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Appendix

A. Asymptotic Optimality of MSPRT
In this appendix, we review the asymptotic optimality of the
matrix sequential probability ratio test (MSPRT). The whole
statements here are primarily based on (Tartakovsky et al.,
2014) and references therein. We here provide theorems
without proofs, which are given in (Tartakovsky et al., 2014).

A.1. Notation and Basic Assumptions

First, we introduce mathematical notation and several basic
assumptions. Let X(0,T ) := {x(t)}0≤t≤T be a stochastic
process. We assume that K(∈ N) densities pk(X(0,T ))
(k ∈ [K] := {1, 2, ...,K}) are distinct. Let y(∈ Y :=
[K]) be a parameter of the densities. Our task is to test K
hypotheses Hk : y = k (k ∈ [K]); i.e., to identify which
of the K densities pk is the true one through consecutive
observations of x(t).

Let (Ω,F , {Ft}t≥0, P ) for t ∈ Z≥0 := {0, 1, 2, ...} or
t ∈ R≥0 := [0,∞) be a filtered probability space. The sub-
σ-algebra Ft of F is assumed to be generated by X(0,t).
Our target hypotheses are Hk : P = Pk (k ∈ [K]) where
Pk are probability measures that are assumed to be lo-
cally mutually absolutely continuous. Let Ek denote the
expectation under Hk (k ∈ [K]); e.g., Ek[f(X(0,t)] =∫
f(X(0,t))dPk(X(0,t)) for a function f . We define the

likelihood ratio matrix as

Λkl(t) :=
dP tk
dP tl

(X(0,t)) (t ≥ 0) , (6)

where Λkl(0) = 1 Pk-a.s. and P tk is the restriction of Pk to
Ft. Therefore, the LLR matrix is defined as

λkl(t) := log Λkl(t) (t ≥ 0) , (7)

where λkl(0) = 0 Pk-a.s. The LLR matrix plays a crucial
role in the MSPRT, as seen in the main text and in the
following.

We define a multihypothesis sequential test as δ := (d, τ).
d := d(X(0,t)) is an Ft-measurable terminal decision func-
tion that takes values in [K]. τ is a stopping time with
respect to {Ft}t≥0 and takes values in [0,∞). Therefore,
{ω ∈ Ω|d = k} = {ω ∈ Ω|τ < ∞, δ accepts Hk}.
In the following, we solely consider statistical tests with
Ek[τ ] <∞ (k ∈ [K]).

Error probabilities. We define three types of error prob-
abilities:

αkl(δ) := Pk(d = l) (k 6= l, k, l ∈ [K]) ,

αk(δ) := Pk(d 6= k) =
∑
l(6=k)

αkl(δ) (k ∈ [K]) ,

βl(δ) :=
∑
k∈[K]

wklPk(d = l) (l ∈ [K]) , (8)

where wkl > 0 except for the zero diagonal entries. We
further define αmax := maxk,l αkl. Whenever αmax → 0,
we hereafter assume that for all k, l,m, n ∈ [K] (k 6= l,
m 6= n),

lim
αmax→0

logαkl
logαmn

= cklmn ,

where 0 < cklmn <∞. This technical assumption means
that αkl does not go to zero at an exponentially faster or
slower rate than the others.

Classes of tests. We define the corresponding sets of sta-
tistical tests with bounded error probabilities.

C({α}) := { δ | αkl(δ) ≤ αkl, k 6= l, k, l ∈ [K]} ,
C(α) := { δ | αk(δ) ≤ αk, k ∈ [K]} ,
C(β) := { δ | βl(δ) ≤ βl, l ∈ [K]} . (9)

Convergence of random variables. We introduce the fol-
lowing two types of convergence for later convenience.
Definition A.1 (Almost sure convergence (convergence
with probability one)). Let {x(t)}t≥0 denote a stochastic
process. We say that stochastic process {x(t)}t≥0 converges
to a constant c almost surely as t → ∞ (symbolically,
x(t)

P−a.s.−−−−→
t→∞

c), if

P
(

lim
t→∞

x(t) = c
)

= 1 .

Definition A.2 (r-quick convergence). Let {x(t)}t≥0 be a
stochastic process. Let Tε({x(t)}t≥0) be the last entry time
of {x(t)}t≥0 into the region (−∞,−ε) ∪ (ε,∞); i.e.,

Tε({x(t)}t≥0) = sup
t≥0

{
t | |x(t)| > ε

}
, sup{∅} := 0 .

(10)
Then, we say that stochastic process {x(t)}t≥0 converges to
zero r-quickly, or

x(t)
r−quickly−−−−−−→
t→∞

0 , (11)

for some r > 0, if

E[(Tε({x(t)}t≥0))r] <∞ for all ε > 0 . (12)

r-quick convergence ensures that the last entry time into the
large-deviation region (Tε({x(t)}t≥0)) is finite in expecta-
tion.
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A.2. MSPRT: Matrix Sequential Probability Ratio Test

Formally, the MSPRT is defined as follows:
Definition A.3 (Matrix sequential probability ratio test).
Define a threshold matrix akl ∈ R (k, l ∈ [K]), where the
diagonal elements are immaterial and arbitrary, e.g., 0. The
MSPRT δ∗ of multihypothesis Hk : P = Pk (k ∈ [K]) is
defined as

δ∗ := (d∗, τ∗)

τ∗ := min{τk|k ∈ [K]}
d∗ := k if τ∗ = τk

τk := inf{t ≥ 0|min
l∈[K]
l(6=k)

{λkl(t)− alk} ≥ 0} (k ∈ [K]) .

In other words, the MSPRT stops at the smallest t such
that for a number of k ∈ [K], λkl(t) ≥ alk for all l(6= k).
Note that the uniqueness of such k is ensured by the anti-
symmetry of λkl. In our experiment, we use a single-valued
threshold for simplicity. A general threshold matrix may
improve performance, especially when the dataset is class-
imbalanced (Longadge & Dongre, 2013; Ali et al., 2015;
Hong et al., 2016). We occasionally use Alk := ealk in the
following.

The following lemma determines the relationship between
the thresholds and error probabilities.
Lemma A.1 (General error bounds of the MSPRT (Tar-
takovsky, 1998)). The following inequalities hold:

1. α∗kl ≤ e−akl for k, l ∈ [K] (k 6= l),

2. α∗k ≤
∑
l(6=k) e

−akl for k ∈ [K],

3. β∗l ≤
∑
k(6=l) wkle

−akl for l ∈ [K].

Therefore,

alk ≥ log(
1

αlk
) =⇒ δ∗ ∈ C({α}) ,

alk ≥ al = log(
K − 1

αlk
) =⇒ δ∗ ∈ C(α) ,

alk ≥ ak = log(

∑
m( 6=k) wmk

βk
) =⇒ δ∗ ∈ C(β) .

A.3. Asymptotic Optimality of MSPRT in I.I.D. Cases

A.3.1. UNDER FIRST MOMENT CONDITION

Given the true distribution, one can derive a dynamic pro-
gramming recursion; its solution is the optimal stopping
time. However, that recursion formula is intractable in gen-
eral due to its composite integrals to calculate expectation
values(Tartakovsky et al., 2014). Thus, we cannot avoid sev-
eral approximations unless the true distribution is extremely
simple.

To avoid the complications above, we focus on the asymp-
totic behavior of the MSPRT, where the error probabilities
go to zero. In this region, the stopping time and thresholds
typically approach infinity because more evidence is needed
to make such careful, perfect decisions.

First, we provide the lower bound of the stopping time. Let
us define the first moment of the LLR: Ikl := Ek[λkl(1)].
Note that Ikl is the Kullback-Leibler divergence and hence
Ikl ≥ 0.
Lemma A.2 (Lower bound of the stopping time (Tar-
takovsky et al., 2014)). Assume that Ilk is positive and
finite for all k, l ∈ [K] (k 6= l). If

∑
k∈[K] αk ≤ 1, then for

all k ∈ [K],

inf
δ∈C({α})

Ek[τ ] ≥ max

 1

Ikl

∑
m∈[K]

αkm log(
αkm
αlm

)

 .
The proof follows from Jensen’s inequality and Wald’s iden-
tity Ek[λkl(τ)] = IklEk[τ ]. However, the lower bound is
unattainable in general2. In the following, we show that the
MSPRT asymptotically satisfies the lower bound.
Lemma A.3 (Asymptotic lower bounds (i.i.d. case) (Tar-
takovsky, 1998)). Assume the first moment condition 0 <
Ikl <∞ for all k, l ∈ [K] (k 6= l). The following inequali-
ties hold for all m > 0 and k ∈ [K],

1. As αmax → 0,

inf
δ∈C({α})

Ek[τ ]m ≥ max
l(6=k)

[
| logαlk|
Ikl

]m
(1 + o(1)) .

2. As maxk αk → 0,

inf
δ∈C(α)

Ek[τ ]m ≥ max
l( 6=k)

[
| logαl|
Ikl

]m
(1 + o(1)) .

3. As maxk βk → 0,

inf
δ∈C(β)

Ek[τ ]m ≥ max
l(6=k)

[
| log βk|
Ikl

]m
(1 + o(1)) .

Theorem A.1 (Asymptotic optimality of the MSPRT with
the first moment condition (i.i.d. case) (Tartakovsky, 1998;
Dragalin et al., 1999; Tartakovsky et al., 2014)). Assume
the first moment condition 0 < Ikl <∞ for all k, l ∈ [K]
(k 6= l).

1. If alk = log( 1
αlk

) for k.l ∈ [K] (k 6= l), then δ∗ ∈
C({α}), and for all m > 0 and k ∈ [K],

inf
δ∈C({α})

Ek[τ ]m ∼ Ek[τ∗]m ∼ max
l∈[K]
l(6=k)

[
| logαlk|
Ikl

]m
(13)

2We can show that when K = 2, the SPRT can attain the lower
bound if there are no overshoots of the LLR over the thresholds.
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as αmax → 0. If alk 6= log( 1
αlk

), the above inequality
holds when alk ∼ log( 1

αlk
) and αkl(δ∗) ≤ αkl.3

2. If alk = log(K−1αl
) for k.l ∈ [K] (k 6= l), then δ∗ ∈

C(α), and for all m > 0 and k ∈ [K],

inf
δ∈C(α)

Ek[τ ]m ∼ Ek[τ∗]m ∼ max
l∈[K]
l(6=k)

[
| logαl|
Ikl

]m
(14)

as maxk αk → 0. If al 6= log(K−1αl
), the above in-

equality holds when alk ∼ log(K−1αl
) and αl(δ∗) ≤

αl.

3. If alk = log(
∑
n( 6=k) wnk

βk
) for k.l ∈ [K] (k 6= l), then

δ∗ ∈ C(β), and for all m > 0 and k ∈ [K],

inf
δ∈C(β)

Ek[τ ]m ∼ Ek[τ∗]m ∼ max
l∈[K]
l( 6=k)

[
| log βk|
Ikl

]m
(15)

as maxk βk → 0. If alk 6= log( 1
βk

), the above inequal-
ity holds when alk ∼ log( 1

βk
) and βk(δ∗) ≤ βk.

Therefore, we conclude that the MSPRT asymptotically min-
imizes all positive moments of the stopping time including
m = 1; i.e., asymptotically, the MSPRT makes the quick-
est decision in expectation among all the algorithms with
bounded error probabilities.

A.3.2. UNDER SECOND MOMENT CONDITION

The second moment condition

Ek[λkl(1)]2 <∞ (k, l ∈ [K]) (16)

strengthens the optimality. We define the cumulative flaw
matrix as

Υkl := exp(−
∞∑
t=1

1

t
[Pl(λkl(t) > 0) + Pk(λkl(t) ≤ 0)])

(17)
(k, l ∈ [K], k 6= l). Note that 0 < Υkl = Υlk ≤ 1.

Theorem A.2 (Asymptotic optimality of the MSPRT with
the second moment condition (i.i.d. case) (Lorden, 1977;
Tartakovsky et al., 2014)). Assume that the threshold Akl =
Akl(c) is a function of a small parameter c > 0. Then, the
error probabilities of the MSPRT are also functions of c; i.e.,
αkl(δ

∗) =: α∗kl(c), αk(δ∗) =: α∗k(c), and βk(δ∗) =: β∗k(c),

and Alk(c)
c→0−−−→ ∞ indicates α∗kl(c), α

∗
k(c), β∗k(c)

c→0−−−→
0.

3Recall that αkl(δ
∗) ≤ αkl is automatically satisfied whenever

alk ≥ log(1/αlk) for general distribution because of Lemma A.1.
Similar arguments follow for 2. and 3. in Theorem A.1.

1. Let Alk = Blk/c for any Bkl > 0 (k 6= l). Then, as
c→ 0,

Ekτ∗(c) = inf
δ∈C({α∗(c)})

Ekτ + o(1) (18)

Ekτ∗(c) = inf
δ∈C(α∗(c))

Ekτ + o(1) (19)

for all k ∈ [K], where α∗(c) := (α∗1(c), ..., α∗K(c)).

2. Let Alk(c) = wlkΥkl/c. Then, as c→ 0,

Ekτ∗(c) = inf
δ∈C({β∗(c)})

Ekτ + o(1) (20)

for all k ∈ [K], where β∗(c) := (β∗1(c), ..., β∗K(c)).

Therefore, the MSPRT δ∗ asymptotically minimizes the
expected stopping time among all tests whose error proba-
bilities are less than or equal to those of δ∗. We can further
generalize Theorem A.2 by introducing different costs ck
for each hypothesis Hk to allow different rates (see (Tar-
takovsky et al., 2014)).

A.4. Asymptotic Optimality of MSPRT in General
Non-I.I.D. Cases

Lemma A.4 (Asymptotic lower bounds (Tartakovsky,
1998)). Assume that there exists a non-negative increasing
function ψ(t) (ψ(t)

t→∞−−−→∞) and positive finite constants
Ilk (k, l ∈ [K], k 6= l) such that for all ε > 0 and k, l ∈ [K]
(k 6= l),

lim
T→∞

Pk

(
sup

0≤t≤T

λkl(t)

ψ(T )
≥ (1 + ε)Ikl

)
= 1 . (21)

Then, for all m > 0 and k ∈ [K],

inf
δ∈C({α})

Ek[τ ]m ≥ Ψ

max
l∈[K]
l( 6=k)

| logαlk|
Ikl


m

(1 + o(1)) as αmax → 0 ,

(22)

inf
δ∈C(α)

Ek[τ ]m ≥ Ψ

max
l∈[K]
l( 6=k)

| logαl|
Ikl


m

(1 + o(1)) as max
n

αn → 0 ,

(23)

inf
δ∈C(β)

Ek[τ ]m ≥ Ψ

max
l∈[K]
l(6=k)

| log βk|
Ikl


m

(1 + o(1)) as max
n

βn → 0 .

(24)

where Ψ is the inverse function of ψ.

Note that if for all 0 < T <∞

Pk

(
sup

0≤t≤T
|λkl(t)| <∞

)
= 1 (25)
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and if

λkl(t)

ψ(t)

Pk−a.s.−−−−−→
t→∞

Ikl (k, l ∈ [K], k 6= l) , (26)

then (21) holds.

Theorem A.3 (Asymptotic optimality of the MSPRT (Tar-
takovsky, 1998)). Assume that that there exists a non-
negative increasing function ψ(t) (ψ(t)

t→∞−−−→ ∞) and
positive finite constants Ikl (k, l ∈ [K], k 6= l) such that for
some r > 0,

λkl(t)

ψ(t)

Pk−r−quickly−−−−−−−−−→
t→∞

Ikl (27)

for all k, l ∈ [K] (k 6= l). Let Ψ be the inverse function of
ψ. Then,

1. If alk ∼ log(1/αlk) and αkl(δ∗) ≤ αkl (k, l ∈ [K],
k 6= l)4, then for all m ∈ (0, r] and k ∈ [K],

inf
δ∈C({α})

Ek[τ ]m ∼ Ek[τ∗]m ∼ Ψ

max
l∈[K]
l( 6=k)

| logαlk|
Ikl


m

as αmax → 0 .

(28)

2. If alk ∼ log((K − 1)/αl) and αk(δ∗) ≤ αk (k, l ∈
[K], k 6= l), then for all m ∈ (0, r] and k ∈ [K],

inf
δ∈C(α)

Ek[τ ]m ∼ Ek[τ∗]m ∼ Ψ

max
l∈[K]
l(6=k)

| logαl|
Ikl


m

as max
k

αk → 0 .

(29)

3. If alk ∼ log(
∑
n(6=k) wnk/βk) and βk(δ∗) ≤ βk

(k, l ∈ [K], k 6= l), then for all m ∈ (0, r] and
k ∈ [K],

inf
δ∈C(β)

Ek[τ ]m ∼ Ek[τ∗]m ∼ Ψ

max
l∈[K]
l(6=k)

| log βk|
Ikl


m

as max
k

βk → 0 .

(30)

Therefore, combining Lemma A.4 and Theorem A.3, we
conclude that the MSPRT asymptotically minimizes the mo-
ments of the stopping time; i.e., asymptotically, the MSPRT
makes the quickest decision in expectation among all the
algorithms with bounded error probabilities, even without
the i.i.d. assumption.

4Recall that αkl(δ
∗) ≤ αkl is automatically satisfied whenever

alk ≥ log(1/αlk) for general distribution because of Lemma A.1.
Similar arguments follow for 2. and 3. in Theorem A.3.
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B. Supplementary Related Work
We provide additional references. Our work is an interdisci-
plinary study and potentially bridges various research areas,
such as early classification of time series, sequential hypoth-
esis testing, sequential decision making, classification with
abstention, and DRE.

Early classification of time series. Many methods have
been proposed for early classification of time series: non-
deep models are (Xing et al., 2011; McGovern et al., 2011;
Xing et al., 2012; Ghalwash & Obradovic, 2012; Ghal-
wash et al., 2013; Ghalwash et al., 2014; Mori et al., 2016;
Karim et al., 2019; Schäfer & Leser, 2020); deep mod-
els are (Ma et al., 2016; Wang et al., 2016; Suzuki et al.,
2018; Rußwurm et al., 2019); reinforcement learning-based
models are (Hartvigsen et al., 2019; Martinez et al., 2020;
Wang et al., 2020). There is a wide variety of real-world
applications of such models: length adaptive text classifica-
tion (Huang et al., 2017), early text classification for sexual
predator detection and depression detection on social media
documents (López-Monroy et al., 2018), early detection
of thermoacoustic instability from high-speed videos taken
from a combustor (Gangopadhyay et al., 2021), and early
river classification through real-time monitoring of water
quality (Gupta et al., 2019).

Early exit problem. The overthinking problem (Kaya
et al., 2019) occurs when a DNN can reach correct pre-
dictions before its final layer. Early exit from forward prop-
agation mitigates wasteful computation and circumvents
overfitting. (Kaya et al., 2019) proposes the Shallow-Deep
Networks, which is equipped with internal layerwise classi-
fiers and observes internal layerwise predictions to trigger
an early exit. The early exit mechanism has been applied
to Transformer (Vaswani et al., 2017) and BERT (Devlin
et al., 2019); e.g., see (Dehghani et al., 2019; Zhou et al.,
2020). Owing to early exiting, (Ghodrati et al., 2021) sets
a new state of the art for efficient video understanding on
the HVU benchmark. However, early exit algorithms are
typically given by heuristics. MSPRT-TANDEM can be
both the internal classifier and early exit algorithm itself
with the theoretically sound background.

Classification with a reject option. Classification with
a reject option is also referred to as classification with an
abstain option, classification with abstention, classification
with rejection, and selective classification. Sequential classi-
fication with a reject option (to postpone the classification)
can be regarded as early classification of time series (Hatami
& Chira, 2013).

SPRT. The SPRT for two-hypothesis testing (“binary
SPRT”) is optimal for i.i.d. distributions (Wald & Wolfowitz,

1948; Tartakovsky et al., 2014). There are many different
proofs: e.g., (Burkholder & Wijsman, 1963; Matches, 1963;
Tartakovsky, 1991; Lehmann & Romano, 2006; Shiryaev,
2007; Ferguson, 2014). The Bayes optimality of the bi-
nary SPRT for i.i.d. distributions is proved in (Arrow
et al., 1949; Ferguson, 2014). The generalization of the
i.i.d. MSPRT to non-stationary processes with indepen-
dent increments is made in (Tartakovskij, 1981; Golubev
& Khas’minskii, 1984; Tartakovsky, 1991; Verdenskaya &
Tartakovskii, 1992; Tartakovsky, 1998a).

Density ratio estimation. A common method of estimat-
ing the density ratio is to train a machine learning model to
classify two types of examples in a training dataset and ex-
tract the density ratio from the optimal classifier (Sugiyama
et al., 2012; Gutmann & Hirayama, 2012; Menon & Ong,
2016).
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C. Proof of Theorem 3.1
In this appendix, we provide the proof of Theorem 3.1.

We define the target parameter set as Θ∗ := {θ∗ ∈
Rdθ |λ̂(X(1,t);θ∗) = λ(X(1,t)) (∀t ∈ [T ])}, and we as-
sume Θ∗ 6= ∅ throughout this paper. For instance, suffi-
ciently large neural networks can satisfy this assumption.
We additionally assume that each θ∗ is separated in Θ∗; i.e.,
∃δ > 0 such that B(θ∗; δ) ∩ B(θ∗′; δ) = ∅ for arbitrary
θ∗,θ∗′ ∈ Θ∗, where B(θ; δ) denotes the open ball at center
θ with radius δ.5

Theorem C.1 (Consistency of the LSEL). Let L(θ) and
L̂S(θ) denote LLSEL[λ̂] and L̂LSEL(θ;S), respectively. As-
sume the following three conditions:

(a) ∀k, l ∈ [K], ∀t ∈ [T ], p(X(1,t)|k) = 0 ⇐⇒
p(X(1,t)|l) = 0.

(b) supθ|L̂S(θ)−L(θ)| P−−−−→
M→∞

0; i.e., L̂S(θ) converges

in probability uniformly over θ to L(θ).6

(c) For all θ∗ ∈ Θ∗, there exist t ∈ [T ], k ∈ [K] and
l ∈ [K], such that the following dθ × dθ matrix is
full-rank:∫
dX(1,t)p(X(1,t)|k)∇θ∗ λ̂kl(X(1,t);θ∗)∇θ∗ λ̂kl(X(1,t);θ∗)> .

(31)

Then, P (θ̂S /∈ Θ∗)
M→∞−−−−→ 0; i.e., θ̂S converges in proba-

bility into Θ∗.

First, we prove Lemma C.1, which is then used in Lemma
C.2. Using Lemma C.2, we prove Theorem 3.1. Our proofs
are partly inspired by (Gutmann & Hyvärinen, 2012). Note
that for simplicity, we prove all the statements only for
an arbitrary t ∈ [T ]. The result can be straightforwardly
generalized to the sum of the losses with respect to t ∈
[T ]. Therefore, we omit 1

T

∑
t∈[T ] from L and L̂S in the

following.

Lemma C.1 (Non-parametric estimation). Assume that for
all k, l ∈ [K] , p(X(1,t)|k) = 0 ⇐⇒ p(X(1,t)|l) = 0.
Then, L[λ̃] attains the unique minimum at λ̃ = λ.

5This assumption is for simplicity of the proofs. When the
assumption above is not true, we conjecture that the consistency
holds by assuming the positivity of a projected Hessian of λ̂kl w.r.t.
θ at ∂Θ∗ (the boundary of Θ∗). The projection directions may
depend on the local curvature of ∂Θ∗ and whether Θ∗ is open
or closed. We omit further discussions here because they are too
complicated but maintain the basis of our statements.

6More specifically, ∀ε > 0, P (supθ|L̂S(θ) − L(θ)| >
ε)

M→∞−−−−→ 0.

Proof. Let φ(X(1,t)) = (φkl(X
(1,t)))k.l∈[K] be an arbi-

trary perturbation function to λ̃. φkl satisfies φkl = −φlk
and is not identically zero if k 6= l. For an arbitrarily small
ε > 0,

L[λ̃+ εφ] = L[λ̃] +
1

K

∑
k∈[K]

∫
dX(1,t)p(X(1,t)|k)

[
ε
−
∑
l(6=k) e

−λ̃kl(X(1,t))φkl(X
(1,t))∑

m∈[K] e
−λ̃km(X(1,t))

+
ε2

2(
∑
m∈[K] e

−λ̃km(X(1,t)))2

×
{ ∑
m∈[K]

e−λ̃km(X(1,t))
∑
l(6=k)

e−λ̃kl(X
(1,t))φ2kl(X

(1,t))− (
∑
l(6=k)

e−λ̃kl(X
(1,t))φkl(X

(1,t)))2
}]

+O(ε3) . (32)

A necessary condition for the optimality is that the first order
terms vanish for arbitrary φ. Because

(first order) = − ε

K

∫
dX(1,t)

∑
k>l

φkl(X
(1,t))

×
[

p(X|k)∑
m∈[K] e

−λ̃km(X(1,t))
e−λ̃kl(X

(1,t)) − p(X|l)∑
m∈[K] e

−λ̃lm(X(1,t))
e−λ̃lk(X

(1,t))

]
,

(33)

and p(X(1,t)|k) = 0 ⇔ p(X(1,t)|l) = 0, the following
equality holds at the unique extremum:

p(X|k)∑
m∈[K] e

−λ̃km(X(1,t))
e−λ̃kl(X

(1,t)) =
p(X|l)∑

m∈[K] e
−λ̃lm(X(1,t))

e−λ̃lk(X
(1,t))

⇐⇒ eλkl
∑
m∈[K]

Λ̃ml = Λ̃2
kl

∑
m∈[K]

Λ̃mk= Λ̃kl
∑
m∈[K]

Λ̃mkΛ̃kl = Λ̃kl
∑
m∈[K]

Λ̃ml


⇐⇒ eλkl = Λ̃kl

⇐⇒ λ̃kl(X
(1,t)) = λkl(X

(1,t)) ,

where we defined Λ̃kl := eλ̃kl and used Λ̃mkΛ̃kl = Λ̃ml.
Next, we prove that λ̃kl = λkl is the minimum by showing
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that the second order of (32) is positive-definite:

(second order) =
ε2

2

1

K

∑
k∈[K]

∫
dX(1,t) p(X(1,t)|k)

(
∑
m∈[K] e

−λ̃km(X(1,t)))2

×
{ ∑
m∈[K]

e−λ̃km(X(1,t))
∑
l(6=k)

φ2kl(X
(1,t))e−λ̃kl(X

(1,t)) − (
∑
m(6=k)

φkm(X(1,t))e−λ̃km(X(1,t)))2
}

=
ε2

2

1

K

∑
k∈[K]

∫
dX(1,t) p(X(1,t)|k)

(
∑
m∈[K] e

−λ̃km(X(1,t)))2

×
{ ∑
l(6=k)

φ2kl(X
(1,t))e−λ̃kl(X

(1,t))

+
∑
m>n
m,n6=k

(φkm(X(1,t))− φkn(X(1,t)))2e−λ̃km(X(1,t))e−λ̃kn(X
(1,t))

}
> 0 .

Lemma C.2 (Θ∗ minimizes L). Assume that for all θ∗ ∈
Θ∗, there exist k∗ ∈ [K] and l∗ ∈ [K], such that the follow-
ing dθ × dθ matrix is full-rank:∫
dX(1,t)p(X(1,t)|k∗)∇θ∗ λ̂k∗l∗(X(1,t);θ∗)∇θ∗ λ̂k∗l∗(X(1,t);θ∗)> .

(34)

Then, for any θ /∈ Θ∗,

L(θ) > L(θ∗) (∀θ∗ ∈ Θ∗) ,

meaning that Θ∗ = argminθL(θ).

Proof. Let θ∗ be an arbitrary element in Θ∗. For an arbi-
trarily small ε > 0, let ϕ ∈ Rdθ be an arbitrary vector such
that ϕ 6= 0. Then, in a neighborhood of θ∗,

L[λ̂(X(1,t);θ∗ + εϕ)] = L[λ̂(X(1,t);θ∗)]

+
1

K

∑
k∈[K]

∫
dX(1,t)p(X(1,t)|k)

[
ε
−
∑
l( 6=k) e

−λ̂kl(X(1,t);θ∗)ρkl(X
(1,t))∑

m∈[K] e
−λ̂km(X(1,t);θ∗)

+
ε2

2(
∑
m∈[K] e

−λ̂km(X(1,t);θ∗))2

{
−
∑
m∈[K]

e−λ̂km(X(1,t);θ∗)
∑
l( 6=k)

e−λ̂kl(X
(1,t);θ∗)ωkl(X

(1,t))

+
∑
m∈[K]

e−λ̂km(X(1,t);θ∗)
∑
l( 6=k)

e−λ̂kl(X
(1,t);θ∗)ρ2kl(X

(1,t))− (
∑
l( 6=k)

e−λ̂kl(X
(1,t);θ∗)ρkl(X

(1,t)))2
}]

+O(ε3) , (35)

where ρkl(X
(1,t)) := ϕ> · ∇θλ̂kl(X(1,t);θ∗) and

ωkl(X
(1,t)) := ϕ> · ∇2

θλ̂kl(X
(1,t);θ∗) · ϕ. By

definition of Θ∗, λ̂kl(X
(1,t);θ∗) = λkl(X

(1,t)) =
log(p(X(1,t)|k)/p(X(1,t)|l)). Substituting this into (35),
we can see that the first order terms and the second order

terms that contain ωkl are identically zero because of the
asymmetry of λ̂kl. Therefore,

L[λ̂(X(1,t);θ∗ + εϕ)] = L[λ̂(X(1,t);θ∗)]

+
1

K

∑
k∈[K]

∫
dX(1,t)p(X(1,t)|k)

ε2

2(
∑
m∈[K] e

−λ̂km(X(1,t);θ∗))2

×
{ ∑
m∈[K]

e−λ̂km(X(1,t);θ∗)
∑
l( 6=k)

e−λ̂kl(X
(1,t);θ∗)ρ2kl(X

(1,t))− (
∑
l( 6=k)

e−λ̂kl(X
(1,t);θ∗)ρkl(X

(1,t)))2
}

+O(ε3) . (36)

Next, we define

Ik :=
∑
m∈[K]

e−λ̂km(X(1,t);θ∗)
∑
l(6=k)

e−λ̂kl(X
(1,t);θ∗)ρ2kl(X

(1,t))− (
∑
l(6=k)

e−λ̂kl(X
(1,t);θ∗)ρkl(X

(1,t)))2 ,

(37)

so that

L[λ̂(X(1,t);θ∗ + εϕ)]

= L[λ̂(X(1,t);θ∗)] +
ε2

2

1

K

∑
k∈[K]

∫
dX(1,t)p(X(1,t)|k)

Ik

(
∑
m∈[K] e

−λ̂km(X(1,t);θ∗))2
+O(ε3)

=: L[λ̂(X(1,t);θ∗)] +
ε2

2
J [λ̂(X(1,t);θ∗)] +O(ε3) .

(38)

Here, we defined

J [λ̂(X(1,t);θ∗)] :=
1

K

∑
k∈[K]

∫
dX(1,t)p(X(1,t)|k)

Ik

(
∑
m∈[K] e

−λ̂km(X(1,t);θ∗))2
.

(39)

In the following, we show that J is positive to obtain
L[λ̂(X(1,t);θ∗ + εϕ)] > L[λ̂(X(1,t);θ∗)]. We first see
that J is non-negative. Because

Ik =
∑
l(6=k)

(ϕ> · ∇θλ̂kl(X(1,t);θ∗))2e−λ̂kl(X
(1,t);θ∗)

+
{
ϕ> · (∇θλ̂kl(X(1,t);θ∗)−∇θλ̂kl′(X(1,t);θ∗))

}2 ∑
l>l′

l,l′ 6=k

e−λ̂kl(X
(1,t);θ∗)e−λ̂kl′ (X

(1,t);θ∗)

≥
∑
l(6=k)

(ϕ> · ∇θλ̂kl(X(1,t);θ∗))2e−λ̂kl(X
(1,t);θ∗) ,

(40)

we can bound J from below:

J [λ̂(X(1,t);θ∗)]

≥ 1

K

∑
k∈[K]

∑
l( 6=k)

∫
dX(1,t)p(X(1,t)|k)

e−λ̂kl(X
(1,t);θ∗)

(
∑
m∈[K] e

−λ̂km(X(1,t);θ∗))2
(ϕ> · ∇θλ̂kl(X(1,t);θ∗))2

(41)

(≥ 0) .
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Note that each term in (41) is non-negative; therefore, J is
non-negative. We next show that J is non-zero to prove that
J > 0. By assumption, ∃k∗, l∗ ∈ [K] such that ∀ϕ 6= 0,

ϕ> ·
∫
dX(1,t)p(X(1,t)|k∗)∇θ∗ λ̂k∗l∗(X(1,t);θ∗)∇θ∗ λ̂k∗l∗(X(1,t);θ∗)> ·ϕ

=

∫
dX(1,t)p(X(1,t)|k∗)(ϕ> · ∇θ∗ λ̂k∗l∗(X(1,t);θ∗))2 6= 0 .

∴
∫
dX(1,t)p(X(1,t)|k∗) e−λ̂k∗l∗ (X

(1,t);θ∗)

(
∑
m∈[K] e

−λ̂k∗m(X(1,t);θ∗))2
(ϕ> · ∇θλ̂k∗l∗(X(1,t);θ∗))2 6= 0 ,

(42)

because

e−λ̂k∗l∗ (X
(1,t);θ∗)

(
∑
m∈[K] e

−λ̂k∗m(X(1,t);θ∗))2
> 0 .

Therefore, at least one term in (41) is non-zero, meaning
(41) 6= 0 and J [λ̂(X(1,t);θ∗)] > 0. Thus, we conclude that
L[λ̂(X(1,t);θ∗ + εϕ)] > L[λ̂(X(1,t);θ∗)] via (38).

Now, we have proven that L(θ) > L(θ∗) in the vicinity of
θ∗. For the other θ(/∈ Θ∗), the inequality L(θ) > L(θ∗)

immediately follows from Lemma C.1 because λ̂ is not
equal to λ for such θ /∈ Θ∗ and λ is the unique minimum of
L[λ̂]. This concludes the proof.

Finally, we prove Theorem 3.1 with the help of Lemma C.2.

Proof. To prove the consistency, we show that P (θ̂S /∈
Θ∗)(= P ({ω ∈ Ω|θ̂S(ω) /∈ Θ∗})) M→∞−−−−→ 0, where θ̂S
is the empirical risk minimizer, M is the sample size, P is
the probability measure, and Ω is the sample space of the
underlying probability space. By Lemma C.2, if θ /∈ Θ∗,
then there exists δ > 0 such that L(θ) > L(θ∗) + δ(θ).
Therefore,

{ω ∈ Ω|θ̂S(ω) /∈ Θ∗} ⊂ {ω ∈ Ω|L(θ̂S(ω)) > L(θ∗) + δ(θ̂S)}

∴ P
(
θ̂S /∈ Θ∗

)
≤ P

(
L(θ̂S) > L(θ∗) + δ(θ̂S)

)
.

(43)

We bound the right-hand side in the following.

L(θ̂S)− L(θ∗) = L(θ̂S)− L̂S(θ∗) + L̂S(θ∗)− L(θ∗)

≤ L(θ̂S)− L̂S(θ̂S) + L̂S(θ∗)− L(θ∗) .

Therefore,

L(θ̂S)− L(θ∗) = |L(θ̂S)− L(θ∗)|

≤ |L(θ̂S)− L̂S(θ̂S)|+ |L̂S(θ∗)− L(θ∗)|

≤ 2 supθ

∣∣∣L(θ)− L̂S(θ)
∣∣∣ .

Thus,

δ(θ̂S) < L(θ̂S)− L(θ∗) =⇒δ(θ̂S) < 2 supθ

∣∣∣L(θ)− L̂S(θ)
∣∣∣ .

Hence,

P
(
L(θ̂S) > L(θ∗) + δ(θ̂S)

)
≤ P

(
δ(θ̂S) < 2 supθ

∣∣∣L(θ)− L̂S(θ)
∣∣∣) .

By the assumption that L̂S(θ) converges in probability uni-
formly over θ to L(θ), the right-hand side is bounded above
by an arbitrarily small ε > 0 for sufficiently large M :

P
(
δ(θ̂S) < 2 supθ

∣∣∣L(θ)− L̂S(θ)
∣∣∣) < ε . (44)

Combining (43) and (44), we conclude that ∀ε > 0,∃n ∈ N
s.t. ∀M > n,P (θ̂S /∈ Θ∗) < ε.
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D. Modified LSEL and Logistic Loss
In this appendix, we first discuss the effect of the prior
ratio term log(p̂(y = k)/p̂(y = l)) =: log ν̂kl in the M-
TANDEM and M-TANDEMwO formula (Appendix D.1).
We then define the logistic loss used in the main text (Ap-
pendix D.2).

D.1. Modified LSEL and Consistency

In the main text, we ignore the prior ratio term log ν̂kl (Sec-
tion 3.4). Strictly speaking, this is equivalent to the defini-
tion of the following modified LSEL (modLSEL):

LmodLSEL[λ̃] :=
1

T

∑
t∈[T ]

E
(X(1,t),y)

∼P (X(1,t),y)

[
log(1 +

∑
k(6=y)

ν−1yk e
−λ̃yk(X(1,t)))

]

=
1

T

∑
t∈[T ]

∑
y∈[K]

∫
dX(1,t)p(X(1,t)|y)p(y) log(1 +

∑
k(6=y)

ν−1yk e
−λ̃yk(X(1,t)))

(45)

where νkl = p(y = k)/p(y = l) (k, l ∈ [K]) is the prior
ratio matrix. The empirical approximation of LmodLSEL is

L̂modLSEL(θ;S) :=
1

MT

∑
i∈[M ]

∑
t∈[T ]

log(1 +
∑
k(6=yi)

ν̂−1yike
−λ̂yik(X

(1,t)
i ;θ)) .

(46)

where ν̂kl := Mk/Ml (k, l ∈ [K]). Mk denotes the sample
size of class k, i.e., Mk := |{i ∈ [M ]|yi = k}|. (45)
is a generalization of the logit adjustment (Menon et al.,
2021) to the LSEL and helps us to train neural networks on
imbalanced datasets.

We can prove the consistency even for the modified LSEL,
given an additional assumption (d):
Theorem D.1 (Consistency of the modLSEL). Let L(θ)

and L̂S(θ) denote LmodLSEL[λ̂(·;θ)] and L̂modLSEL(θ;S),
respectively. Let θ̂S be the empirical risk minimizer of
L̂S; namely, θ̂S := argminθL̂S(θ). Let Θ∗ := {θ∗ ∈
Rdθ |λ̂(X(1,t);θ∗) = λ(X(1,t)) (∀t ∈ [T ])} be the tar-
get parameter set. Assume, for simplicity of proof, that
each θ∗ is separated in Θ∗; i.e., ∃δ > 0 such that
B(θ∗; δ) ∩ B(θ∗′; δ) = ∅ for arbitrary θ∗ and θ∗′ ∈ Θ∗,
where B(θ; δ) denotes an open ball at center θ with radius
δ. Define

L̂′S(θ) :=
1

MT

∑
i∈[M ]

∑
t∈[T ]

log

1 +
∑
k( 6=yi)

ν−1yike
−λ̂yik(X

(1,t)
i ;θ)


(47)

(ν̂ is replaced by ν in L̂S). Assume the following three
conditions:

(a) ∀k, l ∈ [K], ∀t ∈ [T ], p(X(1,t)|k) = 0 ⇐⇒
p(X(1,t)|l) = 0.

(b′) supθ|L̂′S(θ)−L(θ)| P−−−−→
M→∞

0; i.e., L̂′S(θ) converges

in probability uniformly over θ to L(θ).7

(c) For all θ∗ ∈ Θ∗, there exist t ∈ [T ], k ∈ [K] and
l ∈ [K], such that the following dθ × dθ matrix is
full-rank:∫

dX(1,t)p(X(1,t)|k)∇θ∗ λ̂kl(X(1,t);θ∗)∇θ∗ λ̂kl(X(1,t);θ∗)> .

(48)

(d) supθ|L̂′S(θ)− L̂S(θ)| P−−−−→
M→∞

0.

Then, P (θ̂S /∈ Θ∗)
M→∞−−−−→ 0; i.e., θ̂S converges in proba-

bility into Θ∗.

(b) is now modified to (b′) and (d) is added to the assump-
tions of Theorem 3.1. (b′) can be satisfied under the standard
assumptions of the uniform law of large numbers. (d) may
be proven under some appropriate assumptions, but we sim-
ply accept it here.

Proof. We prove all the statements only for an arbitrary
t ∈ [T ] and omit 1

T

∑
t∈[T ] from L and L̂S , as is done in

the proof of Theorem 3.1. In the same way as Appendix C,
we first provide two lemmas:

Lemma D.1 (Non-parametric estimation). Assume that for
all k, l ∈ [K] , p(X(1,t)|k) = 0 ⇐⇒ p(X(1,t)|l) = 0.
Then, L[λ̃] attains the unique minimum at λ̃ = λ.

Lemma D.2 (Θ∗ minimizes L). Assume that for all θ∗ ∈
Θ∗, there exist k∗ ∈ [K] and l∗ ∈ [K], such that the follow-
ing dθ × dθ matrix is full-rank:∫

dX(1,t)p(X(1,t)|k∗)∇θ∗ λ̂k∗l∗(X(1,t);θ∗)∇θ∗ λ̂k∗l∗(X(1,t);θ∗)> .

(49)

Then, for any θ /∈ Θ∗,

L(θ) > L(θ∗) (∀θ∗ ∈ Θ∗) ,

meaning that Θ∗ = argminθL(θ).

We skip the proofs because they are completely parallel to
the proof of Lemma C.1 and Lemma C.2.

To prove the consistency, we show that P (θ̂S /∈ Θ∗)(=

P ({ω ∈ Ω|θ̂S(ω) /∈ Θ∗})) M→∞−−−−→ 0, where θ̂S is the
empirical risk minimizer on the random training set S, M
is the sample size, P is the probability measure, and Ω is
the sample space of the underlying probability space. By

7Specifically, ∀ε > 0, P (supθ|L̂′S(θ)− L(θ)| > ε)
M→∞−−−−→

0.
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Lemma D.2, if θ /∈ Θ∗, then there exists δ > 0 such that
L(θ) > L(θ∗) + δ(θ). Therefore,

{ω ∈ Ω|θ̂S(ω) /∈ Θ∗} ⊂ {ω ∈ Ω|L(θ̂S(ω)) > L(θ∗) + δ(θ̂S)}

∴ P
(
θ̂S /∈ Θ∗

)
≤ P

(
L(θ̂S) > L(θ∗) + δ(θ̂S)

)
.

(50)

We bound the right-hand side in the following.

L(θ̂S)− L(θ∗) = L(θ̂S)− L̂S(θ∗) + L̂S(θ∗)− L(θ∗)

≤ L(θ̂S)− L̂S(θ̂S) + L̂S(θ∗)− L(θ∗)

= L(θ̂S)− L̂′S(θ̂S) + L̂′S(θ̂S)− L̂S(θ̂S)

+ L̂S(θ∗)− L̂′S(θ∗) + L̂′S(θ∗)− L(θ∗) .

Therefore,

L(θ̂S)− L(θ∗) = |L(θ̂S)− L(θ∗)|

≤ |L(θ̂S)− L̂′S(θ̂S)|+ |L̂′S(θ̂S)− L̂S(θ̂S)|
+ |L̂S(θ∗)− L̂′S(θ∗)|+ |L̂′S(θ∗)− L(θ∗)|

≤ 2 supθ

∣∣∣L(θ)− L̂S(θ)
∣∣∣+ 2 supθ

∣∣∣L̂′S(θ)− L̂S(θ)
∣∣∣ .

Thus,

δ(θ̂S) < L(θ̂S)− L(θ∗) =⇒ δ(θ̂S) < 2 supθ

∣∣∣L(θ)− L̂S(θ)
∣∣∣+ 2 supθ

∣∣∣L̂′S(θ)− L̂S(θ)
∣∣∣ .

Hence,

P (L(θ̂S) > L(θ∗) + δ(θ̂S)) ≤ P
(
δ(θ̂S) < 2 supθ

∣∣∣L(θ)− L̂S(θ)
∣∣∣+ 2 supθ

∣∣∣L̂′S(θ)− L̂S(θ)
∣∣∣ ) .

Recall that by assumption, 2 supθ

∣∣∣L(θ)− L̂S(θ)
∣∣∣ and

2 supθ

∣∣∣L̂′S(θ)− L̂S(θ)
∣∣∣ converge in probability to zero;

hence, 2 supθ

∣∣∣L(θ)− L̂S(θ)
∣∣∣+ 2 supθ

∣∣∣L̂′S(θ)− L̂S(θ)
∣∣∣

converge in probability to zero because in general,

an
P−−−−→

n→∞
0 and bn

P−−−−→
n→∞

0 =⇒ an + bn
P−−−−→

n→∞
0 ,

where {an} and {bn} are sequences of random variables.
By definition of convergence in probability, for sufficiently
large sample sizes M ,

P
(
δ(θ̂S) < 2 supθ

∣∣∣L(θ)− L̂S(θ)
∣∣∣+ 2 supθ

∣∣∣L̂′S(θ)− L̂S(θ)
∣∣∣ ) < ε .

(51)

Combining (50) and (51), we conclude that ∀ε > 0,∃n ∈ N
s.t. ∀M > n,P (θ̂S /∈ Θ∗) < ε.

D.2. Logistic Loss and Consistency

We use the following logistic loss for DRME in the main
text:

L̂logistic(θ;S) :=
1

KT

∑
k∈[K]

∑
t∈[T ]

1

Mk

∑
i∈Ik

1

K − 1

∑
l(6=k)

log(1 + e−λ̂kl(X
(1,t)
i ;θ)) .

(52)

Note that L̂logistic resembles the LSEL but is defined as the
sum of the logarithm of the exponential (sum-log-exp), not
log-sum-exp. We can prove the consistency and the proof is
completely parallel to, and even simpler than, that of Theo-
rem 3.1; therefore, we omit the proof to avoid redundancy.
L̂logistic approaches

Llogistic[λ] =
1

KT

∑
k∈[K]

∑
t∈[T ]

E
X(1,t)

∼p(X(1,t)|y=k)

 1

K − 1

∑
l( 6=k)

log(1 + e−λkl(X
(1,t)))


(53)

as M →∞.

Additionally, we can define the modified logistic loss as

L̂modlogistic(θ;S) =
1

MT

∑
i∈[M ]

∑
t∈[T ]

1

K − 1

∑
l( 6=yi)

log(1 + ν̂−1yil e
−λ̂yil(X

(1,t)
i ;θ))

(54)

We can prove the consistency in a similar way to Theorem
D.1. L̂modlogistic approaches

Lmodlogistic[λ] =
1

T

∑
t∈[T ]

E
(X(1,t),y)

∼p(X(1,t),y)

 1

K − 1

∑
l(6=y)

log(1 + ν−1yl e
−λyl(X(1,t)))

 .
(55)

as M →∞.

Our empirical study shows that the LSEL is better than the
logistic loss (Figure 2 and Appendix E), potentially because
the LSEL weighs hard classes more than the logistic loss
(Section 3.3.2).
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E. Performance Comparison of LSEL and
Logistic Loss

Figure 6 provides the performance comparison of the LSEL
(2) and the logistic loss (52). The LSEL is consistently
better than or comparable with the logistic loss, which is
potentially because of the hard class weighting effect.

Figure 6. LSEL v.s. Logistic Loss. The LSEL is consistently
better than or at least comparable with the logistic loss. The
dataset is NMNIST-100f. The error bar is the SEM. “TAN-
DEM” means that the model is trained with the M-TANDEM
formula, “TANDEMwO” means that the model is trained with the
M-TANDEMwO formula, and “Mult” means that the multiplet
loss is simultaneously used.
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F. M-TANDEM vs. M-TANDEMwO
Formulae

The M-TANDEM and M-TANDEMwO formulae enable to
efficiently train RNNs on long sequences, which often cause
vanishing gradients (Hochreiter et al., 2001). In addition, if
a class signature is localized within a short temporal interval,
not all frames can be informative (Xing et al., 2011; McGov-
ern et al., 2011; Ghalwash & Obradovic, 2012; Ghalwash
et al., 2013; Ghalwash et al., 2014; Karim et al., 2019). The
M-TANDEM and M-TANDEMwO formulae alleviate these
problems.

Figure 7 highlights the differences between the M-
TANDEM and M-TANDEMwO formulae. The M-
TANDEM formula covers all the timestamps, while the
M-TANDEMwO formula only covers the last N + 1 times-
tamps. In two-hypothesis testing, the M-TANDEM formula
is the canonical generalization of Wald’s i.i.d. SPRT, be-
cause for N = 0 (i.i.d.), the M-TANDEM formula reduces
to λ̂1,2(X(1,T )) =

∑T
t=1 log(p(x(t)|1)/p(x(t)|2)), which

is used in the classical SPRT (Wald, 1945), while the M-
TANDEMwO formula reduces to a sum of frame-by-frame
scores when N = 0.

Figure 8 compares the performance of the M-TANDEM
and M-TANDEMwO formulae on three datasets: NMNIST,
NMNIST-H, and NMNIST-100f. NMNIST (Ebihara et al.,
2021) is similar to NMNIST-H but has much weaker noise.
On relatively short sequences (NMNIST and NMNIST-H),
the M-TANDEMwO formula is slightly better than or much
the same as the M-TANDEM formula. On longer sequences
(NMNIST-100f), the M-TANDEM formula outperforms the
M-TANDEMwO formula; the latter slightly and gradually
increases the error rate in the latter half of the sequences.
In summary, the performance of the M-TANDEM and M-
TANDEMwO formulae depends on the sequence length
of the training datasets, and we recommend using the M-
TANDEM formula as the first choice for long sequences
(& 100 frames) and the M-TANDEM formula for short
sequences (∼ 10 frames).
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Figure 7. M-TANDEM v.s. M-TANDEMwO with N = 2. The posterior densities encircled in red and blue are used in the M-
TANDEM and M-TANDEMwO formulae, respectively. We can see that the M-TANDEM formula covers all the frames, while the
M-TANDEMwO formula covers only the last N + 1 frames.
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Figure 8. M-TANDEM vs. M-TANDEMwO. Top: NMNIST.
Middle: NMNIST-H. Bottom: NMNIST-100f. TANDEM
and TANDEMwO means that the model is trained with the M-
TANDEM and M-TANDEMwO formulae, respectively. Mult
means that the multiplet loss is simultaneously used.
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G. Proofs Related to Guess-Aversion
G.1. Proof of Theorem 3.2

Proof. For any k, l ∈ [K] (k 6= l) and any s ∈ Sk,
e−(sk−sl) is less than 1 by definition of Sk. Therefore,
for any k ∈ [K], any s ∈ Sk, any s′ ∈ A, and any cost
matrix C,

`(s, k;C) := Ck log(1 +
∑
l(6=k)

e−(sk−sl)) < Ck log(1 +
∑
l(6=k)

1) = `(s′, k;C) .

G.2. NGA-LSEL Is Not Guess-Averse

The NGA-LSEL is `(s, y;C) =
∑
k(6=y) Cy,l log(1 +∑

l( 6=k) e
sl−sk) (Section 3.3.3). We prove that the NGA-

LSEL is not guess-averse by providing a counter example.

Proof. Assume that K = 3, Ckl = 1 (k 6= l), s(X(1,t)
i ) =

(3, 2,−100)>, and yi = 1. Then,

`(s(X
(1,t)
i ), yi;C) = log(1 + es1−s2 + es3−s2) + log(1 + es1−s3 + es2−s3)

= log(1 + e1 + e−102) + log(1 + e103 + e102)

> log(3) + log(3) = `(0, yi;C) .

G.3. Another cost-sensitive LSEL

Alternatively to L̂CLSEL, we can define

L̂LSCEL(θ, C;S) :=
1

MT

M∑
i=1

T∑
t=1

log(1 +
∑
l( 6=yi)

Cyile
−λ̂yil(X

(1,t)
i ;θ)) .

(56)

L̂LSCEL reduces to L̂modLSEL when Ckl = ν̂−1kl . The follow-
ing theorem shows that L̂LSCEL is guess-averse:
Theorem G.1. L̂LSCEL is guess-averse, provided that the
log-likelihood vector(

log p̂θ(X(1,t)|y = 1), log p̂θ(X(1,t)|y = 2), ..., log p̂θ(X(1,t)|y = K))
)>
∈ RK

is regarded as the score vector s(X(1,t)).

Proof. We use Lemma 1 in (Beijbom et al., 2014):

Lemma G.1 (Lemma 1 in (Beijbom et al., 2014)). Let
`(s, y;C) = γ(

∑
k∈[K] Cykφ(sy−sk)), where γ : R→ R

is a monotonically increasing function and φ : R→ R is a
function such that for any v > 0, φ(v) < φ(0). Then, ` is
guess-averse.

The statement of Theorem G.1 immediately follows by sub-
stituting γ(v) = log(1 + v) and φ(v) = e−v into Lemma
G.1.

G.4. Cost-Sensitive Logistic Losses Are Guess-Averse

We additionally prove that the cost-sensitive logistic losses
defined below are also guess-averse, which may be of in-
dependent interest. We define a cost-sensitive logistic loss
as

L̂C-logistic(θ, C;S) :=
1

MT

M∑
i=1

T∑
t=1

1

K − 1

∑
l(6=yi)

Cyil log
(

1 + e−λ̂yil(X
(1,t)
i ;θ)

)
(57)

L̂C-logistic reduces to L̂logistic (defined in Appendix D.2) if
Ckl = Ck = M/KMk. L̂C-logistic is guess-averse:

Theorem G.2. L̂C-logistic is guess-averse, provided that the
log-likelihood vector(

log p̂(X(1,t)|y = 1), log p̂(X(1,t)|y = 2), ..., log p̂(X(1,t)|y = K))
)>
∈ RK

(58)

is regarded as the score vector s(X(1,t)).

Proof. The proof is parallel to that of Theorem 3.2. For any
k, l ∈ [K] (k 6= l) and any s ∈ Sk, e−(sk−sl) is less than
1 by definition of Sk. Therefore, for any k, l ∈ [K], any
s ∈ Sk, any s′ ∈ A, and any cost matrix C,

`(s, k;C) :=
1

K − 1

∑
l(6=k)

log(1 + e−(sk−sl))Ckl <
1

K − 1

∑
l(6=k)

log(1 + 1)Ckl = `(s′, k;C) .

We also define

L̂logistic-C(θ, C;S) :=
1

MT

M∑
i=1

T∑
t=1

1

K − 1

∑
l(6=yi)

log
(

1 + Cyile
−λ̂yil(X

(1,t)
i ;θ)

)
.

(59)

L̂logistic-C reduces to L̂modlogistic if Ckl = ν̂−1kl . L̂logistic-C

is guess-averse:
Theorem G.3. L̂logistic-C is guess-averse, provided that the
log-likelihood vector(

log p̂(X(1,t)|y = 1), log p̂(X(1,t)|y = 2), ..., log p̂(X(1,t)|y = K))
)
> ∈ RK

(60)

is regarded as the score vector s(X(1,t)).

To prove Theorem G.3, we first show the following lemma:
Lemma G.2. Let

`(s, k, ;C) = γ
( ∏
l∈[K]

(1 + Cklφ(sk − sl))
)
,

where γ : R → R is a monotonically increasing function
and φ : R → R is a function such that for any v > 0,
φ(v) < φ(0). Then, ` is guess-averse.



The Power of Log-Sum-Exp: Sequential Density Ratio Matrix Estimation for Speed-Accuracy Optimization

Proof. For any s ∈ Sk and l ∈ [K],

φ(sk − sl) < φ(0) ,

because φ(v) < φ(0) and sk > sl for all v > 0 and l ∈ [K]
(l 6= k). Therefore,∏

l∈[K]

(1 + Cklφ(sk − sl)) <
∏
l∈[K]

(1 + Cklφ(0)) ,

because Ckl ≥ 0 for all k, l ∈ [K] and Ckl 6= 0 for at
least one l( 6= k). Hence, for any k ∈ [K], any s ∈ Sk, any
s′ ∈ A, and any cost matrix C, the monotonicity of γ shows
that

`(s, k;C) = γ

 ∏
k∈[K]

(1 + Cykφ(sy − sk))

 < γ

 ∏
k∈[K]

(1 + Cykφ(0))

 = `(s′, k;C) .

Proof of Theorem G.3. The statement immediately follows
from Lemma G.2 by substituting γ(v) = log(v) and φ(v) =
e−v .



The Power of Log-Sum-Exp: Sequential Density Ratio Matrix Estimation for Speed-Accuracy Optimization

H. Ablation Study of Multiplet Loss and
LSEL

Figure 9 shows the ablation study comparing the LSEL and
the multiplet loss. The combination of the LSEL and the
multiplet loss is statistically significantly better than either
of the two losses (Appendix L). The multiplet loss also per-
forms better than the LSEL. However, the independent use
of the multiplet loss has drawbacks: The multiplet loss opti-
mizes all the posterior densities output from the temporal
integrator (magenta circles in Figure 4), while the LSEL
uses the minimum posterior densities required to calculate
the LLR matrix via the M-TANDEM or M-TANDEMwO
formula. Therefore, the multiplet loss can lead to a subopti-
mal minimum for estimating the LLR matrix. In addition,
the multiplet loss tends to suffer from the overconfidence
problem (Guo et al., 2017), causing extreme values of LLRs.

Figure 9. Ablation Study of LSEL and Multiplet Loss on
NMNIST-100f. The error bars show SEM. The combination of
the LSEL with the multiplet loss gives the best result. The other
two curves represent the models trained with the LSEL only and
the multiplet loss only. Details of the experiment and the statistical
tests are given in Appendices I and L.
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I. Details of Experiment and More Results
Our computational infrastructure is DGX-1. The funda-
mental libraries used in the experiment are Numpy (Harris
et al., 2020), Scipy (Virtanen et al., 2020), Tensorflow 2.0.0
(Abadi et al., 2015) and PyTorch 1.2 (Paszke et al., 2019).

The train/test splitting of NMNIST-H and NMNIST-100f
follows the standard one of MNIST (LeCun et al., 2010).
The validation set is separated from the last 10,000 examples
in the training set. The train/test splitting of UCF101 and
HMDB51 follows the official splitting #1. The validation
set is separated from the training set, keeping the class
frequency. All the videos in UCF101 and HMDB51 are
clipped or repeated to make their temporal length equal (50
and 79, respectively). See also our official code. All the
pixel values are divided by 127.5 and then subtracted by 1
before training the feature extractor.

Hyperparameter tuning is performed with the TPE algo-
rithm (Bergstra et al., 2011), the default algorithm of Optuna
(Akiba et al., 2019). For optimizers, we use Adam, Momen-
tum, (Loshchilov & Hutter, 2019) or RMSprop (Graves,
2013). Note that Adam and Momentum are not the originals
((Kingma & Ba, 2014) and (Rumelhart et al., 1986)), but
AdamW and SGDW (Loshchilov & Hutter, 2019), which
have a decoupled weight decay from the learning rate.

To obtain arbitrary points of the SAT curve, we compute
the thresholds of MSPRT-TANDEM as follows. First, we
compute all the LLR trajectories of the test examples. Sec-
ond, we compute the maximum and minimum values of
|λ̂(X

(1,t)
i )| with respect to i ∈ [M ] and t ∈ [T ]. Third,

we generate the thresholds between the maximum and min-
imum. The thresholds are linearly uniformly separated.
Forth, we run the MSPRT and obtain a two-dimensional
point for each threshold (x = mean hitting time, y = aver-
aged per-class error rate). Finally, we plot them on the speed-
accuracy plane and linearly interpolate between two points
with neighboring mean hitting times. If all the frames in a
sequence are observed, the threshold of MSPRT-TANDEM
is immediately collapsed to zero to force a decision.

I.1. Common Feature Extractor

NMNIST-H and NMNIST-100f We first train the fea-
ture extractor to extract the bottleneck features, which are
then used to train the temporal integrator, LSTM-s/m, and
EARLIEST. Therefore, all the models in Figure 5 (MSPRT-
TANDEM, NP test, LSTM-s/m, and EARLIEST) share
exactly the same feature extractor, ResNet-110 (He et al.,
2016a;b) with the bottleneck feature dimensions set to 128.
The total number of trainable parameters is 6,904,608.

Tables 1 and 2 show the search spaces of hyperparameters.
The batch sizes are 64 and 50 for NMNIST-H and NMNIST-

100f, respectively. The numbers of training iterations are
6,200 and 40,000 for NMNIST-H and NMNIST-100f, re-
spectively. For each tuning trial, we train ResNet and eval-
uate its averaged per-class accuracy on the validation set
per 200 training steps, and after all training iterations, we
save the best averaged per-class accuracy in that tuning trial.
After all tuning trials, we choose the best hyperparameter
combination, which is shown in cyan letters in Tables 1 and
2. We train ResNet with those hyperparameters to extract
128-dimensional bottleneck features, which are then used
for the temporal integrator, LSTM-s/m, and EARLIEST.
The averaged per-class accuracies of the feature extractors
trained on NMNIST-H and on NMNIST-100f are ∼ 84%
and 43%, respectively. The approximated runtime of a sin-
gle tuning trial is 4.5 and 35 hours for NMNIST-H and
NMNIST-100f, respectively, and the GPU consumption is
31 GBs for both datasets.

UCF101 and HMDB51 We use a pre-trained model with-
out fine-tuning (Microsoft Vision ResNet-50 version 1.0.5
(Lenyk & Park)). The final feature dimensions are 2048.

Table 1. Hyperparameter Search Space of Feature Extractor
in Figure 5: NMNIST-H. The best hyperparameter combination
is highlighted in cyan.

LEARNING RATE { 10−2 , 5*10−3 , 10−3 , 5*10−4 , 10−4 }
WEIGHT DECAY { 10−3 , 10−4 , 10−5 }
OPTIMIZER { ADAM, MOMENTUM, RMSPROP }
# TUNING TRIALS 96

Table 2. Hyperparameter Search Space of Feature Extractor
in Figure 5: NMNIST-100f. The best hyperparameter combina-
tion is highlighted in cyan.

LEARNING RATE { 10−2 , 5*10−3 , 10−3 , 5*10−4 , 10−4 , 10−5 }
WEIGHT DECAY { 10−3 , 10−4 , 10−5 }
OPTIMIZER { ADAM, MOMENTUM, RMSPROP }
# TUNING TRIALS 7

I.2. Figure 5: NMNIST-H

MSPRT-TANDEM and NP test The approximation for-
mula is the M-TANDEMwO formula. The loss function
consists of the LSEL and the multiplet loss. The temporal
integrator is Peephole LSTM (Gers & Schmidhuber, 2000)
with the hidden state dimensions set to 128 followed by a
fully-connected layer to output logits for classification. The
temporal integrator has 133,760 trainable parameters. The
batch size is fixed to 500. The number of training iterations
is 5,000.
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Table 3 shows the search space of hyperparameters. For each
tuning trial, we train the temporal integrator and evaluate
its mean averaged per-class accuracy8 per every 50 training
iterations. After all training iterations, we save the best
mean averaged per-class accuracy. After all tuning trials, we
select the best combination of the hyperparameters, which
is shown in Table 3 in cyan letters.

After fixing the hyperparameters, we then train LSTM arbi-
trary times. During each statistics trial, we train LSTM with
the best fixed hyperparameters and evaluate its mean aver-
aged per-class accuracy at every 50 training iterations. After
all training iterations, we save the best weight parameters
in terms of the mean averaged per-class accuracy. After all
statistics trials, we can plot the SAT “points” with integer
hitting times. The approximated runtime of one statistic
trial is 3.5 hours, and the GPU consumption is 1.0 GB.

Table 3. Hyperparameter Search Space of MSPRT-TANDEM
in Figure 5: NMNIST-H. The best hyperparameter combination
is highlighted in cyan. γ is defined as Ltotal = Lmult + γLLSEL.

ORDER {0,1,5,10, 15,19 }
LEARNING RATE { 10−2 , 10−3 , 10−4 }
WEIGHT DECAY { 10−3 , 10−4 , 10−5 }
γ { 10−1 , 1, 10, 102 , 103}
OPTIMIZER { ADAM, RMSPROP }
# TUNING TRIALS 500

LSTM-s/m The backbone model is Peephole LSTM with
the hidden state dimensions set to 128 followed by a fully-
connected layer to output logits for classification. LSTM
has 133,760 trainable parameters. The batch size is fixed to
500. The number of training iterations is 5,000.

Tables 4 and 5 show the search spaces of hyperparameters.
For each tuning trial, we train LSTM and evaluate its mean
averaged per-class accuracy per every 50 training iterations.
After all training iterations, we save the best mean averaged
per-class accuracy. After all tuning trials, we select the
best combination of the hyperparameters, which is shown
in Tables 4 and 5 in cyan letters.

After fixing the hyperparameters, we then train LSTM ar-
bitrary times. During each statistics trial, we train LSTM
with the best fixed hyperparameters and evaluate its mean
averaged per-class accuracy per every 50 training iterations.
After all training iterations, we save the best weight parame-
ters in terms of the mean averaged per-class accuracy. After
all statistics trials, we can plot the SAT “points” with integer
hitting times. The approximated runtime of one statistics

81. Compute LLRs for all frames; 2. Run MSPRT with thresh-
old = 0 and compute framewise averaged per-class accuracy; 3.
Compute the arithmetic mean of the framewise averaged per-class
accuracy.

trial is 3.5 hours, and the GPU consumption is 1.0 GB.

Table 4. Hyperparameter Search Space of LSTM-s in Figure
5: NMNIST-H. The best hyperparameter combination is high-
lighted in cyan. γ controls the strength of monotonicity and is
defined as Ltotal = Lcross-entropy + γLranking (Ma et al., 2016).

LEARNING RATE { 10−2 , 10−3 , 10−4 , 10−5 }
WEIGHT DECAY { 10−3 , 10−4 , 10−5 }
γ { 10−2 , 10−1 , 1, 10, 102 }
OPTIMIZER { ADAM, RMSPROP }
# TUNING TRIALS 500

Table 5. Hyperparameter Search Space of LSTM-m in Figure
5: NMNIST-H. The best hyperparameter combination is high-
lighted in cyan. γ controls the strength of monotonicity and is
defined as Ltotal = Lcross-entropy + γLranking (Ma et al., 2016).

LEARNING RATE { 10−2 , 10−3 , 10−4 , 10−5 }
WEIGHT DECAY { 10−3 , 10−4 , 10−5 }
γ { 10−2 , 10−1 , 1, 10, 102 }
OPTIMIZER { ADAM, RMSPROP }
# TUNING TRIALS 500

EARLIEST The main backbone is LSTM (Hochreiter
& Schmidhuber, 1997) with the hidden state dimensions
set to 128. The whole architecture has 133,646 trainable
parameters. The batch size is 1000. The number of training
iterations is 20,000. EARLIEST has a parameter λ (Not to
be confused with the LLR matrix) that controls the speed-
accuracy tradeoff. A larger λ gives faster and less accurate
decisions, and a smaller λ gives slower and more accurate
decisions. We train EARLIEST with two different λ’s: 10−2

and 102.

Tables 6 and 7 show the search spaces of hyperparameters.
For each tuning trial, we train EARLIEST and evaluate its
averaged per-class accuracy per every 500 training iterations.
After all training iterations, we save the best averaged per-
class accuracy. After all tuning trials, we select the best
combination of the hyperparameters, which is shown in
Tables 6 and 7 in cyan letters.

After fixing the hyperparameters, we then train EARLIEST
arbitrary times. During each statistics trial, we train EAR-
LIEST with the best fixed hyperparameters and evaluate its
mean averaged per-class accuracy per every 500 training
iterations. After all training iterations, we save the best
weight parameters in terms of the mean averaged per-class
accuracy. After all statistics trials, we can plot the SAT
“points.” Note that EARLIEST cannot change the decision
policy after training, and thus one statistics trial gives only
one point on the SAT graph; therefore, several statistics
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trials give only one point with an error bar. The approx-
imated runtime of one statistics trial is 12 hours, and the
GPU consumption is 1.4 GBs.

Table 6. Hyperparameter Search Space of EARLIEST with
λ = 10−2 in Figure 5: NMNIST-H. The best hyperparameter
combination is highlighted in cyan.

LEARNING RATE { 10−1 , 10−2 , 10−3 , 10−4 , 10−5 }
WEIGHT DECAY { 10−3 , 10−4 , 10−5 }
OPTIMIZER { ADAM, RMSPROP }
# TUNING TRIALS 500

Table 7. Hyperparameter Search Space of EARLIEST with
λ = 102 in Figure 5: NMNIST-H. The best hyperparameter
combination is highlighted in cyan.

LEARNING RATE { 10−1 , 10−2 , 10−3 , 10−4 , 10−5 }
WEIGHT DECAY { 10−3 , 10−4 , 10−5 }
OPTIMIZER { ADAM, RMSPROP }
# TUNING TRIALS 500

I.3. Figure 5: NMNIST-100f

MSPRT-TANDEM and NP test The approximation for-
mula is the M-TANDEM formula. The loss function con-
sists of the LSEL and the multiplet loss. The temporal
integrator is Peephole LSTM (Gers & Schmidhuber, 2000)
with the hidden state dimensions set to 128 followed by a
fully-connected layer to output logits for classification. The
temporal integrator has 133,760 trainable parameters. The
batch size is fixed to 100. The number of training iterations
is 5,000.

Table 8 shows the search space of hyperparameters. For each
tuning trial, we train the temporal integrator and evaluate
its mean averaged per-class accuracy per every 200 training
iterations. After all training iterations, we save the best
mean averaged per-class accuracy. After all tuning trials, we
select the best combination of the hyperparameters, which is
shown in Table 8 in cyan letters. The approximated runtime
of one statistics trial is 1 hour, and the GPU consumption is
8.7 GBs.

LSTM-s/m The backbone model is Peephole LSTM with
the hidden state dimensions set to 128 followed by a fully-
connected layer to output logits for classification. LSTM
has 133,760 trainable parameters. The batch size is fixed to
500. The number of training iterations is 5,000.

Tables 9 and 10 show the search spaces of hyperparameters.
For each tuning trial, we train LSTM and evaluate its mean
averaged per-class accuracy per every 100 training iterations.

Table 8. Hyperparameter Search Space of MSPRT-TANDEM
in Figure 5: NMNIST-100f. The best hyperparameter combi-
nation is highlighted in cyan. γ is defined as Ltotal = Lmult +
γLLSEL.

ORDER { 0, 25, 50, 75, 99 }
LEARNING RATE { 10−2 , 10−3 , 10−4 }
WEIGHT DECAY { 10−3 , 10−4 , 10−5 }
γ { 10−1 , 1, 10, 102 , 103}
OPTIMIZER { ADAM, RMSPROP }
# TUNING TRIALS 200

After all training iterations, we save the best mean averaged
per-class accuracy. After all tuning trials, we select the
best combination of the hyperparameters, which is shown
in Tables 9 and 10 in cyan letters.

The approximated runtime of one statistics trial is 5 hours,
and the GPU consumption is 2.6 GBs.

Table 9. Hyperparameter Search Space of LSTM-s in Figure
5: NMNIST-100f. The best hyperparameter combination is high-
lighted in cyan. γ controls the strength of monotonicity and is
defined as Ltotal = Lcross-entropy + γLranking (Ma et al., 2016).

LEARNING RATE { 10−2 , 10−3 , 10−4 , 10−5 }
WEIGHT DECAY { 10−3 , 10−4 , 10−5 }
γ { 10−2 , 10−1 , 1, 10, 102 }
OPTIMIZER { ADAM, RMSPROP }
# TUNING TRIALS 200

Table 10. Hyperparameter Search Space of LSTM-m in Fig-
ure 5: NMNIST-100f. The best hyperparameter combination is
highlighted in cyan. γ controls the strength of monotonicity and is
defined as Ltotal = Lcross-entropy + γLranking (Ma et al., 2016).

LEARNING RATE { 10−2 , 10−3 , 10−4 , 10−5 }
WEIGHT DECAY { 10−3 , 10−4 , 10−5 }
γ { 10−2 , 10−1 , 1, 10, 102 }
OPTIMIZER { ADAM, RMSPROP }
# TUNING TRIALS 200

EARLIEST The main backbone is LSTM (Hochreiter
& Schmidhuber, 1997) with the hidden state dimensions
set to 128. The whole architecture has 133,646 trainable
parameters. The batch size is 1000. The number of training
iterations is 20,000. We train EARLIEST with two different
λ’s: 10−2 and 10−4.

Tables 11 and 12 show the search spaces of hyperparameters.
For each tuning trial, we train EARLIEST and evaluate its
averaged per-class accuracy per every 500 training iterations.
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After all training iterations, we save the best averaged per-
class accuracy. After all tuning trials, we select the best
combination of the hyperparameters, which is shown in
Tables 11 and 12 in cyan letters. The approximated runtime
of a single tuning trial is 14 hours, and the GPU consumption
is 2.0 GBs.

Table 11. Hyperparameter Search Space of EARLIEST with
λ = 10−2 in Figure 5: NMNIST-100f. The best hyperparameter
combination is highlighted in cyan.

LEARNING RATE { 10−1 , 10−2 , 10−3 , 10−4 , 10−5 }
WEIGHT DECAY { 10−3 , 10−4 , 10−5 }
OPTIMIZER { ADAM, RMSPROP }
# TUNING TRIALS 200

Table 12. Hyperparameter Search Space of EARLIEST with
λ = 10−4 in Figure 5: NMNIST-100f. The best hyperparameter
combination is highlighted in cyan.

LEARNING RATE { 10−1 , 10−2 , 10−3 , 10−4 , 10−5 }
WEIGHT DECAY { 10−3 , 10−4 , 10−5 }
OPTIMIZER { ADAM, RMSPROP }
# TUNING TRIALS 200

I.4. Figure 5: UCF101

MSPRT-TANDEM and NP test The approximation for-
mula is the M-TANDEM formula. The loss function con-
sists of the LSEL and the multiplet loss. The temporal
integrator is Peephole LSTM (Gers & Schmidhuber, 2000)
with the hidden state dimensions set to 256 followed by a
fully-connected layer to output logits for classification. The
temporal integrator has 2,387,456 trainable parameters. The
batch size is fixed to 256. The number of training iterations
is 10,000. We use the effective number (Cui et al., 2019)
as the cost matrix of the LSEL, instead of 1/Mk, to avoid
over-emphasizing the minority class and to simplify the pa-
rameter tuning (only one extra parameter β is introduced).

Table 13 shows the search space of hyperparameters. For
each tuning trial, we train the temporal integrator and eval-
uate its mean averaged per-class accuracy per every 200
training iterations. After all training iterations, we save the
best mean averaged per-class accuracy. After all tuning tri-
als, we select the best combination of the hyperparameters,
which is shown in Table 13 in cyan letters. The approxi-
mated runtime of one statistics trial is 8 hours, and the GPU
consumption is 16–32 GBs.

LSTM-s/m The backbone model is Peephole LSTM with
the hidden state dimensions set to 256 followed by a fully-
connected layer to output logits for classification. LSTM

Table 13. Hyperparameter Search Space of MSPRT-
TANDEM in Figure 5: UCF101. The best hyperparam-
eter combination is highlighted in cyan. γ is defined as
Ltotal = Lmult + γLLSEL. β controls the cost matrix (Cui et al.,
2019).

ORDER { 0, 10, 25, 40, 49 }
LEARNING RATE { 10−3 , 10−4 , 10−5 }
WEIGHT DECAY { 10−3 , 10−4 , 10−5 }
γ { 10−1 , 1, 10, 102 }
OPTIMIZER { ADAM, RMSPROP }
β { 0.99, 0.999, 0.9999, 0.99999, 1. }
# TUNING TRIALS 100

has 2,387,456 trainable parameters. The batch size is fixed
to 256. The number of training iterations is 5,000.

Tables 14 and 15 show the search spaces of hyperparameters.
For each tuning trial, we train LSTM and evaluate its mean
averaged per-class accuracy per every 200 training iterations.
After all training iterations, we save the best mean averaged
per-class accuracy. After all tuning trials, we select the
best combination of the hyperparameters, which is shown in
Tables 14 and 15 in cyan letters. The approximated runtime
of one statistics trial is 3 hours, and the GPU consumption
is 2.6 GBs.

Table 14. Hyperparameter Search Space of LSTM-s in Figure
5: UCF101. The best hyperparameter combination is highlighted
in cyan. γ controls the strength of monotonicity and is defined as
Ltotal = Lcross-entropy + γLranking (Ma et al., 2016).

LEARNING RATE { 10−2 , 10−3 , 10−4 , 10−5 }
WEIGHT DECAY { 10−3 , 10−4 , 10−5 }
γ { 10−2 , 10−1 , 1, 10, 102 }
OPTIMIZER { ADAM, RMSPROP }
# TUNING TRIALS 100

Table 15. Hyperparameter Search Space of LSTM-m in Fig-
ure 5: UCF101. The best hyperparameter combination is high-
lighted in cyan. γ controls the strength of monotonicity and is
defined as Ltotal = Lcross-entropy + γLranking (Ma et al., 2016).

LEARNING RATE { 10−2 , 10−3 , 10−4 , 10−5 }
WEIGHT DECAY { 10−3 , 10−4 , 10−5 }
γ { 10−2 , 10−1 , 1, 10, 102 }
OPTIMIZER { ADAM, RMSPROP }
# TUNING TRIALS 100

EARLIEST The main backbone is LSTM (Hochreiter
& Schmidhuber, 1997) with the hidden state dimensions
set to 256. The whole architecture has 2,387,817 trainable
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parameters. The batch size is 256. The number of training
iterations is 5,000. We train EARLIEST with two different
λ’s: 10−1 and 10−10.

Tables 16 and 17 show the search spaces of hyperparameters.
For each tuning trial, we train EARLIEST and evaluate its
averaged per-class accuracy per every 500 training itera-
tions. After all training iterations, we save the best averaged
per-class accuracy. After all tuning trials, we select the best
combination of the hyperparameters, which is shown in Ta-
bles 16 and 17 in cyan letters. The approximated runtime of
a single tuning trial is 0.5 hours, and the GPU consumption
is 2.0 GBs.

Table 16. Hyperparameter Search Space of EARLIEST with
λ = 10−1 in Figure 5: UCF101. The best hyperparameter com-
bination is highlighted in cyan.

LEARNING RATE { 10−1 , 10−2 , 10−3 , 10−4 , 10−5 }
WEIGHT DECAY { 10−3 , 10−4 , 10−5 }
OPTIMIZER { ADAM, RMSPROP }
# TUNING TRIALS 100

Table 17. Hyperparameter Search Space of EARLIEST with
λ = 10−10 in Figure 5: UCF101. The best hyperparameter
combination is highlighted in cyan.

LEARNING RATE { 10−1 , 10−2 , 10−3 , 10−4 , 10−5 }
WEIGHT DECAY { 10−3 , 10−4 , 10−5 }
OPTIMIZER { ADAM, RMSPROP }
# TUNING TRIALS 100

I.5. Figure 5: HMDB51

MSPRT-TANDEM and NP test The approximation for-
mula is the M-TANDEM formula. The loss function con-
sists of the LSEL and the multiplet loss. The temporal
integrator is Peephole LSTM (Gers & Schmidhuber, 2000)
with the hidden state dimensions set to 256 followed by a
fully-connected layer to output logits for classification. The
temporal integrator has 2,374,656 trainable parameters. The
batch size is fixed to 128. The number of training iterations
is 10,000. We use the effective number (Cui et al., 2019)
as the cost matrix of the LSEL, instead of 1/Mk, to avoid
over-emphasising the minority class and to simplify the pa-
rameter tuning (only one extra parameter β is introduced).

Table 18 shows the search space of hyperparameters. For
each tuning trial, we train the temporal integrator and eval-
uate its mean averaged per-class accuracy per every 200
training iterations. After all training iterations, we save the
best mean averaged per-class accuracy. After all tuning tri-
als, we select the best combination of the hyperparameters,

which is shown in Table 18 in cyan letters. The approxi-
mated runtime of one statistics trial is 8 hours, and the GPU
consumption is 16–32 GBs.

Table 18. Hyperparameter Search Space of MSPRT-
TANDEM in Figure 5: HMDB51. The best hyperparam-
eter combination is highlighted in cyan. γ is defined as
Ltotal = Lmult + γLLSEL. β controls the cost matrix (Cui et al.,
2019).

ORDER { 0, 10, 40, 60, 78 }
LEARNING RATE { 10−3 , 10−4 , 10−5 }
WEIGHT DECAY { 10−3 , 10−4 , 10−5 }
γ { 10−1 , 1, 10, 102 }
OPTIMIZER { ADAM, RMSPROP }
β { 0.99, 0.999, 0.9999, 0.99999, 1. }
# TUNING TRIALS 100

LSTM-s/m The backbone model is Peephole LSTM with
the hidden state dimensions set to 256 followed by a fully-
connected layer to output logits for classification. LSTM
has 2,374,656 trainable parameters. The batch size is fixed
to 128. The number of training iterations is 10,000.

Tables 19 and 20 show the search spaces of hyperparameters.
For each tuning trial, we train LSTM and evaluate its mean
averaged per-class accuracy per every 200 training iterations.
After all training iterations, we save the best mean averaged
per-class accuracy. After all tuning trials, we select the
best combination of the hyperparameters, which is shown in
Tables 19 and 20 in cyan letters. The approximated runtime
of one statistics trial is 3 hours, and the GPU consumption
is 2.6 GBs.

Table 19. Hyperparameter Search Space of LSTM-s in Figure
5: HMDB51. The best hyperparameter combination is highlighted
in cyan. γ controls the strength of monotonicity and is defined as
Ltotal = Lcross-entropy + γLranking (Ma et al., 2016).

LEARNING RATE { 10−2 , 10−3 , 10−4 , 10−5 }
WEIGHT DECAY { 10−3 , 10−4 , 10−5 }
γ { 10−2 , 10−1 , 1, 10, 102 }
OPTIMIZER { RMSPROP }
# TUNING TRIALS 100

EARLIEST The main backbone is LSTM (Hochreiter
& Schmidhuber, 1997) with the hidden state dimensions
set to 256. The whole architecture has 2,374,967 trainable
parameters. The batch size is 256. The number of training
iterations is 5,000. We train EARLIEST with two different
λ’s: 10−1 and 10−10.

Tables 21 and 22 show the search spaces of hyperparameters.
For each tuning trial, we train EARLIEST and evaluate its
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Table 20. Hyperparameter Search Space of LSTM-m in Fig-
ure 5: HMDB51. The best hyperparameter combination is high-
lighted in cyan. γ controls the strength of monotonicity and is
defined as Ltotal = Lcross-entropy + γLranking (Ma et al., 2016).

LEARNING RATE { 10−2 , 10−3 , 10−4 , 10−5 }
WEIGHT DECAY { 10−3 , 10−4 , 10−5 }
γ { 10−2 , 10−1 , 1, 10, 102 }
OPTIMIZER { ADAM, RMSPROP }
# TUNING TRIALS 100

averaged per-class accuracy per every 500 training itera-
tions. After all training iterations, we save the best averaged
per-class accuracy. After all tuning trials, we select the best
combination of the hyperparameters, which is shown in Ta-
bles 21 and 22 in cyan letters. The approximated runtime of
a single tuning trial is 0.5 hours, and the GPU consumption
is 2.0 GBs.

Table 21. Hyperparameter Search Space of EARLIEST with
λ = 10−1 in Figure 5: HMDB51. The best hyperparameter
combination is highlighted in cyan.

LEARNING RATE { 10−1 , 10−2 , 10−3 , 10−4 , 10−5 }
WEIGHT DECAY { 10−3 , 10−4 , 10−5 }
OPTIMIZER { ADAM, RMSPROP }
# TUNING TRIALS 100

Table 22. Hyperparameter Search Space of EARLIEST with
λ = 10−10 in Figure 5: HMDB51. The best hyperparameter
combination is highlighted in cyan.

LEARNING RATE { 10−1 , 10−2 , 10−3 , 10−4 , 10−5 }
WEIGHT DECAY { 10−3 , 10−4 , 10−5 }
OPTIMIZER { ADAM, RMSPROP }
# TUNING TRIALS 100

I.6. Figure 1: LLR Trajectories

We plot ten different i’s randomly selected from the valida-
tion set of NMNIST-100f. The base temporal integrator is
selected from the models used for NMNIST-100f in Figure
5. More example trajectories are shown in Figure 10 in
Appendix J.

I.7. Figure 9: Ablation Study of LSEL and Multiplet
Loss

The training procedure is totally similar to that of Figure 5.
Tables 23 and 24 show the search spaces of hyperparameters.
“TANDEM LSEL+Mult” is the same model as “MSPRT-
TANDEM” in Figure 5 (NMNIST-100f).

Table 23. Hyperparameter Search Space of “TANDEM Mult”
in Figure 9. The best hyperparameter combination is highlighted
in cyan.

ORDER { 0, 25, 50, 75, 99 }
LEARNING RATE { 10−2 , 10−3 , 10−4 }
WEIGHT DECAY { 10−3 , 10−4 , 10−5 }
γ N/A
OPTIMIZER { ADAM, RMSPROP }
# TUNING TRIALS 200

Table 24. Hyperparameter Search Space of “TANDEM LSEL”
in Figure 9. The best hyperparameter combination is highlighted
in cyan.

ORDER { 0, 25, 50, 75, 99 }
LEARNING RATE { 10−2 , 10−3 , 10−4 }
WEIGHT DECAY { 10−3 , 10−4 , 10−5 }
γ { 10−1 , 1, 10, 102 , 103}
OPTIMIZER { ADAM, RMSPROP }
# TUNING TRIALS 200
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I.8. Figure 2 Top: LSEL v.s. Binary DRE-based Losses

We define the loss functions used in Figure 2. Conventional
DRE losses are often biased (LLLR), unbounded (LSIF
and DSKL), or numerically unstable (LSIF, LSIFwC, and
BARR), especially when applied to multiclass classification,
leading to suboptimal performances (Figure 2).) Because
conventional DRE losses are restricted to binary DRE, we
modify two LSIF-based and three KLIEP-based loss func-
tions for DRME. The logistic loss we use is introduced in
Appendix D.

The original LSIF (Kanamori et al., 2009) is based on a
kernel method and estimates density ratios via minimizing
the mean squared error between p and r̂q ( r̂ := p̂/q̂ ). We
define a variant of LSIF for DRME as

L̂LSIF :=
∑
t∈[T ]

∑
k,l∈[K]
(k 6=l)

[
1

Ml

∑
i∈Il

Λ̂2
kl(X

(1,t)
i )− 1

Mk

∑
i∈Ik

Λ̂kl(X
(1,t)
i )

]
,

(61)

where the likelihood ratio is denoted by Λ̂(X) := eλ̂(X) =
p̂(X|k)/p̂(X|l). Because of the k, l-summation, L̂LSIF is
symmetric with respect to the denominator and numera-
tor, unlike the original LSIF. Therefore, we can expect that
L̂LSIF is more stable than the original one. However, L̂LSIF

inherits the problems of the original LSIF; it is unbounded
and numerically unstable. The latter is due to dealing with
Λ̂ directly, which easily explodes when the denominator is
small. This instability is not negligible, especially when
LSIF is used with DNNs. The following LSIF with Con-
straint (LSIFwC)9 avoids the explosion by adding a con-
straint:

L̂LSIFwC :=
∑
t∈[T ]

∑
k,l∈[K]
(k 6=l)

[
1

Ml

∑
i∈Il

Λ̂2
kl(X
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∑
i∈Ik
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+ γ

∣∣∣∣ 1

Ml

∑
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Λ̂kl(X
(1,t)
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∣∣∣∣] ,
(62)

where γ > 0 is a hyperparameter. L̂LSIFwC is symmet-
ric and bounded for sufficiently large γ. However, it is
still numerically unstable due to Λ̂. Note that the con-
straint term is equivalent to the probability normalization∫
dx p(x|l) (p̂(x|k)/p̂(x|l)) = 1.

DSKL (Khan et al., 2019), BARR (Khan et al., 2019), and
LLLR (Ebihara et al., 2021) are based on KLIEP (Sugiyama
et al., 2008), which estimates density ratios via minimizing
the Kullback-Leibler divergence (Kullback & Leibler, 1951)
between p and r̂q ( r̂ := p̂/q̂ ). We define a variant of

9Do not confuse this with cLSIF (Kanamori et al., 2009).

DSKL for DRME as

L̂DSKL :=
∑
t∈[T ]

∑
k,l∈[K]
(k 6=l)

[
1

Ml

∑
i∈Il

λ̂kl(X
(1,t)
i )− 1

Mk

∑
i∈Ik

λ̂kl(X
(1,t)
i )

]

(63)

The original DSKL is symmetric, and the same is true for
L̂BARR, while the original KLIEP is not. L̂BARR is rela-
tively stable compared with L̂LSIF and L̂LSIFwC because it
does not include Λ̂ but λ̂; still, L̂DSKL is unbounded and
can diverge. BARR for DRME is

L̂BARR :=
∑
t∈[T ]

∑
k,l∈[K]
(k 6=l)

[
− 1

Mk

∑
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]
,

(64)

where γ > 0 is a hyperparameter. L̂BARR is symmetric
and bounded because of the second term but is numerically
unstable because of Λ̂. LLLR for DRME is

L̂LLLR :=
∑
t∈[T ]

∑
k,l∈[K]
(k 6=l)

1

Mk +Ml

[∑
i∈Il

σ(λ̂kl(X
(1,t)
i )) +

∑
i∈Ik

(1− σ(λ̂kl(X
(1,t)
i )))

]
,

(65)

where σ is the sigmoid function. LLLR is symmetric,
bounded, and numerically stable but is biased in the sense
that it does not necessarily converge to the optimal solution
λ; i.e., the probability normalization constraint, which is
explicitly included in the original KLIEP, cannot be exactly
satisfied. Finally, the logistic loss is defined as (52).

All the models share the same feature extractor (Appendix
I.1) and temporal integrator (Appendix I.2) without the M-
TANDEM(wO) approximation or multiplet loss. The search
spaces of hyperparameters are given in Tables 25–31. The
other setting follows Appendix I.2.

Table 25. Hyperparameter Search Space of LSIF in Figure 2
Top. The best hyperparameter combination is highlighted in cyan.

LEARNING RATE { 10−3 , 10−4 , 10−5 , 10−6 }
WEIGHT DECAY { 10−2 , 10−3 , 10−4 , 10−5 }
OPTIMIZER { ADAM, RMSPROP, MOMENTUM }
# TUNING TRIALS 150

I.9. Figure 2 Bottom: LSEL v.s. Logistic Loss

The experimental condition follows that of Appendix I.3.
The logistic loss is defined as (52). The hyperparameters
are given in Tables 32 and 33.
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Table 26. Hyperparameter Search Space of LSIFwC in Figure
2 Top. The best hyperparameter combination is highlighted in
cyan.

LEARNING RATE { 10−3 , 10−4 , 10−5 , 10−6 }
WEIGHT DECAY { 10−2 , 10−3 , 10−4 , 10−5 }
γ { 10−4 , 10−3 , 10−2 , 1, 10 }
OPTIMIZER { ADAM, RMSPROP, MOMENTUM }
# TUNING TRIALS 150

Table 27. Hyperparameter Search Space of DSKL in Figure 2
Top. The best hyperparameter combination is highlighted in cyan.

LEARNING RATE { 10−3 , 10−4 , 10−5 , 10−6 }
WEIGHT DECAY { 10−2 , 10−3 , 10−4 , 10−5 }
OPTIMIZER { ADAM, RMSPROP, MOMENTUM }
# TUNING TRIALS 150

Table 28. Hyperparameter Search Space of BARR in Figure 2
Top. The best hyperparameter combination is highlighted in cyan.

LEARNING RATE { 10−3 , 10−4 , 10−5 , 10−6 }
WEIGHT DECAY { 10−2 , 10−3 , 10−4 , 10−5 }
γ { 10−4 , 10−3 , 10−2 , 1, 10 }
OPTIMIZER { ADAM, RMSPROP, MOMENTUM }
# TUNING TRIALS 150

Table 29. Hyperparameter Search Space of LLLR in Figure 2
Top. The best hyperparameter combination is highlighted in cyan.

LEARNING RATE { 10−3 , 10−4 , 10−5 , 10−6 }
WEIGHT DECAY { 10−2 , 10−3 , 10−4 , 10−5 }
OPTIMIZER { ADAM, RMSPROP, MOMENTUM }
# TUNING TRIALS 150

Table 30. Hyperparameter Search Space of Logistic Loss in
Figure 2 Top. The best hyperparameter combination is highlighted
in cyan.

LEARNING RATE { 10−3 , 10−4 , 10−5 , 10−6 }
WEIGHT DECAY { 10−2 , 10−3 , 10−4 , 10−5 }
OPTIMIZER { ADAM, RMSPROP, MOMENTUM }
# TUNING TRIALS 150

Table 31. Hyperparameter Search Space of LSEL in Figure 2
Top. The best hyperparameter combination is highlighted in cyan.

LEARNING RATE { 10−3 , 10−4 , 10−5 , 10−6 }
WEIGHT DECAY { 10−2 , 10−3 , 10−4 , 10−5 }
OPTIMIZER { ADAM, RMSPROP, MOMENTUM }
# TUNING TRIALS 150

Table 32. Hyperparameter Search Space of Logistic Loss in
Figure 2 Bottom. The best hyperparameter combination is high-
lighted in cyan.

ORDER { 0, 25, 50, 75, 99 }
LEARNING RATE { 10−2 , 10−3 , 10−4 }
WEIGHT DECAY { 10−3 , 10−4 , 10−5 }
γ { 10−1 , 1, 10, 102 , 103}
OPTIMIZER { ADAM, RMSPROP }
# TUNING TRIALS 300

Table 33. Hyperparameter Search Space of LSEL in Figure 2
Bottom. The best hyperparameter combination is highlighted in
cyan.

ORDER { 0, 25, 50, 75, 99 }
LEARNING RATE { 10−2 , 10−3 , 10−4 }
WEIGHT DECAY { 10−3 , 10−4 , 10−5 }
γ { 10−1 , 1, 10, 102 , 103}
OPTIMIZER { ADAM, RMSPROP }
# TUNING TRIALS 300
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I.10. Exact Error Rates in Figures 5 and 9

Tables 34–41 show the averaged per-class error rates plotted
in the figures in Section 4.
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Table 34. Averaged Per-Class Error Rates (%) and SEM of Figure 2 (Top: NMNIST-H). Blanks mean N/A.

TIME LSIF LSIFWC DSKL BARR

1.00 83.822 ± 2.142 81.585 ± 2.908 66.579 ± 0.108
2.00 73.330 ± 2.142 67.749 ± 2.908 45.145 ± 0.170 45.902 ± 0.108
3.00 70.492 ± 2.142 63.237 ± 2.908 30.719 ± 0.170 30.698 ± 0.108
4.00 68.258 ± 2.142 60.061 ± 2.908 20.409 ± 0.170 20.172 ± 0.108
5.00 66.485 ± 2.142 57.860 ± 2.908 18.102 ± 0.170 12.990 ± 0.108
6.00 64.975 ± 2.142 55.939 ± 2.908 17.899 ± 0.170 8.374 ± 0.108
7.00 63.549 ± 2.142 54.317 ± 2.908 14.442 ± 0.170 5.529 ± 0.108
8.00 62.137 ± 2.142 52.635 ± 2.908 12.942 ± 0.170 3.993 ± 0.108
9.00 60.551 ± 2.142 50.886 ± 2.908 11.681 ± 0.170 3.202 ± 0.108
10.00 58.657 ± 2.142 48.947 ± 2.908 10.368 ± 0.170 2.787 ± 0.108
11.00 56.716 ± 2.142 46.501 ± 2.908 9.858 ± 0.170 2.563 ± 0.108
12.00 54.976 ± 2.142 44.114 ± 2.908 8.493 ± 0.170 2.457 ± 0.108
13.00 52.800 ± 2.142 41.901 ± 2.908 7.909 ± 0.170 2.404 ± 0.108
14.00 49.940 ± 2.142 40.073 ± 2.908 7.151 ± 0.170 2.376 ± 0.108
15.00 47.293 ± 2.142 38.990 ± 2.908 6.216 ± 0.170 2.359 ± 0.108
16.00 45.203 ± 2.142 38.013 ± 2.908 5.821 ± 0.170 2.352 ± 0.108
17.00 42.664 ± 2.142 36.799 ± 2.908 4.632 ± 0.170 2.348 ± 0.108
18.00 38.406 ± 2.142 34.540 ± 2.908 3.971 ± 0.170 2.345 ± 0.108
19.00 32.666 ± 2.142 30.737 ± 2.908 3.484 ± 0.170 2.343 ± 0.108
20.00 30.511 ± 2.142 29.880 ± 2.908 2.088 ± 0.170 2.343 ± 0.108

TRIALS 40 40 60 40

TIME LLLR LOGISTIC LSEL

1.00 63.930 ± 0.026 63.956 ± 0.020
2.00 44.250 ± 0.026 43.873 ± 0.097 43.918 ± 0.020
3.00 30.693 ± 0.026 29.058 ± 0.097 28.957 ± 0.020
4.00 21.370 ± 0.026 18.973 ± 0.097 18.865 ± 0.020
5.00 14.834 ± 0.026 11.992 ± 0.097 11.910 ± 0.020
6.00 10.386 ± 0.026 7.522 ± 0.097 7.444 ± 0.020
7.00 7.516 ± 0.026 4.970 ± 0.097 4.877 ± 0.020
8.00 5.693 ± 0.026 3.485 ± 0.097 3.403 ± 0.020
9.00 4.563 ± 0.026 2.702 ± 0.097 2.647 ± 0.020
10.00 3.818 ± 0.026 2.326 ± 0.097 2.288 ± 0.020
11.00 3.316 ± 0.026 2.133 ± 0.097 2.103 ± 0.020
12.00 2.961 ± 0.026 2.030 ± 0.097 2.010 ± 0.020
13.00 2.705 ± 0.026 1.985 ± 0.097 1.977 ± 0.020
14.00 2.516 ± 0.026 1.964 ± 0.097 1.956 ± 0.020
15.00 2.365 ± 0.026 1.951 ± 0.097 1.941 ± 0.020
16.00 2.254 ± 0.026 1.943 ± 0.097 1.934 ± 0.020
17.00 2.163 ± 0.026 1.938 ± 0.097 1.932 ± 0.020
18.00 2.094 ± 0.026 1.937 ± 0.097 1.932 ± 0.020
19.00 2.036 ± 0.026 1.937 ± 0.097 1.932 ± 0.020
20.00 1.968 ± 0.026 1.937 ± 0.097 1.932 ± 0.020

TRIALS 80 80 80
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Table 35. Averaged Per-Class Error Rates (%) and SEM of Figure 2 (Bottom: NMNIST-100f). Frames 1–50. Blanks mean N/A.

TIME LOGISTIC (WITH M-TANDEM) LSEL (WITH M-TANDEM)

1.00 56.273 ± 0.045 56.196 ± 0.044
2.00 37.772 ± 0.045 37.492 ± 0.044
3.00 27.922 ± 0.045 27.520 ± 0.044
4.00 22.282 ± 0.045 21.889 ± 0.044
5.00 18.725 ± 0.045 18.369 ± 0.044
6.00 16.251 ± 0.045 15.901 ± 0.044
7.00 14.383 ± 0.045 14.035 ± 0.044
8.00 12.898 ± 0.045 12.590 ± 0.044
9.00 11.730 ± 0.045 11.421 ± 0.044
10.00 10.758 ± 0.045 10.468 ± 0.044
11.00 9.943 ± 0.045 9.659 ± 0.044
12.00 9.245 ± 0.045 8.992 ± 0.044
13.00 8.663 ± 0.045 8.410 ± 0.044
14.00 8.158 ± 0.045 7.907 ± 0.044
15.00 7.721 ± 0.045 7.472 ± 0.044
16.00 7.341 ± 0.045 7.096 ± 0.044
17.00 7.006 ± 0.045 6.776 ± 0.044
18.00 6.717 ± 0.045 6.498 ± 0.044
19.00 6.476 ± 0.045 6.257 ± 0.044
20.00 6.258 ± 0.045 6.041 ± 0.044
21.00 6.069 ± 0.045 5.851 ± 0.044
22.00 5.900 ± 0.045 5.686 ± 0.044
23.00 5.748 ± 0.045 5.545 ± 0.044
24.00 5.615 ± 0.045 5.423 ± 0.044
25.00 5.502 ± 0.045 5.317 ± 0.044
26.00 5.406 ± 0.045 5.221 ± 0.044
27.00 5.318 ± 0.045 5.136 ± 0.044
28.00 5.246 ± 0.045 5.064 ± 0.044
29.00 5.175 ± 0.045 5.001 ± 0.044
30.00 5.114 ± 0.045 4.947 ± 0.044
31.00 5.057 ± 0.045 4.898 ± 0.044
32.00 5.011 ± 0.045 4.854 ± 0.044
33.00 4.974 ± 0.045 4.816 ± 0.044
34.00 4.939 ± 0.045 4.784 ± 0.044
35.00 4.908 ± 0.045 4.757 ± 0.044
36.00 4.882 ± 0.045 4.733 ± 0.044
37.00 4.858 ± 0.045 4.713 ± 0.044
38.00 4.837 ± 0.045 4.694 ± 0.044
39.00 4.818 ± 0.045 4.676 ± 0.044
40.00 4.801 ± 0.045 4.661 ± 0.044
41.00 4.786 ± 0.045 4.649 ± 0.044
42.00 4.773 ± 0.045 4.639 ± 0.044
43.00 4.761 ± 0.045 4.630 ± 0.044
44.00 4.751 ± 0.045 4.623 ± 0.044
45.00 4.742 ± 0.045 4.615 ± 0.044
46.00 4.735 ± 0.045 4.608 ± 0.044
47.00 4.727 ± 0.045 4.604 ± 0.044
48.00 4.722 ± 0.045 4.598 ± 0.044
49.00 4.716 ± 0.045 4.594 ± 0.044
50.00 4.711 ± 0.045 4.590 ± 0.044
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Table 36. Averaged Per-Class Error Rates (%) and SEM of Figure 2 (Bottom: NMNIST-100f). Frames 51–100. Blanks mean
N/A.

TIME LOGISTIC (WITH M-TANDEM) LSEL (WITH M-TANDEM)

51.00 4.706 ± 0.045 4.587 ± 0.044
52.00 4.703 ± 0.045 4.586 ± 0.044
53.00 4.700 ± 0.045 4.584 ± 0.044
54.00 4.697 ± 0.045 4.580 ± 0.044
55.00 4.694 ± 0.045 4.577 ± 0.044
56.00 4.692 ± 0.045 4.576 ± 0.044
57.00 4.690 ± 0.045 4.575 ± 0.044
58.00 4.688 ± 0.045 4.573 ± 0.044
59.00 4.687 ± 0.045 4.572 ± 0.044
60.00 4.686 ± 0.045 4.572 ± 0.044
61.00 4.685 ± 0.045 4.571 ± 0.044
62.00 4.684 ± 0.045 4.570 ± 0.044
63.00 4.683 ± 0.045 4.569 ± 0.044
64.00 4.683 ± 0.045 4.569 ± 0.044
65.00 4.682 ± 0.045 4.569 ± 0.044
66.00 4.681 ± 0.045 4.568 ± 0.044
67.00 4.681 ± 0.045 4.568 ± 0.044
68.00 4.680 ± 0.045 4.567 ± 0.044
69.00 4.679 ± 0.045 4.567 ± 0.044
70.00 4.678 ± 0.045 4.567 ± 0.044
71.00 4.678 ± 0.045 4.566 ± 0.044
72.00 4.678 ± 0.045 4.566 ± 0.044
73.00 4.678 ± 0.045 4.565 ± 0.044
74.00 4.678 ± 0.045 4.565 ± 0.044
75.00 4.678 ± 0.045 4.565 ± 0.044
76.00 4.678 ± 0.045 4.565 ± 0.044
77.00 4.678 ± 0.045 4.565 ± 0.044
78.00 4.677 ± 0.045 4.565 ± 0.044
79.00 4.677 ± 0.045 4.564 ± 0.044
80.00 4.676 ± 0.045 4.565 ± 0.044
81.00 4.676 ± 0.045 4.564 ± 0.044
82.00 4.676 ± 0.045 4.564 ± 0.044
83.00 4.676 ± 0.045 4.564 ± 0.044
84.00 4.676 ± 0.045 4.564 ± 0.044
85.00 4.676 ± 0.045 4.564 ± 0.044
86.00 4.676 ± 0.045 4.564 ± 0.044
87.00 4.676 ± 0.045 4.564 ± 0.044
88.00 4.676 ± 0.045 4.564 ± 0.044
89.00 4.676 ± 0.045 4.564 ± 0.044
90.00 4.676 ± 0.045 4.564 ± 0.044
91.00 4.676 ± 0.045 4.564 ± 0.044
92.00 4.676 ± 0.045 4.564 ± 0.044
93.00 4.676 ± 0.045 4.564 ± 0.044
94.00 4.676 ± 0.045 4.564 ± 0.044
95.00 4.676 ± 0.045 4.564 ± 0.044
96.00 4.676 ± 0.045 4.564 ± 0.044
97.00 4.676 ± 0.045 4.564 ± 0.044
98.00 4.676 ± 0.045 4.564 ± 0.044
99.00 4.676 ± 0.045 4.564 ± 0.044
100.00 4.676 ± 0.045 4.564 ± 0.044
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Table 37. Averaged Per-Class Error Rates (%) and SEM of Figure 5 (NMNIST-H). Blanks mean N/A.

TIME MSPRT-TANDEM LSTM-S LSTM-M EARLIEST 10−2 EARLIEST 102

1.00 64.003 ± 0.010 64.009 ± 0.011
1.34 57.973 ± 0.066
2.00 44.172 ± 0.046 46.676 ± 0.008 46.697 ± 0.008
3.00 29.190 ± 0.046 35.517 ± 0.007 35.536 ± 0.008
4.00 18.964 ± 0.046 25.936 ± 0.007 25.940 ± 0.007
5.00 11.994 ± 0.046 20.510 ± 0.007 20.512 ± 0.006
6.00 7.449 ± 0.046 15.393 ± 0.007 15.404 ± 0.006
7.00 4.870 ± 0.046 12.603 ± 0.005 12.614 ± 0.005
8.00 3.383 ± 0.046 10.025 ± 0.005 10.018 ± 0.005
9.00 2.639 ± 0.046 8.036 ± 0.005 8.033 ± 0.005
10.00 2.281 ± 0.046 6.963 ± 0.005 6.958 ± 0.005
11.00 2.087 ± 0.046 5.788 ± 0.005 5.801 ± 0.005
12.00 1.996 ± 0.046 4.886 ± 0.003 4.892 ± 0.004
13.00 1.963 ± 0.046 4.398 ± 0.003 4.400 ± 0.003
13.41 3.162 ± 0.027
14.00 1.942 ± 0.046 3.735 ± 0.003 3.737 ± 0.003
15.00 1.926 ± 0.046 3.190 ± 0.003 3.198 ± 0.003
16.00 1.919 ± 0.046 2.841 ± 0.003 2.850 ± 0.003
17.00 1.917 ± 0.046 2.576 ± 0.003 2.576 ± 0.003
18.00 1.916 ± 0.046 2.376 ± 0.003 2.374 ± 0.003
19.00 1.916 ± 0.046 2.118 ± 0.003 2.119 ± 0.003
20.00 1.916 ± 0.046 1.923 ± 0.003 1.921 ± 0.003
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Table 38. Averaged Per-Class Error Rates (%) and SEM of Figure 5 (NMNIST-100f). Frames 1–50. Blanks mean N/A.

TIME MSPRT-TANDEM LSTM-S LSTM-M EARLIEST LAM1E-2 EARLIEST LAM1E-4

1.00 54.677 ± 0.016 54.696 ± 0.016
2.00 35.942 ± 0.148 38.748 ± 0.014 38.677 ± 0.015
3.00 25.203 ± 0.148 29.348 ± 0.014 29.350 ± 0.014
4.00 19.167 ± 0.148 24.048 ± 0.014 23.981 ± 0.015
5.00 15.450 ± 0.148 20.490 ± 0.014 20.422 ± 0.014
6.00 12.997 ± 0.148 18.065 ± 0.014 17.959 ± 0.015
7.00 11.224 ± 0.148 15.715 ± 0.014 15.606 ± 0.015
8.00 9.912 ± 0.148 14.306 ± 0.014 14.215 ± 0.014
9.00 8.880 ± 0.148 13.124 ± 0.014 13.046 ± 0.013
10.00 8.068 ± 0.148 12.129 ± 0.012 12.038 ± 0.012
11.00 7.405 ± 0.148 11.386 ± 0.013 11.302 ± 0.013
12.00 6.862 ± 0.148 10.838 ± 0.012 10.767 ± 0.013
13.00 6.409 ± 0.148 10.121 ± 0.012 10.034 ± 0.012
14.00 6.032 ± 0.148 9.626 ± 0.013 9.555 ± 0.013
15.00 5.715 ± 0.148 9.102 ± 0.012 9.007 ± 0.012
16.00 5.444 ± 0.148 8.710 ± 0.013 8.625 ± 0.013
17.00 5.212 ± 0.148 8.268 ± 0.011 8.235 ± 0.012
18.00 5.025 ± 0.148 7.903 ± 0.012 7.852 ± 0.012
19.00 4.865 ± 0.148 7.613 ± 0.012 7.586 ± 0.011
19.46 20.044 ± 0.229
20.00 4.730 ± 0.148 7.366 ± 0.012 7.354 ± 0.011
21.00 4.623 ± 0.148 7.150 ± 0.012 7.150 ± 0.011
22.00 4.536 ± 0.148 6.998 ± 0.011 7.006 ± 0.011
23.00 4.464 ± 0.148 6.816 ± 0.011 6.821 ± 0.011
24.00 4.401 ± 0.148 6.674 ± 0.011 6.655 ± 0.011
25.00 4.353 ± 0.148 6.491 ± 0.012 6.502 ± 0.013
26.00 4.310 ± 0.148 6.351 ± 0.011 6.373 ± 0.012
27.00 4.275 ± 0.148 6.200 ± 0.011 6.200 ± 0.013
28.00 4.246 ± 0.148 6.061 ± 0.011 6.077 ± 0.013
29.00 4.222 ± 0.148 5.935 ± 0.011 5.948 ± 0.012
30.00 4.203 ± 0.148 5.876 ± 0.012 5.870 ± 0.011
31.00 4.186 ± 0.148 5.811 ± 0.011 5.823 ± 0.012
32.00 4.171 ± 0.148 5.658 ± 0.011 5.676 ± 0.012
33.00 4.160 ± 0.148 5.552 ± 0.011 5.566 ± 0.012
34.00 4.147 ± 0.148 5.456 ± 0.012 5.474 ± 0.012
35.00 4.139 ± 0.148 5.395 ± 0.011 5.412 ± 0.012
36.00 4.133 ± 0.148 5.307 ± 0.011 5.319 ± 0.012
37.00 4.126 ± 0.148 5.231 ± 0.011 5.249 ± 0.012
38.00 4.121 ± 0.148 5.183 ± 0.011 5.211 ± 0.012
39.00 4.118 ± 0.148 5.148 ± 0.011 5.182 ± 0.011
40.00 4.116 ± 0.148 5.121 ± 0.011 5.168 ± 0.012
41.00 4.113 ± 0.148 5.055 ± 0.011 5.098 ± 0.012
42.00 4.112 ± 0.148 5.057 ± 0.012 5.091 ± 0.013
43.00 4.110 ± 0.148 4.980 ± 0.012 5.017 ± 0.012
44.00 4.109 ± 0.148 4.940 ± 0.011 4.976 ± 0.013
45.00 4.109 ± 0.148 4.892 ± 0.012 4.921 ± 0.013
46.00 4.108 ± 0.148 4.825 ± 0.012 4.865 ± 0.013
47.00 4.108 ± 0.148 4.780 ± 0.012 4.795 ± 0.013
48.00 4.108 ± 0.148 4.730 ± 0.012 4.767 ± 0.013
49.00 4.107 ± 0.148 4.709 ± 0.012 4.742 ± 0.013
50.00 4.107 ± 0.148 4.690 ± 0.012 4.731 ± 0.013
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Table 39. Averaged Per-Class Error Rates (%) and SEM of Figure 5 (NMNIST-100f). Frames 51–100. Blanks mean N/A.

TIME MSPRT-TANDEM LSTM-S LSTM-M EARLIEST 10−2 EARLIEST 10−4

51.00 4.107 ± 0.148 4.620 ± 0.012 4.661 ± 0.014
52.00 4.107 ± 0.148 4.588 ± 0.012 4.637 ± 0.014
53.00 4.107 ± 0.148 4.595 ± 0.011 4.634 ± 0.013
54.00 4.106 ± 0.148 4.538 ± 0.011 4.580 ± 0.013
55.00 4.107 ± 0.148 4.526 ± 0.010 4.566 ± 0.013
56.00 4.107 ± 0.148 4.531 ± 0.012 4.555 ± 0.013
57.00 4.107 ± 0.148 4.470 ± 0.011 4.509 ± 0.012
58.00 4.107 ± 0.148 4.444 ± 0.011 4.489 ± 0.012
59.00 4.108 ± 0.148 4.449 ± 0.011 4.496 ± 0.012
60.00 4.108 ± 0.148 4.447 ± 0.011 4.494 ± 0.013
61.00 4.108 ± 0.148 4.459 ± 0.011 4.484 ± 0.012
62.00 4.108 ± 0.148 4.408 ± 0.011 4.447 ± 0.012
63.00 4.108 ± 0.148 4.391 ± 0.011 4.429 ± 0.013
64.00 4.108 ± 0.148 4.377 ± 0.011 4.412 ± 0.013
65.00 4.108 ± 0.148 4.370 ± 0.011 4.397 ± 0.013
66.00 4.109 ± 0.148 4.378 ± 0.011 4.405 ± 0.013
67.00 4.109 ± 0.148 4.394 ± 0.011 4.422 ± 0.012
68.00 4.109 ± 0.148 4.360 ± 0.011 4.386 ± 0.012
69.00 4.109 ± 0.148 4.307 ± 0.012 4.324 ± 0.012
70.00 4.109 ± 0.148 4.277 ± 0.011 4.315 ± 0.012
71.00 4.109 ± 0.148 4.268 ± 0.012 4.312 ± 0.012
72.00 4.109 ± 0.148 4.252 ± 0.012 4.286 ± 0.011
73.00 4.109 ± 0.148 4.247 ± 0.011 4.278 ± 0.012
74.00 4.109 ± 0.148 4.203 ± 0.011 4.221 ± 0.012
75.00 4.109 ± 0.148 4.207 ± 0.011 4.234 ± 0.012
76.00 4.109 ± 0.148 4.203 ± 0.011 4.217 ± 0.011
77.00 4.109 ± 0.148 4.171 ± 0.011 4.191 ± 0.012
78.00 4.109 ± 0.148 4.154 ± 0.011 4.182 ± 0.012
79.00 4.109 ± 0.148 4.155 ± 0.010 4.179 ± 0.012
80.00 4.109 ± 0.148 4.129 ± 0.010 4.144 ± 0.012
81.00 4.109 ± 0.148 4.134 ± 0.011 4.138 ± 0.012
82.00 4.109 ± 0.148 4.113 ± 0.011 4.126 ± 0.013
83.00 4.109 ± 0.148 4.117 ± 0.011 4.135 ± 0.013
84.00 4.109 ± 0.148 4.093 ± 0.011 4.105 ± 0.012
85.00 4.109 ± 0.148 4.096 ± 0.012 4.113 ± 0.012
86.00 4.109 ± 0.148 4.106 ± 0.012 4.112 ± 0.012
87.00 4.109 ± 0.148 4.099 ± 0.011 4.110 ± 0.013
88.00 4.109 ± 0.148 4.093 ± 0.011 4.101 ± 0.012
89.00 4.109 ± 0.148 4.072 ± 0.011 4.094 ± 0.013
90.00 4.109 ± 0.148 4.077 ± 0.011 4.095 ± 0.013
91.00 4.109 ± 0.148 4.063 ± 0.011 4.086 ± 0.013
92.00 4.109 ± 0.148 4.069 ± 0.011 4.083 ± 0.013
93.00 4.109 ± 0.148 4.073 ± 0.011 4.096 ± 0.013
94.00 4.109 ± 0.148 4.069 ± 0.011 4.105 ± 0.013
95.00 4.109 ± 0.148 4.062 ± 0.011 4.101 ± 0.013
96.00 4.109 ± 0.148 4.076 ± 0.012 4.109 ± 0.013
97.00 4.109 ± 0.148 4.056 ± 0.011 4.098 ± 0.012
98.00 4.109 ± 0.148 4.063 ± 0.011 4.104 ± 0.012
99.00 4.109 ± 0.148 4.066 ± 0.011 4.100 ± 0.012
99.99 4.586 ± 0.020
100.00 4.109 ± 0.148 4.057 ± 0.011 4.097 ± 0.012
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Table 40. Averaged Per-Class Error Rates (%) and SEM of Figure 9. Frames 1–50. Blanks mean N/A.
TIME TANDEM LSEL TANDEM MULT TANDEM LSEL+MULT

1.00 56.196 ± 0.044 55.705 ± 0.036
2.00 37.742 ± 0.044 36.650 ± 0.036 35.942 ± 0.148
3.00 27.721 ± 0.044 26.072 ± 0.036 25.203 ± 0.148
4.00 22.037 ± 0.044 20.019 ± 0.036 19.167 ± 0.148
5.00 18.486 ± 0.044 16.320 ± 0.036 15.450 ± 0.148
6.00 16.015 ± 0.044 13.842 ± 0.036 12.997 ± 0.148
7.00 14.127 ± 0.044 12.028 ± 0.036 11.224 ± 0.148
8.00 12.664 ± 0.044 10.636 ± 0.036 9.912 ± 0.148
9.00 11.487 ± 0.044 9.564 ± 0.036 8.880 ± 0.148
10.00 10.526 ± 0.044 8.692 ± 0.036 8.068 ± 0.148
11.00 9.711 ± 0.044 7.989 ± 0.036 7.405 ± 0.148
12.00 9.042 ± 0.044 7.393 ± 0.036 6.862 ± 0.148
13.00 8.454 ± 0.044 6.897 ± 0.036 6.409 ± 0.148
14.00 7.945 ± 0.044 6.477 ± 0.036 6.032 ± 0.148
15.00 7.510 ± 0.044 6.119 ± 0.036 5.715 ± 0.148
16.00 7.124 ± 0.044 5.830 ± 0.036 5.444 ± 0.148
17.00 6.803 ± 0.044 5.579 ± 0.036 5.212 ± 0.148
18.00 6.519 ± 0.044 5.370 ± 0.036 5.025 ± 0.148
19.00 6.276 ± 0.044 5.188 ± 0.036 4.865 ± 0.148
20.00 6.060 ± 0.044 5.032 ± 0.036 4.730 ± 0.148
21.00 5.869 ± 0.044 4.899 ± 0.036 4.623 ± 0.148
22.00 5.700 ± 0.044 4.785 ± 0.036 4.536 ± 0.148
23.00 5.556 ± 0.044 4.687 ± 0.036 4.464 ± 0.148
24.00 5.434 ± 0.044 4.604 ± 0.036 4.401 ± 0.148
25.00 5.327 ± 0.044 4.537 ± 0.036 4.353 ± 0.148
26.00 5.229 ± 0.044 4.477 ± 0.036 4.310 ± 0.148
27.00 5.143 ± 0.044 4.426 ± 0.036 4.275 ± 0.148
28.00 5.070 ± 0.044 4.383 ± 0.036 4.246 ± 0.148
29.00 5.006 ± 0.044 4.353 ± 0.036 4.222 ± 0.148
30.00 4.952 ± 0.044 4.325 ± 0.036 4.203 ± 0.148
31.00 4.903 ± 0.044 4.299 ± 0.036 4.186 ± 0.148
32.00 4.858 ± 0.044 4.279 ± 0.036 4.171 ± 0.148
33.00 4.820 ± 0.044 4.261 ± 0.036 4.160 ± 0.148
34.00 4.787 ± 0.044 4.246 ± 0.036 4.147 ± 0.148
35.00 4.760 ± 0.044 4.234 ± 0.036 4.139 ± 0.148
36.00 4.736 ± 0.044 4.222 ± 0.036 4.133 ± 0.148
37.00 4.715 ± 0.044 4.211 ± 0.036 4.126 ± 0.148
38.00 4.697 ± 0.044 4.204 ± 0.036 4.121 ± 0.148
39.00 4.679 ± 0.044 4.197 ± 0.036 4.118 ± 0.148
40.00 4.662 ± 0.044 4.193 ± 0.036 4.116 ± 0.148
41.00 4.651 ± 0.044 4.188 ± 0.036 4.113 ± 0.148
42.00 4.640 ± 0.044 4.183 ± 0.036 4.112 ± 0.148
43.00 4.631 ± 0.044 4.180 ± 0.036 4.110 ± 0.148
44.00 4.624 ± 0.044 4.176 ± 0.036 4.109 ± 0.148
45.00 4.615 ± 0.044 4.174 ± 0.036 4.109 ± 0.148
46.00 4.609 ± 0.044 4.172 ± 0.036 4.108 ± 0.148
47.00 4.604 ± 0.044 4.170 ± 0.036 4.108 ± 0.148
48.00 4.599 ± 0.044 4.168 ± 0.036 4.108 ± 0.148
49.00 4.594 ± 0.044 4.167 ± 0.036 4.107 ± 0.148
50.00 4.591 ± 0.044 4.166 ± 0.036 4.107 ± 0.148
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Table 41. Averaged Per-Class Error Rates (%) and SEM of Figure 9. Frames 51–100. Blanks mean N/A.
TIME TANDEM LSEL TANDEM MULT TANDEM LSEL+MULT

51.00 4.588 ± 0.044 4.165 ± 0.036 4.107 ± 0.148
52.00 4.586 ± 0.044 4.164 ± 0.036 4.107 ± 0.148
53.00 4.584 ± 0.044 4.164 ± 0.036 4.107 ± 0.148
54.00 4.580 ± 0.044 4.163 ± 0.036 4.106 ± 0.148
55.00 4.577 ± 0.044 4.163 ± 0.036 4.107 ± 0.148
56.00 4.576 ± 0.044 4.163 ± 0.036 4.107 ± 0.148
57.00 4.575 ± 0.044 4.163 ± 0.036 4.107 ± 0.148
58.00 4.573 ± 0.044 4.162 ± 0.036 4.107 ± 0.148
59.00 4.572 ± 0.044 4.163 ± 0.036 4.108 ± 0.148
60.00 4.572 ± 0.044 4.163 ± 0.036 4.108 ± 0.148
61.00 4.571 ± 0.044 4.163 ± 0.036 4.108 ± 0.148
62.00 4.570 ± 0.044 4.164 ± 0.036 4.108 ± 0.148
63.00 4.570 ± 0.044 4.163 ± 0.036 4.108 ± 0.148
64.00 4.569 ± 0.044 4.163 ± 0.036 4.108 ± 0.148
65.00 4.569 ± 0.044 4.163 ± 0.036 4.108 ± 0.148
66.00 4.568 ± 0.044 4.164 ± 0.036 4.109 ± 0.148
67.00 4.568 ± 0.044 4.164 ± 0.036 4.109 ± 0.148
68.00 4.567 ± 0.044 4.164 ± 0.036 4.109 ± 0.148
69.00 4.567 ± 0.044 4.163 ± 0.036 4.109 ± 0.148
70.00 4.567 ± 0.044 4.164 ± 0.036 4.109 ± 0.148
71.00 4.566 ± 0.044 4.164 ± 0.036 4.109 ± 0.148
72.00 4.566 ± 0.044 4.164 ± 0.036 4.109 ± 0.148
73.00 4.565 ± 0.044 4.164 ± 0.036 4.109 ± 0.148
74.00 4.565 ± 0.044 4.164 ± 0.036 4.109 ± 0.148
75.00 4.565 ± 0.044 4.164 ± 0.036 4.109 ± 0.148
76.00 4.565 ± 0.044 4.165 ± 0.036 4.109 ± 0.148
77.00 4.565 ± 0.044 4.165 ± 0.036 4.109 ± 0.148
78.00 4.565 ± 0.044 4.165 ± 0.036 4.109 ± 0.148
79.00 4.564 ± 0.044 4.165 ± 0.036 4.109 ± 0.148
80.00 4.565 ± 0.044 4.165 ± 0.036 4.109 ± 0.148
81.00 4.564 ± 0.044 4.165 ± 0.036 4.109 ± 0.148
82.00 4.564 ± 0.044 4.165 ± 0.036 4.109 ± 0.148
83.00 4.564 ± 0.044 4.165 ± 0.036 4.109 ± 0.148
84.00 4.564 ± 0.044 4.165 ± 0.036 4.109 ± 0.148
85.00 4.564 ± 0.044 4.165 ± 0.036 4.109 ± 0.148
86.00 4.564 ± 0.044 4.165 ± 0.036 4.109 ± 0.148
87.00 4.564 ± 0.044 4.165 ± 0.036 4.109 ± 0.148
88.00 4.564 ± 0.044 4.165 ± 0.036 4.109 ± 0.148
89.00 4.564 ± 0.044 4.165 ± 0.036 4.109 ± 0.148
90.00 4.564 ± 0.044 4.165 ± 0.036 4.109 ± 0.148
91.00 4.564 ± 0.044 4.165 ± 0.036 4.109 ± 0.148
92.00 4.564 ± 0.044 4.166 ± 0.036 4.109 ± 0.148
93.00 4.564 ± 0.044 4.166 ± 0.036 4.109 ± 0.148
94.00 4.564 ± 0.044 4.166 ± 0.036 4.109 ± 0.148
95.00 4.564 ± 0.044 4.166 ± 0.036 4.109 ± 0.148
96.00 4.564 ± 0.044 4.166 ± 0.036 4.109 ± 0.148
97.00 4.564 ± 0.044 4.166 ± 0.036 4.109 ± 0.148
98.00 4.564 ± 0.044 4.166 ± 0.036 4.109 ± 0.148
99.00 4.564 ± 0.044 4.166 ± 0.036 4.109 ± 0.148
100.00 4.564 ± 0.044 4.166 ± 0.036 4.109 ± 0.148
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J. LLR Trajectories
Figures 10 and 11 show the LLR trajectories of NMNIST-H,
NMNIST-100f, UCF101, and HMDB51. The base models
are the same as those in Figure 5.

Figure 10. Examples of LLR trajectories. Top: NMNIST-H.
Bottom: NMNIST-100f. The red curves represent minl{λ̂yil},
while the blue curves represent minl{λ̂kl} (k 6= yi). If the red
curve reaches the threshold (necessarily positive), then the predic-
tion is correct, while if the blue curve reaches the threshold, then
the prediction is wrong. We plot ten different i’s randomly selected
from the validation set. The red and blue curves are gradually sep-
arated as more frames are observed: evidence accumulation.

Figure 11. Examples of LLR trajectories. Top: UCF101. Bot-
tom: HMDB51. All curves are minl{λ̂yil}, and the negative
rows minl{λ̂kl} (k 6= yi) are omitted for clarity. Therefore, all
the curves should be in the upper half-plane (positive LLRs). We
plot 20 and 30 different i’s randomly selected from the valida-
tion sets of UCF101 and HMDB51, respectively. Several curves
gradually go upwards as more frames are observed: evidence
accumulation.



The Power of Log-Sum-Exp: Sequential Density Ratio Matrix Estimation for Speed-Accuracy Optimization

K. NMNIST-H and NMNIST-100f
(Ebihara et al., 2021) propose an MNIST-based sequential
dataset for early classification of time series: NMNIST; how-
ever, NMNIST is so simple that accuracy tends to saturate
immediately and the performance comparison of models is
difficult, especially in the early stage of sequential predic-
tions. We thus create a more complex dataset, NMNIST-H,
with higher noise density than NMNIST. Figure 12 is an
example video of NMNIST-H. It is hard, if not impossible,
for humans to classify the video within 10 frames.

NMNIST-100f is a more challenging dataset than NMNIST-
H. Each video consists of 100 frames, which is 5 times
longer than in NMNIST and NMNSIT-H. Figure 13 is an
example video of NMNIST-100f. Because of the dense
noise, classification is unrealistic for humans, while MSPRT-
TANDEM attains approximately 90 % accuracy with only 8
frames (see Figure 5).
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Figure 12. NMNIST-H. The first frame is at the top left, and the last frame is at the bottom right. The original MNIST image (28×28
pixels) is gradually revealed (10 pixels per frame). The label of this example is 6. The mean image is given in Figure 14 (left).

Figure 13. NMNIST-100f. The first frame is at the top left, and the last frame is at the bottom right. An MNIST image (28×28 pixels) is
filled with white pixels except for 15 randomly selected pixels. Unlike NMNIST-H, the number of original pixels (15) is fixed throughout
all frames. The label of this example is 3. The mean image is given in Figure 14 (right).

Figure 14. Mean images of Figures 12 (left) and 13 (right).
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L. Details of Statistical Tests
L.1. Model Comparison: Figure 5

For an objective comparison, we conduct statistical tests:
two-way ANOVA (Fisher, 1925) followed by Tukey-Kramer
multi-comparison test (Tukey, 1949; Kramer, 1956). In the
tests, a small number of trials reduces test statistics, making
it difficult to claim significance because the test statistic of
the Tukey-Kramer test is proportional to 1/

√
(1/n+ 1/m),

where n and m are trial numbers of two models to be com-
pared. These statistical tests are standard, e.g., in biological
science, in which variable trial numbers are inevitable in
experiments. All the statistical tests are executed with a
customized (MATLAB, 2017) script.

In the two-way ANOVA, the two factors are defined as the
phase (early and late stages of the SAT curve) and model.
The actual numbers of frames shown in Table 42 are chosen
so that the compared models can use as similar frames as
possible and thus depend only on the dataset. Note that
EARLIEST cannot flexibly change the mean hitting time;
thus, we include the results of EARLIEST to the groups
with as close to the number of frames as possible.

The p-values are summarized in Tables 43 to 47. The p-
values with asterisks are statistically significant: one, two
and three asterisks show p < 0.05, p < 0.01, and p <
0.001, respectively. Our results, especially in the late phase,
are statistically significantly better than those in the early
phase, confirming that accumulating evidence leads to better
performance.

L.2. Ablation Study: Figure 9

We also test the three conditions in the ablation study. We
select one phase at the 20th frame to conduct the one-way
ANOVA with one model factor: LSEL + Multiplet loss,
LSEL only, and Multiplet only. The p-values are summa-
rized in Table 48. The result shows that using both the LSEL
and the multiplet loss is statistically significantly better than
using either of the two losses.
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Table 42. Definition of the phases (in the number of frames).
Early phase Late phase

EARLIEST All but EARLIEST EARLIEST All but EARLIEST

NMNIST-H 1.34 2 13.41 13
NMNIST-100f 13.41 19 99.99 100

UCF101 1.36 1 49.93 50
HMDB51 1.43 1 36.20 36

Table 43. p-values from the Tukey-Kramer multi-comparison test conducted on NMNIST-100f.(Figure 2)
Logistic LSEL

early late early

Logistic late ***1E-07

LSEL early ***1E-09 ***1E-09
late ***1E-09 *2E-3 ***1E-09

Table 44. p-values from the Tukey-Kramer multi-comparison test conducted on NMNIST-H (Figure 5).
MSPRT-TANDEM NP test LSTM-s LSTM-m EARLIEST
early late early late early late early late early

MSPRT-TANDEM late ***1E-07

NP test early ***1E-07 ***1E-07
late ***1E-07 ***1E-07 ***1E-07

LSTM-s early ***1E-07 ***1E-07 1.0 ***1E-07
late ***1E-07 ***1E-07 ***1E-07 1.0 ***1E-07

LSTM-m early ***1E-07 ***1E-07 1.0 ***1E-07 1.0 ***1E-07
late ***1E-07 ***1E-07 ***1E-07 1.0 ***1E-07 1.0 ***1E-07

EARLIEST early ***1E-07 ***1E-07 ***1E-07 ***1E-07 ***1E-07 ***1E-07 ***1E-07 ***1E-07
late ***1E-07 ***1E-07 ***1E-07 ***1E-07 ***1E-07 ***1E-07 ***1E-07 ***1E-07 ***1E-07

Table 45. p-values from the Tukey-Kramer multi-comparison test conducted on NMNIST-100f (Figure 5).
MSPRT-TANDEM NP test LSTM-s LSTM-m EARLIEST
early late early late early late early late early

MSPRT-TANDEM late ***1E-07

NP test early ***1E-07 ***1E-07
late ***1E-07 1.0 ***1E-07

LSTM-s early ***1E-07 ***1E-07 ***1E-07 ***1E-07
late ***1E-07 1.0 ***1E-07 1.0 ***1E-07

LSTM-m early ***1E-07 ***1E-07 ***1E-07 ***1E-07 1.0 ***1E-07
late ***1E-07 1.0 ***1E-07 1.0 ***1E-07 1.0 ***1E-07

EARLIEST early ***1E-07 ***1E-07 ***1E-07 ***1E-07 ***1E-07 ***1E-07 ***1E-07 ***1E-07
late ***7E-05 ***1E-07 ***1E-07 ***1E-07 ***1E-07 ***1E-07 ***1E-07 ***1E-07 ***1E-07

Table 46. p-values from the Tukey-Kramer multi-comparison test conducted on UCF101 (Figure 5).
MSPRT-TANDEM NP test LSTM-s LSTM-m EARLIEST
early late early late early late early late early

MSPRT-TANDEM late ***1E-07

NP test early 1.0 ***1E-07
late ***1E-07 1.0 ***1E-07

LSTM-s early ***1E-07 ***1E-07 ***1E-07 ***1E-07
late ***1E-07 ***1E-07 ***1E-07 ***1E-07 ***1E-07

LSTM-m early ***1E-07 ***1E-07 ***1E-07 ***1E-07 1.0 ***1E-07
late ***1E-07 ***1E-07 ***1E-07 ***1E-07 ***1E-07 *3E-03 ***1E-07

EARLIEST early ***1E-07 ***1E-07 ***1E-07 ***1E-07 1E-01 ***1E-07 *6E-03 ***1E-07
late ***1E-07 ***1E-07 ***1E-07 ***1E-07 ***1E-07 ***1E-07 ***1E-07 ***1E-07 ***1E-07

Table 47. p-values from the Tukey-Kramer multi-comparison test conducted on HMDB51 (Figure 5).
MSPRT-TANDEM NP test LSTM-s LSTM-m EARLIEST
early late early late early late early late early

MSPRT-TANDEM late ***1E-07

NP test early 1.0 ***1E-07
late ***1E-07 0.2 ***1E-07

LSTM-s early 1.0 ***1E-07 1.0 ***1E-07
late ***1E-07 ***2E-07 ***1E-07 ***2E-02 ***1E-07

LSTM-m early 1.0 ***1E-07 1.0 ***1E-07 1.0 ***1E-07
late ***1E-07 ***1E-07 ***1E-07 ***1E-04 ***1E-07 1.0 ***1E-07

EARLIEST early 1.0 ***1E-07 1.0 ***1E-07 1.0 ***1E-07 1.0 ***1E-07
late ***1E-07 ***1E-07 ***1E-07 ***1E-07 ***1E-07 ***1E-07 ***1E-07 ***7E-07 ***1E-07
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Table 48. Figure 9: p-values from the Tukey-Kramer multi-comparison test conducted on the ablation test.
MSPRT-TANDEM

LSEL+Multiplet LSEL only

LSEL only ***1E-09
Multiplet only ***2E-07 ***1E-09
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M. Supplementary Discussion
Interpretability. Interpretability of classification results
is one of the important interests in early classification of
time series (Xing et al., 2011; Ghalwash & Obradovic, 2012;
Ghalwash et al., 2013; Ghalwash et al., 2014; Karim et al.,
2019). MSPRT-TANDEM can use the LLR trajectory to
visualize the prediction process (see Figures 2 (Bottom) and
10); a large gap of LLRs between two timestamps means
that these timestamps are decisive.

Threshold matrix. In our experiment, we use single-
valued threshold matrices for simplicity. General threshold
matrices may enhance performance, especially when the
dataset is class-imbalanced (Longadge & Dongre, 2013; Ali
et al., 2015; Hong et al., 2016). Tuning the threshold after
training is referred to as thresholding, or threshold-moving
(Richard & Lippmann, 1991; Buda et al., 2018). MSPRT-
TANDEM has multiple thresholds in the matrix form, and
thus it is an interesting future work to exploit such a matrix
structure to attain higher accuracy.

How to determine threshold. A user can choose a thresh-
old by evaluating the mean hitting time and accuracy on a
dataset at hand (possibly the validation dataset, training
dataset, or both). As mentioned in Section 3.4, we do not
have to retrain the model (mentioned in Section 3.4). We can
modify the threshold even after deployment, if necessary, to
address domain shift. This flexibility is a huge advantage
compared with other models that require additional train-
ing every time the user wants to control the speed-accuracy
tradeoff (Cai et al., 2020).
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