of adversarial robustness notions where models with com-

parable in-distribution accuracies can have widely differing

adversarial accuracies depending on the training method.

Pretraining data. Additional training data from a different

distribution available for pretraining could contain informa-

tion about the shift ∆. In this case, the pretrained models are

not necessarily independent of ∆ and these models could

lie above the linear fit of classifiers without pretraining. See

Section 5 for a discussion of when such behavior arises in

practice.

Shift in covariance. Previously, we assumed that x | y is al-

ways an isotropic Gaussian. Instead consider a setting where

the original distribution is of the form x|y „ N pµy; Σq
where Σ is not scalar (i.e., has distinct eigenvalues). Then,

the linear trend breaks down even when the distribution shift
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is simple additive white Gaussian noise corresponding to

x|y „ N pµy; Σ ` pσ1q2Idˆdq. For example, ridge regular-

ization turns out to be an effective robustness intervention

in this setting. However, if the shifted distribution is of

the form x|y „ N pµy; γΣq for some scalar γ ą 0, it is

straightforward to see that a linear trend holds.

These theoretical observations suggest that a covariance

change in ID/OOD the distribution shift could be a possi-

ble explanation for some departures from the linear trends

such as additive Gaussian noise corruptions in CIFAR-10-

C. To test this hypothesis, we created a new distribution

shift by corrupting CIFAR-10 with noise sampled from the

same covariance as the original CIFAR-10 distribution. As

discussed in Section 4.2, we find that the correlation be-

tween ID and OOD accuracy is substantially higher with

the covariance-matched noise than with isotropic Gaussian

noise with similar magnitude.

While the theoretical setting we study in this work is much

simpler than real-world distributions, the analysis sheds

some light on when to expect linear trends and what leads to

departures. Ideally, a theory would precisely explain what

differentiates CIFAR-10.2, CINIC-10, and the CIFAR-10-

C-Fog shift (see Figure 1) where we see linear trends from

simply adding Gaussian noise to the images as in CIFAR-

10-C-Gaussian where we do not observe linear trends. A

possible direction may be to characterize shifts by their

generation process, and we leave this to future work.

7. Related work

Due to the large body of research on distribution shifts,

domain adaptation, and reliable machine learning, we only

summarize the most directly related work here. Appendix F

contains a more detailed discussion of related work.

Domain generalization theory. Prior work has theoreti-

cally characterized the performance of classifiers under dis-

tribution shift. Ben-David et al. (2006) provided the first VC-

dimension-based generalization bound. They bound the dif-

ference between a classifier’s error on the source distribution

(D) and target distribution (D1) via a classifier-induced di-

vergence measure. Mansour et al. (2009) extended this work

to more general loss functions and provided sharper gener-

alization bounds via Rademacher complexity. These results

have been generalized to include multiple sources (Blitzer

et al., 2007; Hoffman et al., 2018; Mansour et al., 2008).

The philosophy underlying these works is that robust mod-

els should aim to minimize the induced divergence measure

and thus guarantee similar OOD and ID performance.

The linear trends we observe in this paper are not captured

by such analyses. As illustrated in Figure 1 (left), the bounds

described above can only state that OOD performance is

highly predictable from ID performance if they are equal

(i.e., when the gray region is tight around the x “ y line). In

contrast, we observe that OOD performance is both highly

predictable from ID performance and significantly different

from it. Our Gaussian model in Section 6.1 demonstrates

how the linear trend phenomenon can come about in a sim-

ple setting. However, unlike the above-mentioned domain

generalization bounds, it is limited to particular distributions

and the hypothesis class of linear classifiers.

Mania & Sra (2020) proposed a condition that implies an

approximately linear trend between ID and OOD accuracy,

and empirically checked their condition in dataset reproduc-

tion settings. The condition is related to model similarity,

and requires the probability of certain multiple-model error

events to remain invariant under distribution shift. It is un-

clear whether their condition can predict a priori whether a

distribution shift will show a linear trend, and the predicted

linearity does not improve under probit accuracy scaling.

Empirical observations of linear trends. Precise linear

trends between in-distribution and out-of-distribution gen-

eralization were first discovered in the context of dataset

reproduction experiments. Recht et al. (2018; 2019); Yadav

& Bottou (2019); Miller et al. (2020) constructed new test

sets for CIFAR-10 (Krizhevsky, 2009), ImageNet (Deng

et al., 2009; Russakovsky et al., 2015), MNIST (LeCun

et al., 1998), and SQuAD (Rajpurkar et al., 2016) and found

linear trends similar to those in Figure 1.

However, these studies were limited in their scope, as they

just focused on dataset reproductions. While Taori et al.

(2020) later showed that linear trends still occur for Ima-

geNet models on datasets like ObjectNet, Vid-Robust, and

YTBB-Robust (Barbu et al., 2019; Shankar et al., 2019), all

of their experiments were limited to ImageNet-like tasks.

We significantly broaden the scope of the linear trend phe-

nomenon by including a range of additional distribution

shifts such as CINIC-10, STL-10, FMoW-WILDS, and

iWildCam-WILDS, as well as identifying negative examples

like Camelyon17-WILDS and some CIFAR-10-C shifts. In

addition, we also include a pose estimation task with YCB-

Objects. The results show that linear trends not only occur

in academic benchmarks but also in distribution shifts com-

ing from applications “in the wild.” We also show that linear

trends hold across different learning approaches, training

durations, and hyperparameters.

Kornblith et al. (2019) study linear fits in the context of

transfer learning and train or fine-tune models on the dis-

tribution corresponding to the y-axis in our setting. On a

variety of image classification tasks, they show a model’s

ImageNet test accuracy linearly correlates with the model’s

accuracy on the new task after fine-tuning. The similar be-

tween their results and those in this work suggest that they

may both be part of a broader phenomenon of predictable

generalization in machine learning.
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