Offline Meta-Reinforcement Learning with Advantage Weighting

Eric Mitchell! Rafael Rafailov' Xue Bin Peng? Sergey Levine? Chelsea Finn !

Abstract
This paper introduces the offline meta-
reinforcement learning (offline meta-RL)

problem setting and proposes an algorithm that
performs well in this setting. Offline meta-RL is
analogous to the widely successful supervised
learning strategy of pre-training a model on a
large batch of fixed, pre-collected data (possibly
from various tasks) and fine-tuning the model
to a new task with relatively little data. That
is, in offline meta-RL, we meta-train on fixed,
pre-collected data from several tasks in order to
adapt to a new task with a very small amount
(less than 5 trajectories) of data from the new
task. By nature of being offline, algorithms for
offline meta-RL can utilize the largest possible
pool of training data available and eliminate
potentially unsafe or costly data collection during
meta-training. This setting inherits the challenges
of offline RL, but it differs significantly because
offline RL does not generally consider a) transfer
to new tasks or b) limited data from the test
task, both of which we face in offline meta-RL.
Targeting the offline meta-RL setting, we propose
Meta-Actor Critic with Advantage Weighting
(MACAW), an optimization-based meta-learning
algorithm that uses simple, supervised regres-
sion objectives for both the inner and outer
loop of meta-training. On offline variants of
common meta-RL benchmarks, we empirically
find that this approach enables fully offline
meta-reinforcement learning and achieves notable
gains over prior methods. Code available at
https://sites.google.com/view/macaw-metarl.

1. Introduction

Meta-reinforcement learning (meta-RL) has emerged as a
promising strategy for tackling the high sample complexity

'Stanford University *University of California, Berkeley. Cor-
respondence to: Eric Mitchell <eric.mitchell @cs.stanford.edu>.

Proceedings of the 38" International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

of reinforcement learning algorithms, when the goal is to
ultimately learn many tasks. Meta-RL algorithms exploit
shared structure among tasks during meta-training, amor-
tizing the cost of learning across tasks and enabling rapid
adaptation to new tasks during meta-testing from only a
small amount of experience. Yet unlike in supervised learn-
ing, where large amounts of pre-collected data can be pooled
from many sources to train a single model, existing meta-RL
algorithms assume the ability to collect millions of environ-
ment interactions online during meta-training. Developing
offline meta-RL methods would enable such methods, in
principle, to leverage existing data from any source, mak-
ing them easier to scale to real-world problems where large
amounts of data might be necessary to generalize broadly.
To this end, we propose the offline meta-RL problem set-
ting and a corresponding algorithm that uses only offline
(or batch) experience from a set of training tasks to enable
efficient transfer to new tasks without requiring any further
interaction with either the training or testing environments.
See Figure 1 for a comparison of offline meta-RL and stan-
dard meta-RL.

Because the offline setting does not allow additional data
collection during training, it highlights the desirability of
a consistent meta-RL algorithm. A meta-RL algorithm is
consistent if, given enough diverse data on the test task,
adaptation can find a good policy for the task regardless
of the training task distribution. Such an algorithm would
provide a) rapid adaptation to new tasks from the same distri-
bution as the train tasks while b) allowing for improvement
even for out of distribution test tasks. However, designing
a consistent meta-RL algorithm in the offline setting is dif-
ficult: the consistency requirement suggests we might aim
to extend the model-agnostic meta-learning (MAML) algo-
rithm (Finn et al., 2017a), since it directly corresponds to
fine-tuning at meta-test time. However, existing MAML ap-
proaches use online policy gradients, and only value-based
approaches have proven effective in the offline setting. Yet
combining MAML with value-based RL subroutines is not
straightforward: the higher-order optimization in MAML-
like methods demands stable and efficient gradient-descent
updates, while TD backups are both somewhat unstable
and require a large number of steps to propagate reward
information across long time horizons.

To address these challenges, one might combine MAML

https://sites.google.com/view/macaw-metarl

Offline Meta-Reinforcement Learning with Advantage Weighting

with a supervised, bootstrap-free RL subroutine, such as
advantage-weighted regression (AWR) (Peters and Schaal,
2007; Peng et al., 2019), for both for the inner and outer
loop of a gradient-based meta-learning algorithm, yielding
a ‘MAML+AWR’ algorithm. However, as we will discuss
in Section 4 and find empirically in Section 5, naively com-
bining MAML and AWR in this way does not provide sat-
isfactory performance because the AWR policy update is
not sufficiently expressive. Motivated by prior work that
studies the expressive power of MAML (Finn and Levine,
2018), we increase the expressive power of the meta-learner
by introducing a carefully chosen policy update in the inner
loop. We theoretically prove that this change increases the
richness of the policy’s update and find empirically that this
policy update can dramatically improve adaptation perfor-
mance and stability in some settings. We further observe
that the relatively shallow feedforward neural network archi-
tectures used in reinforcement learning are not well-suited
to optimization-based meta-learning and suggest an alterna-
tive that proves critical for good performance across four
different environments. We call the resulting meta-RL al-
gorithm and architecture meta actor-critic with advantage
weighting, or MACAW.

Our main contributions are the offline meta-RL problem
setting itself and MACAW, an offline meta-reinforcement
learning algorithm and architecture that possesses three key
properties: sample efficiency, offline meta-training, and con-
sistency at meta-test time. To our knowledge, MACAW is
the first algorithm to successfully combine gradient-based
meta-learning and off-policy value-based RL. Our evalu-
ations include experiments on offline variants of standard
continuous control meta-RL benchmarks as well as settings
specifically designed to test the robustness of an offline
meta-learner with scarce or poor-quality training data. In
all comparisons, MACAW significantly outperforms fully
offline variants state-of-the-art off-policy RL and meta-RL
baselines.

2. Preliminaries

In reinforcement learning, an agent interacts with a Markov
Decision Process (MDP) to maximize its cumulative re-
ward. An MDP is a tuple (S, A, T, r) consisting of a state
space S, an action space A, stochastic transition dynamics
T:8xAxS —[0,1], and a reward function r. At each
time step, the agent receives reward r; = r(s¢, at, S¢+1)-
The agent’s objective is to maximize the expected return
(i.e. discounted sum of rewards) R = >, ~tr,, where
v € [0,1] is a discount factor. Existing meta-RL problem
statements generally consider tasks drawn from a distri-
bution 7; ~ p(T), where each task 7; = (S, A, p;,7;)
represents a different MDP. Both the dynamics and reward
function may vary across tasks. The tasks are generally as-

sumed to exhibit some (unknown) shared structure. During
meta-training, the agent is presented with tasks sampled
from p(7); at meta-test time, an agent’s objective is to
rapidly find a high-performing policy for a (potentially un-
seen) task 7' ~ p(T). That is, with only a small amount
of experience on T, the agent should find a policy that
achieves high expected return on that task. During meta-
training, the agent meta-learns parameters or update rules
that enables such rapid adaptation at test-time.

Model-agnostic meta-learning One class of algorithms
for addressing the meta-RL problem (as well as meta-
supervised learning) are variants of the MAML algo-
rithm (Finn et al., 2017a), which involves a bi-level op-
timization that aims to achieve fast adaptation via a few
gradient updates. Specifically, MAML optimizes a set of
initial policy parameters 6 such that a few gradient-descent
steps from 6 leads to policy parameters that achieve good
task performance. At each meta-training step, the inner loop
adapts 6 to a task 7 by computing 8/ = 6 — aVyLr(0),
where L is the loss function for task 7 and « is the step size
(in general, #’ might be computed from multiple gradient
steps, rather than just one as is written here). The outer
loop updates the initial parameters as 6 < 6 — SVoL-(0'),
where £/ is a loss function for task 7", which may or may
not be the same as the inner-loop loss function £, and 3 is
the outer loop step size. MAML has been previously instan-
tiated with policy gradient updates in the inner and outer
loops (Finn et al., 2017a; Rothfuss et al., 2018), which can
only be applied to on-policy meta-RL settings; we address
this shortcoming in this work.

Advantage-weighted regression. To develop an offline
meta-RL algorithm, we build upon advantage-weighted re-
gression (AWR) (Peng et al., 2019), a simple offline RL
method. The AWR policy objective is given by

LYK, ¢, B) =

B |—log molals) exp (1 (Rals.2) ~ V,(6))]
ey

where B = {s;,a;,s},7;} can be an arbitrary dataset of
transition tuples sampled from some behavior policy, and
R (s, a) is the return recorded in the dataset for performing
action a in state s, V,,(s) is the learned value function for
the behavior policy evaluated at state s, and 7" > 0 is a tem-
perature parameter. The term R (s, a) — V,,(s) represents
the advantage of a particular action. The objective can be
interpreted as a weighted regression problem, where actions
that lead to higher advantages are assigned larger weights.
The value function parameters ¢ are typically trained using
simple regression onto Monte Carlo returns, and the policy
parameters ¢ are trained using £LAWR. Next, we discuss
the offline meta-RL problem and some of the challenges it
poses.

Offline Meta-Reinforcement Learning with Advantage Weighting

Standard Meta-RL

Meta-Testing

(do RL with meta-learned
initialization/prior)

Meta-Training

£

° Experiences <> ® Experiences <>

: In‘ ﬂ > loot | /_< — > loo!
— o~

lﬁ J ¢ 4% N S 0%

olo Actions ! Test Actions
. ! .
Train ' Environment
Environments i

Offline Meta-RL

Meta-Training Meta-Testing

- |
“Jﬁ Experiences .(';(’?. i Y
~— % u O
“s i Offline Test
Offline Train ; Task Data
Task Data ~ p; i

Experiences ‘C;IE).
_—

Figure 1: Comparing the standard meta-RL setting (left), which includes on-policy and off-policy meta-RL, with offline
meta-RL (right). In standard meta-RL, new interactions are sampled from the environment during both meta-training and
meta-testing, potentially storing experiences in a replay buffer (off-policy meta-RL). In offline meta-RL, a batch of data is
provided for each training task 7;. This data could be the result of prior skills learned, demonstrations, or other means of
data collection. The meta-learner uses these static buffers of data for meta-training and can then learn a new test task when

given a small buffer of data for that task.

3. The Offline Meta-RL Problem

In the offline meta-RL problem setting, we aim to lever-
age offline multi-task experience to enable fast adaptation
to new downstream tasks. A task 7; is defined as a tuple
(M, p;) containing a Markov decision process (MDP) M,
and a fixed, unknown behavior policy ;. Each p; might
be an expert policy, sub-optimal policy, or a mixture pol-
icy (e.g. corresponding the replay buffer of an RL agent).
Tasks are drawn from a task distribution p(7") = p(M,).
During meta-training, an offline meta-RL algorithm cannot
interact with the environment, and instead has access only to
a fixed buffer of transition tuples D; = {s; j, a; j, 8} ;,7i ;}
sampled from p; for each task. During meta-testing, a (typ-
ically unseen) test task Tiest = (Miest, fhtest) i drawn from
p(T). We consider two different meta-testing procedures.
In the fully offline meta-RL setting, the meta-trained agent
is presented with a small batch of experience Dy sampled
from puesr. The agent’s objective is to adapt using only Dieq
to find the highest-performing policy possible for Meq. Al-
ternatively, in the offline meta-RL with online fine-tuning
setting, the agent can perform additional online data col-
lection and learning after being provided with the offline
data Dy.s. Note that in both settings, if e Samples data
uninformative for solving M., we might expect test per-
formance to be affected; we consider this possibility in our
experiments.

Sampling data from fixed batches at meta-training time,
rather than from the learned policy itself, distinguishes of-
fline meta-RL from the standard meta-RL setting. This
setting is particularly applicable in situations when allowing
online exploration might be difficult, expensive, or danger-
ous. We introduce both variants of the problem because for
some settings, limited online data collection may be pos-
sible, especially with a reasonably performant/safe policy

acquired through fully offline adaptation. Prior meta-RL
methods require interaction with the MDP for each of the
meta-training tasks (Finn et al., 2017a), and though some
prior methods build on off-policy RL algorithms (Rakelly
et al., 2019), these algorithms are known to perform poorly
in the fully offline setting (Levine et al., 2020). Both of the
offline meta-RL settings described above inherit the distribu-
tional difficulties of offline RL, which means that addressing
this problem setting requires a new type of meta-RL method
capable of meta-training on offline data, in addition to satis-
fying the consistency desideratum described in Section 1.

4. MACAW: Meta Actor-Critic with
Advantage Weighting

To address the numerous challenges posed by offline meta-
RL, we propose meta actor-critic with advantage weighting
(MACAW). MACAW is an offline meta-RL algorithm that
learns initializations ¢ and 6 for a value function V; and
policy my, respectively, that can rapidly adapt to a new
task seen at meta-test time via gradient descent. Both the
value function and the policy objectives correspond to sim-
ple weighted regression losses in both the inner and outer
loop, leading to a stable and consistent inner-loop adap-
tation process and outer-loop meta-training signal. While
these objectives build upon AWR, we show that the naive
application of an AWR update in the inner loop can lead
to unsatisfactory performance, motivating the enriched pol-
icy update that we describe in Section 4.1. In Sections 4.2
and 4.3, we detail the full meta-training procedure and an
important architectural component of the policy and value
networks.

Offline Meta-Reinforcement Learning with Advantage Weighting

Algorithm 1 MACAW Meta-Training

Algorithm 2 MACAW Meta-Testing

1: Input: Tasks {7;}, offline buffers {D,}
2: Hyperparameters: learning rates o, oo, 11, 12, training
iterations n, temperature T’
Randomly initialize meta-parameters 6, ¢
for n steps do
for task 7; € {7;} do
Sample disjoint batches DY, D¥ ~ D,
¢; ¢ —mV Ly (¢, DY)
0L <+ 0 — a1 VoL (0, ¢, DY)
9: end for
10: @ —m2), [VoLly (¢, DY)l
1: 00—y, [VQEAWR(9§7 Q,D?)]
12: end for

AN A

4.1. Inner-Loop MACAW Procedure

The adaptation process for MACAW consists of a value
function update followed by a policy update and can be
found in lines 6-8 in Algorithm 1. Optimization-based meta-
learning methods typically rely on truncated optimization
for the adaptation process (Finn et al., 2017a), to satisfy both
computational and memory constraints (Wu et al., 2018; Ra-
jeswaran et al., 2019), and MACAW also uses a truncated
optimization. However, value-based algorithms that use
bootstrapping, such as Q-learning, can require many itera-
tions for values to propagate. Therefore, we use a bootstrap-
free update for the value function that simply performs
supervised regression onto Monte-Carlo returns. Given a
batch of training data DY collected for 7;, MACAW adapts
the value function by taking one or a few gradient steps on
the following supervised objective:

¢; + ¢ —mV Ly (¢, DY),
Ly (¢, D) £ Eganp [(Vs(s) — Rp(s,a))’] (2)

and where Rp(s,a) is the Monte Carlo return from the
state s taking action a observed in D.

where

After adapting the value function, we proceed to adapting
the policy. The AWR algorithm updates its policy by per-
forming supervised regression onto actions weighted by the
estimated advantage, where the advantage is given by the
return minus the value: Rp(s,a) — Vi (s). While it is
tempting to use this same update rule here, we observe that
this update does not provide the meta-learner with sufficient
expressive power to be a universal update procedure for the
policy, using universality in the sense used by Finn and
Levine (2018). For MAML-based methods to approximate
any learning procedure, the inner gradient must not discard
information needed to infer the task (Finn and Levine, 2018).
The gradient of the AWR objective does not contain full
information of both the regression weight and the regression
target. That is, one cannot recover both the advantage weight

1: Input: Test task 7;, offline experience D, meta-
policy 7y, meta-value function V

: Hyperparameters: learning rates o1, 7, adaptation
iterations n, temperature 7’

. Initialize Oy < 0, ¢g <+ ¢.

: for n steps do

i1 — & — Ve, Ly (¢, D)

Or41 < 0y — a1V, L (04, e 41, D)

: end for

[\

and the action from the gradient. We formalize this problem
in Theorem 1 in Appendix A. To address this issue and
make our meta-learner sufficiently expressive, the MACAW
policy update performs both advantage-weighted regression
onto actions as well as an additional regression onto action
advantages. This enriched policy update is only used dur-
ing adaptation, and the predicted advantage is used only to
enrich the inner loop policy update during meta-training;
during meta-test, this predicted advantage is discarded. We
prove the universality of the enriched policy update in Theo-
rem 2 in Appendix A. We observe empirically the practical
impact of the universality property with an ablation study
presented in Figure 5 (left).

To make predictions for both the AWR loss and advantage
regression, our policy architecture has two output heads
corresponding to the predicted action given the state, 7y (+|s),
and the predicted advantage given both state and action
Ay(s,a). This architecture is shown in Figure 2. Policy
adaptation proceeds as:

0) < 0—a1VoLy(0,d., DY), where L, = LAVR4\LAPY

3)
In our policy update, we show only one gradient step for
conciseness of notation, but it can be easily extended to mul-
tiple gradient steps. The AWR loss is given in Equation 1,
and the advantage regression loss £APV is given by:

LAPY(9, ¢, D) 2

E [(Ag(s,a) — (Rp(s,a) — Vi (s)))?] (4

s,a~D

Adapting with £, rather than £LAWR addresses the expres-
siveness problems noted earlier. This adaptation process
is done both in the inner loop of meta-training and during
meta-test time, as outlined in Algorithm 2. MACAW is
thus consistent at meta-test time because it executes a well-
defined RL fine-tuning subroutine based on AWR during
adaptation. Next, we describe the meta-training procedure
for learning the meta-parameters 6 and ¢, the initializations
of the policy and value function, respectively.

Offline Meta-Reinforcement Learning with Advantage Weighting

4.2. Outer-Loop MACAW Procedure

To enable rapid adaptation at meta-test time, we meta-train a
set of initial parameters for both the value function and pol-
icy to optimize the AWR losses £y and LAWR, respectively,
after adaptation (L9-10 in Algorithm 1). We sample a batch
of data DY for the outer loop update that is disjoint from
the adaptation data DY in order to promote few-shot gener-
alization rather than memorization of the adaptation data.
The meta-learning procedure for the value function follows
MAML, using the supervised Monte Carlo objective:

minEr; [£Ly (6], DY) =
minEr, [Ly(6 = mVely(6, D). D] (5)

where Ly is defined in Equation 2. This objective optimizes
for a set of initial value function parameters such that one or
a few inner gradient steps lead to an accurate value estimator.

Unlike the inner loop, we optimize the initial policy param-
eters in the outer loop with a standard advantage-weighted
regression objective, since expressiveness concerns only per-
tain to the inner loop where only a small number of gradient
steps are taken. Hence, the meta-objective for our initial
policy parameters is as follows:

minEr; [L(0, ¢7, D)) =
min 7, [0 — a1 VoLr (6,0, DY), o7 DF)] - (6)

where £ is defined in Equation 3 and £AWR is defined in
Equation 1. Note we use the adapted value function for
policy adaptation. The complete MACAW algorithm is
summarized in Algorithm 1.

4.3. MACAW Architecture

MACAW’s enriched policy update (Equation 3) is motivated
by the desire to make inner loop policy updates more ex-
pressive. In addition to augmenting the objective, we can
also take an architectural approach to increasing gradient
expressiveness. Recall that for an MLP, a single step of
gradient descent can only make a rank-1 update to each
weight matrix. Finn and Levine (2018) show that this im-
plies that MLPs must be impractically deep for MAML to
be able to produce any learning procedure. However, we
can shortcut this rank-1 limitation with a relatively simple
change to the layers of an MLP, which we call a weight
transform layer. For a complete mathematical description
of this strategy, see Appendix B. This layer maps a latent
code into the layer’s weight matrix and bias, which are
then used to compute the layer’s output just as in a typi-
cal fully-connected layer. This ‘layer-wise linear hypernet-
work’ (Ha et al., 2016) doesn’t change the class of functions
computable by the layer on its input, but it increases the
expressivity of MAML’s gradient. Because we update the

latent code by gradient descent in the inner loop (which
is mapped back into a new weight matrix and bias in the
forward pass) we can, in theory, acquire weight matrix up-
dates of rank up to the dimensionality of the latent code.
We use this strategy for

all of the weights in both LAWR
the value function network T :
and the policy network
(for all layers in the body
and both heas shown in
Figure 2). This archi-
tecture shares the motiva-
tion of enabling more ex-
pressive adaptation with-
out increasing model ex-
pressiveness described in
(Arnold et al., 2021) and
is similar to latent embed-
ding optimization (Rusu
et al., 2019). However, the
choice of using simple lin-
ear mapping functions al-
lows us to apply weight
transform layers to the en-
tire network while still pro-
viding more expressive gradients, and we allow each layer’s
parameters to be constructed from a different latent code.
Our ablation experiments find that this layer improves learn-
ing speed and stability.

LADV

i

W(aj s) A(s:, a)

advantage
head

Figure 2: MACAW policy ar-
chitecture. Solid lines show
forward pass; dashed lines
show gradient flow during
backward pass during adap-
tation only; the advantage
head is not used in the outer
loop policy update.

5. Experiments

The primary goal of our empirical evaluations is to test
whether we can acquire priors from offline multi-task data
that facilitate rapid transfer to new tasks. Our evaluation
compares MACAW with three sensible approaches to this
problem: meta-behavior cloning, multi-task offline RL with
fine-tuning, and an offline variant of the state-of-the-art
off-policy meta-RL method, PEARL (Rakelly et al., 2019).
Further, we evaluate a) MACAW's ability to leverage on-
line fine-tuning at meta-test time; b) the importance of
MACAW'’s enriched policy update (Equation 3) and weight
transformation (Appendix B); and ¢) how each method’s
performance is affected when the sampling of the task space
during training is very sparse. To do so, we construct of-
fline variants of the widely-used simulated continuous con-
trol benchmark problems introduced by Finn et al. (2017a);
Rothfuss et al. (2018), including the half-cheetah with vary-
ing goal directions and varying goal velocities, the walker
with varying physical parameters, and the ant with varying
goal directions. For our main comparison (Figure 3), the
offline data for each experiment is generated from the replay
buffer of a RL agent trained from scratch. This reflects a
practical scenario where an agent has previously learned a

Offline Meta-Reinforcement Learning with Advantage Weighting

Cheetah-Direction

P i i 2% A P

104 10°

Training Steps

Walker-Params

10° 10°

104
Training Steps

Reward

Cheetah-Velocity

104 10°
Training Steps

Ant-Direction

200

— MACAW
Offline MT+FT
o . — Offline PEARL
--- Meta-BC
—200w

104 10° 10°

Training Steps

10°

Figure 3: Comparing MACAW with (i) an offline variant of PEARL (Rakelly et al., 2019), a state-of-the-art off-policy
meta-RL method, (ii) an offline multi-task training + fine tuning method based on AWR (Peng et al., 2019), and (iii) a
meta-behavior cloning baseline. Shaded regions show one standard error of the mean reward of four seeds. MACAW is the
only algorithm to consistently outperform the imitation learning baseline, and also learns with the fewest number of training

steps in every environment (note the log x axis).

set of tasks via RL, stored its experiences, and now would
like to quickly learn a related task. In our ablations, we
vary the offline data quantity and quality to better evaluate
robustness to these factors. Data collection information is
available in Appendix D.

Can we learn to adapt to new tasks quickly from purely
offline data? Our first evaluation compares three ap-
proaches to the offline meta-RL problem setting, testing
their ability to leverage the offline task datasets in order
to quickly adapt to a new task. Specifically, we compare
MACAW with i) offline PEARL (Rakelly et al., 2019), ii)
multi-task AWR (Peng et al., 2019), which uses 20 steps
of Adam (Kingma and Ba, 2015) to adapt to a new task at
meta-test time (Offline MT+FT) and iii) a meta-behavior
cloning baseline. We choose PEARL and AWR because they
achieve state-of-the-art performance in off-policy meta-RL
and offline RL, respectively, and are readily adaptable to the
offline meta-RL problem. As in (Rakelly et al., 2019), for
each experiment, we sample a finite set of training tasks and
held out test tasks upfront and keep these fixed throughout
training. Figure 3 shows the results. We find that MACAW
is the only algorithm to consistently outperform the meta-
behavior cloning baseline. Multi-task AWR + fine-tuning
makes meaningful progress on the simpler cheetah prob-
lems, but it is unable to adapt well on the more challenging
walker and ant problems. Offline PEARL shows initial
progress on cheetah-velocity and walker-params, but strug-

gles to make steady progress on any of the problems. We
attribute PEARL’s failure to Q-function extrapolation er-
ror, a problem known to affect many off-policy RL algo-
rithms (Fujimoto et al., 2019), as well as generally unstable
offline bootstrapping. MACAW’s and AWR’s value func-
tion is bootstrap-free and their policy updates maximize
a weighted maximum likelihood objective during training,
which biases the policy toward safer actions (Peng et al.,
2019), implicitly avoiding problems caused by extrapola-
tion error. In contrast to Offline PEARL and multi-task
AWR, MACAW trains efficiently and relatively stably on all
problems, providing an approach to learning representations
from multi-task offline data that can be effectively adapted
to new tasks at meta-test time.

Can MACAW leverage online experience at meta-test
time? Ideally, an offline meta-RL algorithm should be
able to leverage both offline and online data at meta-test
time. Here, we evaluate MACAW’s and PEARL’s ability
to improve over offline-only meta-test performance using
additional environment interactions collected online in the
Cheetah-Velocity, Walker-Params, and Ant-Direction prob-
lems. For both algorithms, we perform the initial offline
adaptation with a single batch of 256 transitions from fies,
for each test task 7y, , as in the fully offline setting. Then,
we run online training (RL), alternating between actor/critic
updates and online data collection for 10k and 20k new envi-
ronment steps. The results are reported in Table 1. We find

Offline Meta-Reinforcement Learning with Advantage Weighting

MACAW (Ours) Offline PEARL
Online Steps 0 10k 20k 0 10k 20k

Cheetah- Vel -121.6 -64.0 -60.5 -273.6 -301.8 -297.1
Walker-Params 3249 286.0 2969 204.6 117.8 178.3
Ant-Dir 251.9 370.2 376.5 -1353 57.0 1239

Problem

Table 1: Comparing MACAW and PEARL’s average re-
turn on held-out test tasks after offline adaptation (0 steps)
followed by online fine-tuning with 10k and 20k online
interactions. MACAW achieves better performance in all
configurations.

that MACAW improves over offline performance with 10k
environment steps for 2 out of 3 problems, while PEARL
is unable to improve over offline-only performance using
either 10k or 20k steps of online experience for 2 out of 3
problems. We attribute MACAW s ability to better leverage
online experience to the fact that MACAW is a gradient-
based meta-RL algorithm, which explicitly meta-trains for
fine-tunability. Although we meta-train with only a sin-
gle inner-loop gradient step, past work has demonstrated
that MAML can continue to improve at meta-test time with
more adaptation gradient steps than were using during meta-
training (Finn et al., 2017a). Walker-Params proves to be the
most difficult environment for both algorithms to leverage
online experience, perhaps due to the fact that the environ-
ment dynamics change across tasks in this problem, rather
than the reward function.

How does MACAW’s performance differ from
MAML+AWR? MACAW has two key features
distinguishing it from MAML+AWR: the enriched policy
loss and weight transform layers. Here, we use the
Cheetah-Velocity setting to test the effects of both of
these components. Ablating the enriched policy loss
amounts to optimizing Equation 1 rather than Equation 3
during adaptation; ablating the weight transform layers
corresponds to using standard fully-connected layers in
both policy and value function. Our first ablation uses
a random exploration policy rather than offline data for
adaptation, as we hypothesize this setting is most difficult
for the naive MAML+AWR algorithm due to the low
signal-to-noise ratio in the adaptation data. The results are
shown in Figure 4. In this experiment, we use a randomly
initialized exploration policy 7ex, to sample an offline
batch (30 trajectories) of adaptation data D; for each
meta-training task. During meta-training, we sample DY
from D; rather than D; (this corresponds to a minor change
to L6 of Algorithm 1). During testing, we use trajectories
sampled from ey, rather than the pre-collected offline
buffer D to perform adaptation. We find that MACAW
provides much faster learning with both the enriched
policy loss and weight transform layers than either ablated

Online Adaptation Ablation (Cheetah-Vel)

Test Reward
L
=+
(=]

—220 W 4 No WT
g = No Adv Head

0 50 100 150 200
Training Step (thousands)

Figure 4: Additional ablation of MACAW using online
adaptation data. Adaptation data for both train and test tasks
is collected using rollouts of a randomly initialized explo-
ration policy, rather than offline replay buffers of trained RL
agents.

algorithm. The degradation in asymptotic performance as a
result of removing the enriched policy loss is particularly
striking; the random exploration data makes disambiguating
the task using the standard AWR policy loss difficult,
reinforcing the need for a universal policy update procedure
in order to adapt to new tasks successfully. Our next
ablation experiment more closely examines the effect of the
quality of the adaptation data on the post-adaptation policy
performance.

To identify when policy update expressiveness is most cru-
cial, we return to the fully offline setting in order to systemat-
ically vary the quality of the data sampled during adaptation
for both meta-training and meta-testing. We run three vari-
ations of this ablation study, using the first 100k, middle
100k, and final 100k transitions in the replay buffer for the
offline policies as proxies for poor, medium, and expert
offline trajectories. The offline policy learning curves in Ap-
pendix D.2 show that this is a reasonable heuristic. We use
expert outer loop data (last 100k steps) for all experiments,
to ensure that any failures are due to inner loop data quality.
Figure 5 (left) shows the results. The ablated algorithm
performs well when the offline adaptation data comes from
a near-optimal policy, which is essentially a one-shot imita-
tion setting (orange); however, when the offline adaptation
data comes from a policy pre-convergence, the difference
between MACAW and the ablated algorithm becomes larger
(blue and red). This result supports the intuition that pol-
icy update expressiveness is of greater importance when
the adaptation data is more random, because in this case
the adaptation data includes a weaker signal from which to
infer the task (e.g. the task cannot be inferred by simply
looking at the states visited). Because an agent is unable
to collect further experience from the environment during
offline adaptation, it is effectively at the mercy of the quality
of the behavior policy that produced the data.

Offline Meta-Reinforcement Learning with Advantage Weighting

Ablating MACAW's Enriched Policy Update Ablating MACAW's Weight Transform Test Performance with Sparse Task Sampling

== MACAW
-50 Off. MT+FT

=@ Off. PEARL

|
-
o
o

e
©
2
B &
g E o
2 —-150 =
¢ h] 8 -200
« / "l\rv"‘\-al" I‘,,""JI\’\'/“.:"\I\ v o N [’ e
=200 ey Good Data -200 MACAW g
— MACAW —— Medium Data —— NoWT-Equal Width & _34q \
—-250 == MAML+AWR - =—— Bad Data —-250 == No WT-Equal Params
0 50 100 150 200 0 50 100 150 200 250 35 20 10 5 3

Training Steps (thousands) Training Steps (thousands) Number of Training Tasks

Figure 5: Left: Ablating MACAW's enriched policy update when varying the quality of the inner loop adaptation data.
Solid lines correspond to MACAW, dashed lines correspond to MACAW without the enriched policy update. As data
quality worsens, the enriched update becomes increasingly important. Bad, medium, and good data correspond to the first,
middle, and last 500 trajectories from the lifetime replay buffer of the behavior policy for each task. Center: Ablating
MACAW’s weight transform layer in the same experimental setting as the cheetah-velocity experiment in Figure 3. Without
the additional expressiveness, learning is much slower and less stable. Right: Train task sparsity split performance of
MACAW, Offline PEARL, and Offline MT+fine tune. MACAW shows the most consistent performance when different
numbers of tasks are used, performing well even when only three tasks are used for training.

Next, we ablate the weight transform layers, comparing
MAML+AWR+enriched policy update with MACAW. Fig-
ure 5 (center) suggests that the weight transform layers
significantly improve both learning speed and stability. The
No WT-Equal Width variant removes the weight transform
from each fully-connected layer, replacing it with a reg-
ular fully-connected layer of equal width in the forward
pass. The No WT-Equal Params variant replaces each of
MACAW’s weight transform layers with a regular fully-
connected layer of greater (constant for all layers) width,
to keep the total number of learnable parameters in the net-
work roughly constant. In either case, we find that MACAW
provides a significant improvement in learning speed, as
well as stability when compared to the Equal Width variant.
Figure 6 in the appendix shows that this result is consistent
across problems.

How do algorithms perform with varying numbers of
meta-training tasks? Generally, we prefer an offline
meta-RL algorithm that can generalize to new tasks when
presented with only a small number of meta-training tasks
sampled from p(7). In this section, we conduct an experi-
ment to evaluate the extent to which various algorithms rely
on dense sampling of the space of tasks during training in
order to generalize well. We compare the test performance
of MACAYV, offline PEARL, and offline multi-task AWR +
fine-tuning as we hold out an increasingly large percentage
of the Cheetah-Velocity task space. Because offline PEARL
was unsuccessful in the original Cheetah-Velocity setting
in Figure 3, we collect 7x more offline data per task to use
during training in this experiment, finding that this allows
offline PEARL to learn more successfully, leading to a more
interesting comparison. The results are presented in Fig-
ure 5 (right). Surprisingly, Offline PEARL completely fails
to learn both when training tasks are plentiful and when
they are scarce, but learns relatively effectively in the mid-

dle regime (5-20 tasks). See Luna Gutierrez and Leonetti
(2020) for in-depth discussion of when more training tasks
can hurt performance in meta-RL. In our experiments, we
often observe instability in Offline PEARL’s task inference
and value function networks when training on too many
offline tasks. On the other hand, with too few tasks, the
task inference network simply provides insufficient infor-
mation for the value functions or policy to identify the task.
The multi-task learning + fine-tuning baseline exhibits a
steadier degradation in performance as training tasks are re-
moved, likely owing to its bootstrap-free learning procedure.
Similarly to Offline PEARL, it is not able to learn a useful
prior for fine-tuning when only presented with 3 tasks for
training. However, MACAW finds a solution of reasonable
quality for any sampling of the task space, even for very
dense or very sparse samplings of the training tasks. In prac-
tice, this property is desirable, because it allows the same
algorithm to scale to very large offline datasets while still
producing useful adaptation behaviors for small datasets.
We attribute MACAW'’s robustness the strong prior pro-
vided by SGD-based adaptation during both meta-training
and meta-testing.

6. Related Work

Meta-learning algorithms enable efficient learning of new
tasks by learning elements of the learning process it-
self (Schmidhuber, 1987; Bengio et al., 1992; Thrun and
Pratt, 1998; Finn, 2018). We specifically consider the prob-
lem of meta-reinforcement learning. Prior methods for
meta-RL can generally be categorized into two groups. Con-
textual meta-RL methods condition a neural network on
experience using a recurrent network (Wang et al., 2016;
Duan et al., 2016; Fakoor et al., 2020), a recursive net-
work (Mishra et al., 2017), or a stochastic inference net-

Offline Meta-Reinforcement Learning with Advantage Weighting

work (Rakelly et al., 2019; Zintgraf et al., 2020; Humplik
et al., 2019; Semundsson et al., 2018). Optimization-based
meta-RL methods embed an optimization procedure such
as gradient descent into the meta-level optimization (Finn
et al., 2017a; Nagabandi et al., 2019; Rothfuss et al., 2018;
Zintgraf et al., 2019; Gupta et al., 2018; Mendonca et al.,
2019; Yang et al., 2019), potentially using a learned loss
function (Houthooft et al., 2018; Bechtle et al., 2019; Kirsch
et al., 2020). In prior works, the former class of approaches
tend to reach higher asymptotic performance, while the lat-
ter class is typically more robust to out-of-distribution tasks,
since the meta-test procedure corresponds to a well-formed
optimization. Concurrent work by Dorfman and Tamar
(2020) investigates the offline meta-RL setting, directly ap-
plying an existing meta-RL algorithm, VariBAD (Zintgraf
et al., 2020), to the offline setting. The proposed method
further assumes knowledge of the reward function for each
task to relabel rewards and share data across tasks with
shared dynamics. MACAW does not rely on this knowledge
nor the assumption that some tasks share dynamics, but this
technique could be readily combined with MACAW when
these assumptions do hold.

Unlike these prior works, we aim to develop an optimization-
based meta-RL algorithm that can both learn from en-
tirely offline data and produces a monotonic learning pro-
cedure. Only a handful of previous model-free meta-RL
methods leverage off-policy data at all (Rakelly et al.,
2019; Mendonca et al., 2019), although one concurrent
work does consider the fully offline setting (Dorfman and
Tamar, 2020). Guided meta-policy search (Mendonca et al.,
2019) is optimization-based but not applicable to the batch
setting as it partially relies on policy gradients. Finally,
PEARL (Rakelly et al., 2019) and its relatives (Fakoor et al.,
2020) correspond to a contextual meta-learning approach
sensitive to the meta-training task distribution without fine-
tuning (Fakoor et al., 2020) at test time. We also compare to
PEARL, and find that, as expected, it performs worse than
in the off-policy setting, since the fully offline setting is sub-
stantially more challenging than the off-policy setting that
it was designed for. This paper builds on the idea of batch
off-policy or offline reinforcement learning (Fujimoto et al.,
2019; Kumar et al., 2019b; Wu et al., 2019; Levine et al.,
2020; Agarwal et al., 2020), extending the problem setting
to the meta-learning setting. Several recent works that have
successfully applied neural networks to offline RL (Fuji-
moto et al., 2019; Jaques et al., 2019; Kumar et al., 2019a;
Wu et al., 2019; Peng et al., 2019; Agarwal et al., 2020). We
specifically choose to build upon the advantage-weighted
regression (AWR) algorithm (Peng et al., 2019). We find
that AWR performs well without requiring dynamic pro-
gramming, using Monte Carlo estimation to infer the value
function. This property is appealing, as it is difficult to
combine truncated optimization-based meta-learners such

as MAML (Finn et al., 2017a) with TD learning, which
requires a larger number of gradient steps to effectively
back-up values.

7. Limitations & Future Work

While MACAW is able to adapt to new tasks from offline
data, MACAW does not learn an exploration policy from
offline meta-training. An interesting direction for future
work is to consider how an agent might learn better online
exploration policies than the random policies used in our ex-
periments using only offline data during meta-training. The
problem of learning to explore has largely been considered
in on-policy settings in the past (Gupta et al., 2018; Zintgraf
et al., 2020) but also recently in offline settings (Dorfman
and Tamar, 2020). In addition, MACAW uses regression
onto Monte Carlo returns rather than bootstrapping to fit its
value function, which could reduce asymptotic performance
during online fine-tuning in some cases. Future work might
investigate alternatives such as TD-lambda. Finally, the
result of the task sparsity ablation suggests that MACAW
learns non-trivial adaptation procedures even with a small
number of meta-training tasks; this suggests that MACAW
might prove useful in a continual or sequential learning
setting, in which adapting quickly after training on only a
small number of tasks is particularly valuable.

8. Conclusion

In this work, we formulated the problem of offline meta-
reinforcement learning and presented MACAW, a practical
algorithm that achieves good performance on various contin-
uous control tasks compared with other state-of-the-art meta-
RL algorithms. We motivated the design of MACAW by
the desire to build an offline meta-RL algorithm that is both
sample-efficient (using value-based RL subroutines) and
consistent (running a full-fledged RL algorithm at test time).
We consider fully offline meta-training and meta-testing
both with and without online adaptation or fine-tuning,
showing that MACAW is effective both when collecting
online data is totally infeasible as well as when some on-
line data collection is possible at meta-test time. We hope
that this work serves as the basis for future research in
offline meta-RL, enabling more sample-efficient learning
algorithms to make better use of purely observational data
from previous tasks and adapt to new tasks more quickly.

9. Acknowledgements

We acknowledge Saurabh Kumar for helpful discussions.
Eric Mitchell is funded by a Knight-Hennessy Fellowship.
Xue Bin Peng is funded by a NSERC Postgraduate Schol-
arship and Berkeley Fellowship for Graduate Study. This
work was supported in part by Intel Corporation.

Offline Meta-Reinforcement Learning with Advantage Weighting

References

Rishabh Agarwal, Dale Schuurmans, and Mohammad
Norouzi. An optimistic perspective on offline reinforce-
ment learning. In International Conference on Machine
Learning, 2020.

Sébastien M. R. Arnold, Shariq Igbal, and Fei Sha. When
maml can adapt fast and how to assist when it cannot. In
Arindam Banerjee and Kenji Fukumizu, editors, Proceed-
ings of The 24th International Conference on Artificial
Intelligence and Statistics, volume 130 of Proceedings
of Machine Learning Research, pages 244-252. PMLR,

13-15 Apr 2021. URL http://proceedings.mlr.

press/v130/arnold2la.html.

Sarah Bechtle, Artem Molchanov, Yevgen Chebotar, Ed-
ward Grefenstette, Ludovic Righetti, Gaurav Sukhatme,
and Franziska Meier. Meta-learning via learned loss.
arXiv preprint arXiv:1906.05374, 2019.

Samy Bengio, Yoshua Bengio, Jocelyn Cloutier, and Jan
Gecsei. On the optimization of a synaptic learning rule.
In Preprints Conf. Optimality in Artificial and Biological
Neural Networks, volume 2. Univ. of Texas, 1992.

Tristan Deleu, Tobias Wiirfl, Mandana Samiei, Joseph Paul
Cohen, and Yoshua Bengio. Torchmeta: A Meta-
Learning library for PyTorch, 2019. URL https:
//arxiv.org/abs/1909.06576. Available at:
https://github.com/tristandeleu/pytorch-meta.

Ron Dorfman and Aviv Tamar. Offline meta reinforcement
learning. arXiv preprint arXiv:2008.02598, 2020.

Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya
Sutskever, and Pieter Abbeel. R12: Fast reinforcement
learning via slow reinforcement learning. arXiv preprint
arXiv:1611.02779, 2016.

Rasool Fakoor, Pratik Chaudhari, Stefano Soatto, and
Alexander J. Smola. Meta-q-learning. In International
Conference on Learning Representations, 2020.

Chelsea Finn and Sergey Levine. Meta-learning and uni-
versality: Deep representations and gradient descent can
approximate any learning algorithm. International Con-
ference on Learning Representations, 10 2018.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-
agnostic meta-learning for fast adaptation of deep net-
works. In International Conference on Machine Learning,
2017a.

Chelsea Finn, Tianhe Yu, Tianhao Zhang, Pieter Abbeel,
and Sergey Levine. One-shot visual imitation learning
via meta-learning. CoRL, abs/1709.04905, 2017b. URL
http://arxiv.org/abs/1709.04905.

Chelsea B Finn. Learning to Learn with Gradients. Univer-
sity of California, Berkeley, 2018.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing
function approximation error in actor-critic methods. In
International Conference on Machine Learning, pages

1582-1591, 2018.

Scott Fujimoto, David Meger, and Doina Precup. Off-
policy deep reinforcement learning without exploration.
In Kamalika Chaudhuri and Ruslan Salakhutdinov,
editors, Proceedings of the 36th International Con-
ference on Machine Learning, volume 97 of Pro-
ceedings of Machine Learning Research, pages 2052—
2062, Long Beach, California, USA, 09-15 Jun
2019. PMLR. URL http://proceedings.mlr.
press/v97/fujimotol9a.html.

Edward Grefenstette, Brandon Amos, Denis Yarats,
Phu Mon Htut, Artem Molchanov, Franziska Meier,
Douwe Kiela, Kyunghyun Cho, and Soumith Chintala.
Generalized inner loop meta-learning. arXiv preprint
arXiv:1910.01727, 2019.

Abhishek Gupta, Russell Mendonca, YuXuan Liu, Pieter
Abbeel, and Sergey Levine. Meta-reinforcement learning
of structured exploration strategies. In Advances in Neu-
ral Information Processing Systems, pages 5302-5311,
2018.

David Ha, Andrew Dai, and Quoc V. Le. Hypernetworks,
2016.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey
Levine. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. arXiv
preprint arXiv:1801.01290, 2018.

Rein Houthooft, Yuhua Chen, Phillip Isola, Bradly Stadie,
Filip Wolski, OpenAl Jonathan Ho, and Pieter Abbeel.
Evolved policy gradients. In Advances in Neural Infor-
mation Processing Systems, pages 5400-5409, 2018.

Jan Humplik, Alexandre Galashov, Leonard Hasenclever,
Pedro A Ortega, Yee Whye Teh, and Nicolas Heess. Meta
reinforcement learning as task inference. arXiv preprint
arXiv:1905.06424, 2019.

Natasha Jaques, Asma Ghandeharioun, Judy Hanwen Shen,
Craig Ferguson, Agata Lapedriza, Noah Jones, Shixiang
Gu, and Rosalind Picard. Way off-policy batch deep
reinforcement learning of implicit human preferences in
dialog. arXiv preprint arXiv:1907.00456, 2019.

Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In Yoshua Bengio and Yann Le-
Cun, editors, 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May

http://proceedings.mlr.press/v130/arnold21a.html
http://proceedings.mlr.press/v130/arnold21a.html
https://arxiv.org/abs/1909.06576
https://arxiv.org/abs/1909.06576
http://arxiv.org/abs/1709.04905
http://proceedings.mlr.press/v97/fujimoto19a.html
http://proceedings.mlr.press/v97/fujimoto19a.html

Offline Meta-Reinforcement Learning with Advantage Weighting

7-9, 2015, Conference Track Proceedings, 2015. URL
http://arxiv.org/abs/1412.6980.

Louis Kirsch, Sjoerd van Steenkiste, and Juergen Schmid-
huber. Improving generalization in meta reinforcement
learning using learned objectives. In International Confer-
ence on Learning Representations, 2020. URL https:
//openreview.net/forum?id=SlevHerYPr.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker,
and Sergey Levine. Stabilizing off-policy g-learning via
bootstrapping error reduction. In Advances in Neural
Information Processing Systems, pages 11761-11771,
2019a.

Aviral Kumar, Justin Fu, George Tucker, and Sergey Levine.
Stabilizing off-policy g-learning via bootstrapping error
reduction. NeurIPS, 2019b. URL http://arxiv.
org/abs/1906.009409.

B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum.
Human-level concept learning through probabilistic pro-
gram induction. Science, 350(6266):1332-1338, Decem-
ber 2015. doi: 10.1126/science.aab3050. URL https:
//doi.org/10.1126/science.aab3050.

Sergey Levine, Aviral Kumar, George Tucker, and Justin
Fu. Offline reinforcement learning: Tutorial, review,
and perspectives on open problems. arXiv preprint
arXiv:2005.01643, 2020.

Ricardo Luna Gutierrez and Matteo Leonetti. Information-
theoretic task selection for meta-reinforcement
learning. In H. Larochelle, M. Ranzato, R. Had-
sell, M. F. Balcan, and H. Lin, editors, Advances
in Neural Information Processing Systems, Vvol-
ume 33, pages 20532-20542. Curran Associates,
Inc., 2020. URL https://proceedings.
neurips.cc/paper/2020/file/

ec3183a7f107d1b8dbb90cb3cO0lea7d5-Paper.

pdf.

Russell Mendonca, Abhishek Gupta, Rosen Kralev, Pieter
Abbeel, Sergey Levine, and Chelsea Finn. Guided meta-
policy search. In Advances in Neural Information Pro-
cessing Systems, pages 9653-9664, 2019.

Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter
Abbeel. Meta-learning with temporal convolutions.
arXiv:1707.03141, 2017.

Anusha Nagabandi, Ignasi Clavera, Simin Liu, Ronald S
Fearing, Pieter Abbeel, Sergey Levine, and Chelsea Finn.
Learning to adapt in dynamic, real-world environments
through meta-reinforcement learning. International Con-
ference on Learning Representations (ICLR), 2019.

Ashvin Nair, Murtaza Dalal, Abhishek Gupta, and Sergey
Levine. Accelerating online reinforcement learning with
offline datasets, 2020.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey
Levine. Advantage-weighted regression: Simple and
scalable off-policy reinforcement learning, 2019.

Jan Peters and Stefan Schaal. Reinforcement learning by
reward-weighted regression for operational space con-
trol. In Proceedings of the 24th International Confer-
ence on Machine Learning, ICML *07, page 745-750,
New York, NY, USA, 2007. Association for Comput-
ing Machinery. ISBN 9781595937933. doi: 10.
1145/1273496.1273590. URL https://doi.org/
10.1145/1273496.1273590.

Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and
Sergey Levine. Meta-learning with implicit gradients.
In Advances in Neural Information Processing Systems,
pages 113-124, 2019.

Kate Rakelly, Aurick Zhou, Deirdre Quillen, Chelsea
Finn, and Sergey Levine. Efficient off-policy meta-
reinforcement learning via probabilistic context variables.
In International Conference on Machine Learning, 2019.

Jonas Rothfuss, Dennis Lee, Ignasi Clavera, Tamim Asfour,
and Pieter Abbeel. Promp: Proximal meta-policy search.
arXiv preprint arXiv:1810.06784, 2018.

Andrei A. Rusu, Dushyant Rao, Jakub Sygnowski, Oriol
Vinyals, Razvan Pascanu, Simon Osindero, and Raia Had-
sell. Meta-learning with latent embedding optimization.
In International Conference on Learning Representations,
2019. URL https://openreview.net/forum?
id=BJgklhAcK7.

Steind6ér Semundsson, Katja Hofmann, and Marc Pe-
ter Deisenroth. Meta reinforcement learning with
latent variable gaussian processes. arXiv preprint
arXiv:1803.07551, 2018.

Jurgen Schmidhuber. Evolutionary principles in self-
referential learning. On learning how to learn: The meta-
meta-... hook.) Diploma thesis, Institut f. Informatik, Tech.
Univ. Munich, 1:2, 1987.

Sebastian Thrun and Lorien Pratt. Learning to learn: Intro-
duction and overview. In Learning to learn, pages 3—17.
Springer, 1998.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap,
Koray Kavukcuoglu, and Daan Wierstra. Matching
networks for one shot learning. In D. Lee, M. Sugiyama,
U. Luxburg, I. Guyon, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems,
volume 29, pages 3630-3638. Curran Associates,

http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=S1evHerYPr
https://openreview.net/forum?id=S1evHerYPr
http://arxiv.org/abs/1906.00949
http://arxiv.org/abs/1906.00949
https://doi.org/10.1126/science.aab3050
https://doi.org/10.1126/science.aab3050
https://proceedings.neurips.cc/paper/2020/file/ec3183a7f107d1b8dbb90cb3c01ea7d5-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/ec3183a7f107d1b8dbb90cb3c01ea7d5-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/ec3183a7f107d1b8dbb90cb3c01ea7d5-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/ec3183a7f107d1b8dbb90cb3c01ea7d5-Paper.pdf
https://doi.org/10.1145/1273496.1273590
https://doi.org/10.1145/1273496.1273590
https://openreview.net/forum?id=BJgklhAcK7
https://openreview.net/forum?id=BJgklhAcK7

Offline Meta-Reinforcement Learning with Advantage Weighting

Inc., 2016. URL https://proceedings.
neurips.cc/paper/2016/file/
90e1357833654983612fb05e3ec9148c—-Paper.
pdf.

Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hu-
bert Soyer, Joel Z Leibo, Remi Munos, Charles Blundell,
Dharshan Kumaran, and Matt Botvinick. Learning to
reinforcement learn. arXiv preprint arXiv:1611.05763,
2016.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior
regularized offline reinforcement learning. arXiv preprint
arXiv:1911.11361, 2019.

Yuhuai Wu, Mengye Ren, Renjie Liao, and Roger Grosse.
Understanding short-horizon bias in stochastic meta-
optimization. arXiv preprint arXiv:1803.02021, 2018.

Yuxiang Yang, Ken Caluwaerts, Atil Iscen, Jie Tan, and
Chelsea Finn. Norml: No-reward meta learning. In
Proceedings of the 18th International Conference on Au-
tonomous Agents and MultiAgent Systems, pages 323—
331. International Foundation for Autonomous Agents
and Multiagent Systems, 2019.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian,
Karol Hausman, Chelsea Finn, and Sergey Levine. Meta-
world: A benchmark and evaluation for multi-task and
meta reinforcement learning. In Conference on Robot
Learning, 2019.

Luisa Zintgraf, Kyriacos Shiarlis, Maximilian Igl, Sebastian
Schulze, Yarin Gal, Katja Hofmann, and Shimon White-
son. Varibad: A very good method for bayes-adaptive
deep rl via meta-learning. In International Conference
on Learning Representations, 2020.

Luisa M Zintgraf, Kyriacos Shiarlis, Vitaly Kurin, Katja
Hofmann, and Shimon Whiteson. Fast context adapta-
tion via meta-learning. In International Conference on
Machine Learning, 2019.

https://proceedings.neurips.cc/paper/2016/file/90e1357833654983612fb05e3ec9148c-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/90e1357833654983612fb05e3ec9148c-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/90e1357833654983612fb05e3ec9148c-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/90e1357833654983612fb05e3ec9148c-Paper.pdf

