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Abstract
We propose a model for multiclass classification
of time series to make a prediction as early and as
accurate as possible. The matrix sequential prob-
ability ratio test (MSPRT) is known to be asymp-
totically optimal for this setting, but contains a
critical assumption that hinders broad real-world
applications; the MSPRT requires the underly-
ing probability density. To address this problem,
we propose to solve density ratio matrix estima-
tion (DRME), a novel type of density ratio es-
timation that consists of estimating matrices of
multiple density ratios with constraints and thus
is more challenging than the conventional den-
sity ratio estimation. We propose a log-sum-exp-
type loss function (LSEL) for solving DRME and
prove the following: (i) the LSEL provides the
true density ratio matrix as the sample size of
the training set increases (consistency); (ii) it as-
signs larger gradients to harder classes (hard class
weighting effect); and (iii) it provides discrimi-
native scores even on class-imbalanced datasets
(guess-aversion). Our overall architecture for
early classification, MSPRT-TANDEM, statisti-
cally significantly outperforms baseline models
on four datasets including action recognition, es-
pecially in the early stage of sequential observa-
tions. Our code and datasets are publicly avail-
able1.

1. Introduction
Classifying an incoming time series as early and as accu-
rately as possible is challenging yet crucial, especially when
the sampling cost is high or when a delay results in serious
consequences (Xing et al., 2009; 2012; Mori et al., 2015;

1NEC Corporation, Kanagawa, Japan. Correspondence to:
Taiki Miyagawa <miyagawataik@nec.com>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

1https://github.com/TaikiMiyagawa/
MSPRT-TANDEM

Mori et al., 2018). Early classification of time series is a
multi-objective optimization problem, and there is usually
no ground truth indicating when to stop observation and
classify a sequence.

The MSPRT is a provably optimal algorithm for early mul-
ticlass classification and has been developed in mathemat-
ical statistics (Armitage, 1950; Chernoff, 1959; Kiefer &
Sacks, 1963; Lorden, 1967; 1977; Pavlov, 1984; Dragalin,
1987; Pavlov, 1991; Baum & Veeravalli, 1994; Dragalin
& Novikov, 1999). The MSPRT uses a matrix of log-
likelihood ratios (LLRs), the (k, l)-entry of which is the
LLR of hypothesis Hk to hypothesis Hl and depends on
the current time t through consecutive observations of se-
quential data X(1,t) (Figure 1). A notable property of the
MSPRT is that it is asymptotically optimal (Tartakovsky,
1998): It achieves the minimum stopping time among all the
algorithms with bounded error probabilities as the thresh-
olds go to infinity, or equivalently, as the error probabilities
go to zero or the stopping time goes to infinity (Appendix
A). Therefore, the MSPRT is a promising approach to early
multiclass classification with strong theoretical support.

However, the MSPRT has a critical drawback that hinders
its real-world applications in that it requires the true LLR
matrix, which is generally inaccessible. To address this prob-
lem, we propose to solve density ratio matrix estimation
(DRME); i.e., we attempt to estimate the LLR matrix from
a dataset. DRME has yet to be explored in the literature but
can be regarded as a generalization of the conventional den-
sity ratio estimation (DRE), which usually focuses on only
two densities (Sugiyama et al., 2012). The difficulties with
DRME come from simultaneous optimization of multiple
density ratios; the training easily diverges when the denom-
inator of only one density ratio is small. In fact, a naive
application of conventional binary DRE-based loss func-
tions does not generalize well in this setting, and sometimes
causes instability and divergence of the training (Figure 2
Top).

Therefore, we propose a novel loss function for solving
DRME, the log-sum-exp loss (LSEL). We prove three prop-
erties of the LSEL, all of which contribute to enhancing
the performance of the MSPRT. (i) The LSEL is consistent;
i.e., by minimizing the LSEL, we can obtain the true LLR
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Figure 1. Top: Early Classification of Time Series with
MSPRT. The figure illustrates how the MSPRT predicts the la-
bel y of an incoming time series X(1,t) = {x(1), x(2), ...x(t)}.
The MSPRT uses the LLR matrix denoted by λkl(X

(1,t)) :=
log(p(X(1,t)|y = k)/p(X(1,t)|y = l)), where k, l = 1, 2, ...,K.
K(∈ N) is the number of classes. If one of minl λkl =
log p(X(1,t)|k)/maxl p(X

(1,t)|l) (k ∈ {1, 2, ...,K}) reaches
the threshold, the prediction is made; otherwise, the observation
continues. In this figure, K = 4, the prediction is y = 1, and
the hitting time is τ∗. A larger threshold leads to more accurate
but delayed predictions, while a smaller threshold leads to earlier
but less accurate predictions. Bottom: Estimated LLRs of ten
sequences. (See Appendix I.6 for exact settings.)

matrix as the sample size of the training set increases. (ii)
The LSEL has the hard class weighting effect; i.e., it assigns
larger gradients to harder classes, accelerating convergence
of neural network training. Our proof also explains why
log-sum-exp-type losses, e.g., (Song et al., 2016; Wang
et al., 2019; Sun et al., 2020), have performed better than
sum-log-exp-type losses. (iii) We propose the cost-sensitive
LSEL for class-imbalanced datasets and prove that it is
guess-averse (Beijbom et al., 2014). Cost-sensitive learning
(Elkan, 2001), or loss re-weighting, is a typical and simple
solution to the class imbalance problem (Kubat & Matwin,
1997; Japkowicz & Stephen, 2002; He & Garcia, 2009; Buda
et al., 2018). Although the consistency does not necessarily
hold for the cost-sensitive LSEL, we show that the cost-
sensitive LSEL nevertheless provides discriminative “LLRs”
(scores) by proving its guess-aversion.

Along with the novel loss function, we propose the first
DRE-based model for early multiclass classification in deep
learning, MSPRT-TANDEM, enabling the MSPRT’s practi-

Figure 2. LSEL v.s. Conventional Losses. The datasets are
NMNSIT-H and NMNIST-100f (Section 4). Curves in the lower
left region are better. Top: LSEL v.s. Binary DRE-based Losses
on NMNSIT-H. The conventional losses do not generalize well
in DRME. The MSPRT is run, using the LLR matrices estimated
with seven different loss functions: LSIF (Kanamori et al., 2009)
minimizes the mean squared error of p and r̂q (r̂ = p̂/q̂); LSIFwC
stabilizes LSIF by adding a normalization constraint of r̂q; DSKL
(Khan et al., 2019) is based on KLIEP (Sugiyama et al., 2008)
and minimizes the Kullback-Leibler divergence between p and
r̂q; BARR (Khan et al., 2019) stabilizes DSKL by adding the
normalization constraint; LLLR (Ebihara et al., 2021) is similar to
DSKL but is bounded above and below and is thus more stable; the
logistic loss is the standard sum-log-exp-type loss; and the LSEL is
our proposed loss. Their formal definitions are summarized in Ap-
pendix I.8. Only the logistic loss shows a comparable performance,
but the LSEL is consistently better (Tables 35 and 36). Bottom:
LSEL v.s. Logistic Loss on NMNIST-100f. The M-TANDEM
approximation is used, which is introduced in Section 3.4. The
error gap is statistically significant (Appendix L).
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cal use on real-world datasets. MSPRT-TANDEM can be
used for arbitrary sequential data and thus has a wide variety
of potential applications. To test its empirical performance,
we conduct experiments on four publicly available datasets.
We conduct two-way analysis of variance (ANOVA) (Fisher,
1925) followed by the Tukey-Kramer multi-comparison test
(Tukey, 1949; Kramer, 1956) for reproducibility and find
that MSPRT-TANDEM provides statistically significantly
better accuracy with a smaller number of observations than
baseline models.

Our contributions are summarized as follows.

1. We formulate a novel problem setting, DRME, to en-
able the MSPRT on real-world datasets.

2. We propose a loss function, LSEL, and prove its consis-
tency, hard class weighting effect, and guess-aversion.

3. We propose MSPRT-TANDEM: the first DRE-based
model for early multiclass classification in deep learn-
ing. We show that it outperforms baseline models
statistically significantly.

2. Related Work
Early classification of time series. Early classification of
time series aims to make a prediction as early and as accu-
rately as possible (Xing et al., 2009; Mori et al., 2015; 2016;
Mori et al., 2018). An increasing number of real-world prob-
lems require earliness as well as accuracy, especially when a
sampling cost is high or when a delay results in serious con-
sequences; e.g., early detection of human actions for video
surveillance and health care (Vats & Chan, 2016), early
detection of patient deterioration on real-time sensor data
(Mao et al., 2012), early warning of power system dynamics
(Zhang et al., 2017), and autonomous driving for early and
safe action selection (Doná et al., 2019). In addition, early
classification saves computational costs (Ghodrati et al.,
2021).

SPRT. Sequential multihypothesis testing has been devel-
oped in (Sobel & Wald, 1949; Armitage, 1950; Paulson,
1963; Simons, 1967). The extension of the binary SPRT
to multihypothesis testing for i.i.d. data was conducted in
(Armitage, 1950; Chernoff, 1959; Kiefer & Sacks, 1963;
Lorden, 1967; 1977; Pavlov, 1984; Dragalin, 1987; Pavlov,
1991; Baum & Veeravalli, 1994; Dragalin & Novikov, 1999).
The MSPRT for non-i.i.d. distributions was discussed in
(Lai, 1981; Tartakovsky, 1998; Dragalin et al., 1999; Tar-
takovsky et al., 2014). The asymptotic optimality of the
MSPRT was proven in (Tartakovsky, 1998).

Density ratio estimation. DRE consists of estimating a
ratio of two densities from their samples without separately

estimating the numerator and denominator (Sugiyama et al.,
2012). DRE has been widely used for, e.g., covariate shift
adaptation (Sugiyama et al., 2008), representation learning
(Oord et al., 2018; Hjelm et al., 2019), mutual information
estimation (Belghazi et al., 2018), and off-policy reward
estimation in reinforcement learning (Liu et al., 2018). Our
proof of the consistency of the LSEL is based on (Gutmann
& Hyvärinen, 2012).

We provide more extensive references in Appendix B. To
the best of our knowledge, only (Ebihara et al., 2021) and
(Moustakides & Basioti, 2019) combine the SPRT with
DRE. Both restrict the number of classes to only two. The
loss function proposed in (Ebihara et al., 2021) has not
been proven to be unbiased; there is no guarantee for the
estimated LLR to converge to the true one. (Moustakides &
Basioti, 2019) does not provide empirical validation for the
SPRT.

3. Density Ratio Matrix Estimation for
MSPRT

3.1. Log-Likelihood Ratio Matrix

Let p be a probability density over (X(1,T ), y). X(1,T ) =
{x(t)}Tt=1 ∈ X is an example of sequential data, where
T ∈ N is the sequence length. x(t) ∈ Rdx is a feature
vector at timestamp t; e.g., an image at the t-th frame in a
video X(1,T ). y ∈ Y = [K] := {1, 2, ...,K} is a multiclass
label, where K ∈ N is the number of classes. The LLR
matrix is defined as λ(X(1,t)) := (λkl(X

(1,t)))k,l∈[K] :=

(log p(X(1,t)|y = k)/p(X(1,t)|y = l))k,l∈[K], where
p(X(1,t)|y) is a conditional probability density. λ(X(1,t))
is an anti-symmetric matrix by definition; thus the diagonal
entries are 0. Also, λ satisfies λkl+λlm = λkm (∀k, l,m ∈
[K]). Let λ̂(X(1,t);θ) := (λ̂kl(X

(1,t);θ))k,l∈[K] :=

(log p̂θ(X(1,t)|y = k)/p̂θ(X(1,t)|y = l))k,l∈[K] be an esti-
mator of the true LLR matrix λ(X(1,t)), where θ ∈ Rdθ
(dθ ∈ N) denotes trainable parameters, e.g., weight param-
eters of a neural network. We use the hat symbol (̂·) to
highlight that the quantity is an estimated value. The λ̂
should be anti-symmetric and satisfy λ̂kl + λ̂lm = λ̂km
(∀k, l,m ∈ [K]). To satisfy these constraints, one may
introduce additional regularization terms to the objective
loss function, which can cause learning instability. Instead,
we use specific combinations of the posterior density ra-
tios p̂θ(y = k|X(1,t))/p̂θ(y = l|X(1,t)), which explicitly
satisfy the aforementioned constraints (see the following
M-TANDEM and M-TANDEMwO formulae).

3.2. MSPRT

Formally, the MSPRT is defined as follows (see Appendix
A for more details):
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Definition 3.1 (Matrix sequential probability ratio test). Let
P and Pk (k ∈ [K]) be probability distributions. Define
a threshold matrix akl ∈ R (k, l ∈ [K]), where the diag-
onal elements are immaterial and arbitrary, e.g., 0. The
MSPRT of multihypothesis Hk : P = Pk (k ∈ [K]) is
defined as δ∗ := (d∗, τ∗), where d∗ := k if τ∗ = τk
(k ∈ [K]), τ∗ := min{τk|k ∈ [K]}, and τk := inf{t ≥
1| min
l(6=k)∈[K]

{λkl(X(1,t))− alk} ≥ 0}.

In other words, the MSPRT terminates at the smallest times-
tamp t such that for a class of k ∈ [K], λkl(t) is greater
than or equal to the threshold alk for all l( 6= k) (Figure 1).
By definition, we must know the true LLR matrix λ(X(1,t))
of the incoming time series X(1,t); therefore, we estimate
λ with the help of the LSEL defined in the next section.
For simplicity, we use single-valued threshold matrices
(akl = ak′l′ for all k, l, k′, l′ ∈ [K]) in our experiment.

3.3. LSEL for DRME

To estimate the LLR matrix, we propose the log-sum-exp
loss (LSEL):

LLSEL[λ̃] :=
1

KT

∑
k∈[K]

∑
t∈[T ]∫

dX(1,t)p(X(1,t)|k) log(1 +
∑
l(6=k)

e−λ̃kl(X
(1,t))) . (1)

Let S := {(X(1,T )
i , yi)}Mi=1 ∼ p(X(1,T ), y)M be a training

dataset, where M ∈ N is the sample size. The empirical
approximation of the LSEL is

L̂LSEL(θ;S) :=
1

KT

∑
k∈[K]

∑
t∈[T ]

1

Mk

∑
i∈Ik

log(1 +
∑
l(6=k)

e−λ̂kl(X
(1,t)
i ;θ)) . (2)

Mk and Ik denote the sample size and index set of class k,
respectively; i.e., Mk = |{i ∈ [M ]|yi = k}| = |Ik| and∑
kMk = M .

3.3.1. CONSISTENCY

A crucial property of the LSEL is consistency; therefore, by
minimizing (2), the estimated LLR matrix λ̂ approaches the
true LLR matrix λ as the sample size increases. The formal
statement is given as follows:

Theorem 3.1 (Consistency of the LSEL). Let L(θ) and
L̂S(θ) denote LLSEL[λ̂(·;θ)] and L̂LSEL(θ;S) respectively.
Let θ̂S be the empirical risk minimizer of L̂S; namely, θ̂S :=
argminθL̂S(θ). Let Θ∗ := {θ∗ ∈ Rdθ |λ̂(X(1,t);θ∗) =
λ(X(1,t)) (∀t ∈ [T ])} be the target parameter set. Assume,
for simplicity of proof, that each θ∗ is separated in Θ∗; i.e.,

∃δ > 0 such that B(θ∗; δ)∩B(θ∗′; δ) = ∅ for arbitrary θ∗

and θ∗′ ∈ Θ∗, whereB(θ; δ) denotes an open ball at center
θ with radius δ. Assume the following three conditions:

(a) ∀k, l ∈ [K], ∀t ∈ [T ] , p(X(1,t)|k) = 0 ⇐⇒
p(X(1,t)|l) = 0.

(b) supθ|L̂S(θ)−L(θ)| P−−−−→
M→∞

0; i.e., L̂S(θ) converges

in probability uniformly over θ to L(θ).

(c) For all θ∗ ∈ Θ∗, there exist t ∈ [T ], k ∈ [K] and
l ∈ [K], such that the following dθ × dθ matrix is
full-rank:∫

dX(1,t)p(X(1,t)|k)×

×∇θ∗ λ̂kl(X(1,t);θ∗)∇θ∗ λ̂kl(X(1,t);θ∗)> . (3)

Then, P (θ̂S /∈ Θ∗)
M→∞−−−−→ 0; i.e., θ̂S converges in proba-

bility into Θ∗.

Assumption (a) ensures that λ(X(1,t)) exists and is finite.
Assumption (b) can be satisfied under the standard assump-
tions of the uniform law of large numbers (compactness,
continuity, measurability, and dominance) (Jennrich, 1969;
Newey & McFadden, 1986). Assumption (c) is a technical
requirement, often assumed in the literature (Gutmann &
Hyvärinen, 2012). The complete proof is given in Appendix
C.

The critical hurdle of the MSPRT to practical applications
(availability to the true LLR matrix) is now relaxed by virtue
of the LSEL, which is provably consistent and enables a
precise estimation of the LLR matrix. We emphasize that
the MSPRT is the earliest and most accurate algorithm for
early classification of time series, at least asymptotically
(Theorem A.1, A.2, and A.3).

3.3.2. HARD CLASS WEIGHTING EFFECT

We further discuss the LSEL by focusing on a connection
with hard negative mining (Song et al., 2016). It is empir-
ically known that designing a loss function to emphasize
hard classes improves model performance (Lin et al., 2017).
The LSEL has this mechanism.

Let us consider a multiclass classification problem
to obtain a high-performance discriminative model.
To emphasize hard classes, let us minimize L̂ :=
1
KT

∑
k∈[K]

∑
t∈[T ]

1
Mk

∑
i∈Ik maxl(6=yi){e−λ̂yil(X

(1,t)
i ;θ)};

however, mining the single hardest class with the max
function induces a bias and causes the network to
converge to a bad local minimum. Instead of L̂, we
can use the LSEL because it is not only provably con-
sistent but is a smooth upper bound of L̂: Because
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maxl(6=yi){e−λ̂yil(X
(1,t)
i ;θ)} <

∑
l( 6=yi) e

−λ̂yil(X
(1,t)
i ;θ),

we obtain L̂ < L̂LSEL by summing up both sides with
respect to i ∈ Ik and then k ∈ [K] and t ∈ [T ]. Therefore,
a small L̂LSEL indicates a small L̂. In addition, the
gradients of the LSEL are dominated by the hardest class
k∗ ∈ argmaxk(6=y){e−λ̂yk(X

(1,T );θ)}, because for all
k(6= y, k∗),∣∣∣∣∣∂L̂LSEL

∂λ̂yk

∣∣∣∣∣ ∝ e−λ̂yk∑
l∈[K] e

−λ̂yl
<

e−λ̂yk∗∑
l∈[K] e

−λ̂yl
∝

∣∣∣∣∣∂L̂LSEL

∂λ̂yk∗

∣∣∣∣∣ ,
meaning that the LSEL assigns large gradients to the hardest
class during training, which accelerates convergence.

Let us compare the hard class weighting effect of the LSEL
with that of the logistic loss (a sum-log-exp-type loss ex-
tensively used in machine learning). For notational con-
venience, let us define `LSEL := log(1 +

∑
k(6=y) e

ak)

and `logistic :=
∑
k(6=y) log(1 + eak), where ak :=

−λ̂yk(X(1,t);θ), and compare their gradient scales. The
gradients for k 6= y are:

∂`logistic

∂λ̂yk
= − e−λ̂yk

1 + e−λ̂yk
=: bk ,

∂`LSEL

∂λ̂yk
= − e−λ̂yk∑

l∈[K] e
−λ̂yl

=: ck .

The relative gradient scales of the hardest class to the easiest
class are:

Rlogistic :=
maxk( 6=y){bk}
mink(6=y){bk}

=
eak∗

eak∗

e1+ak∗

e1+ak∗
,

RLSEL :=
maxk(6=y){ck}
mink( 6=y){ck}

=
eak∗

eak∗
,

where k∗ := argmink( 6=y){ak}. Since Rlogistic ≤ RLSEL,
we conclude that the LSEL weighs hard classes more than
the logistic loss. Note that our discussion above also ex-
plains why log-sum-exp-type losses (e.g., (Song et al., 2016;
Wang et al., 2019; Sun et al., 2020)) perform better than
sum-log-exp-type losses. In addition, Figure 2 (Top and
Bottom) shows that the LSEL performs better than the lo-
gistic loss—a result that supports the discussion above. See
Appendix E for more empirical results.

3.3.3. COST-SENSITIVE LSEL AND GUESS-AVERSION

Furthermore, we prove that the cost-sensitive LSEL pro-
vides discriminative scores even on imbalanced datasets.
Conventional research for cost-sensitive learning has been
mainly focused on binary classification problems (Fan et al.,
1999; Elkan, 2001; Viola & Jones, 2002; Masnadi-Shirazi &
Vasconcelos, 2010). However, in multiclass cost-sensitive
learning, (Beijbom et al., 2014) proved that random score

functions (a “random guess”) can lead to even smaller val-
ues of the loss function. Therefore, we should investigate
whether our loss function is averse (robust) to such random
guesses, i.e., guess-averse.

Definitions Let s : X → RK be a score vector func-
tion; i.e., sk(X(1,t)) represents how likely it is that X(1,t)

is sampled from class k. In the LSEL, we can regard
log p̂θ(X(1,t)|k) as sk(X(1,t)). A cost matrix C is a ma-
trix on RK×K such that Ckl ≥ 0 (∀k, l ∈ [K]), Ckk = 0
(∀k ∈ [K]),

∑
l∈[K] Ckl 6= 0 (∀k ∈ [K]). Ckl rep-

resents a misclassification cost, or a weight for the loss
function, when the true label is k and the prediction is
l. The support set of class k is defined as Sk := {v ∈
RK | ∀l(6= k), vk > vl}. Ideally, discriminative score vec-
tors should be in Sk when the label is k. In contrast, the
arbitrary guess set is defined as A := {v ∈ RK | v1 =

v2 = ... = vK}. If s(X(1,t)
i ) ∈ A, we cannot gain

any information from X
(1,t)
i ; therefore, well-trained dis-

criminative models should avoid such an arbitrary guess
of s. We consider a class of loss functions such that
`(s(X(1,t)), y;C): It depends on X(1,t) through the score
function s. The loss `(s(X(1,t)), y;C) is guess-averse, if
for any k ∈ [K], any s ∈ Sk, any s′ ∈ A, and any cost
matrix C, `(s, k;C) < `(s′, k;C); thus, the guess-averse
loss can provide discriminative scores by minimizing it. The
empirical loss L̂ = 1

MT

∑M
i=1

∑T
t=1 `(s(X

(1,t)
i ), yi;C) is

said to be guess-averse, if ` is guess-averse. The guess-
aversion trivially holds for most binary and multiclass loss
functions but does not generally hold for cost-sensitive mul-
ticlass loss functions due to the complexity of multiclass
decision boundaries (Beijbom et al., 2014).

Cost-sensitive LSEL is guess-averse. We define a cost-
sensitive LSEL:

L̂CLSEL(θ, C;S) :=

1

MT

M∑
i=1

T∑
t=1

Cyi log(1 +
∑
l( 6=yi)

e−λ̂yil(X
(1,t)
i ;θ)) , (4)

where Ckl = Ck (∀k, l ∈ [K]). Note that λ̂ is no longer an
unbiased estimator of the true LLR matrix; i.e., λ̂ does not
necessarily converge to λ as M →∞, except when Ck =
M/Mk(K − 1) (L̂CLSEL reduces to L̂LSEL). Nonetheless,
the following theorem shows that L̂CLSEL is guess-averse.
The proof is given in Appendix G.1.

Theorem 3.2. L̂CLSEL is guess-averse, provided that the
log-likelihood vector(

log p̂θ(X(1,t)|y = 1), log p̂θ(X(1,t)|y = 2),

..., log p̂θ(X(1,t)|y = K))
)>
∈ RK
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Figure 3. Top: Relative Loss v.s. Training Iteration of LSEL
and NGA-LSEL with Two Cost Matrices for Each. Bottom:
Averaged Per-Class Error Rate of Last Frame v.s. Training
Iteration. Although all the loss curves decrease and converge
(top), the error rates of the NGA-LSEL converge slowly and show
a large gap depending on the cost matrix, while the error rates of
the LSEL converge rapidly, and the gap is small (bottom). “unif.”
means Ckl = 1 and “inv. freq.” means Ckl = 1/Mk. The dataset
is UCF101 (Soomro et al., 2012).

is regarded as the score vector s(X(1,t)).

Figure 3 illustrates the risk of non-guess-averse losses.
We define the non-guess-averse LSEL (NGA-LSEL) as
`(s, y;C) =

∑
k( 6=y) Cy,l log(1 +

∑
l( 6=k) e

sl−sk). It is
inspired by a variant of an exponential loss `(s, y;C) =∑
k,l∈[K] Cy,le

sl−sk , which is proven to be classification
calibrated but is not guess-averse (Beijbom et al., 2014).
The NGA-LSEL benefits from the log-sum-exp structure
but is not guess-averse (Appendix G.2), unlike the LSEL.

3.4. MSPRT-TANDEM

Although the LSEL alone works well, we further combine
the LSEL with a DRE-based model, SPRT-TANDEM, re-
cently proposed in (Ebihara et al., 2021). Specifically, we
use the TANDEM formula and multiplet loss to acceler-
ate the convergence. The TANDEM formula transforms
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Figure 4. MSPRT-TANDEM (N = 2). x(t) is an input vector;
e.g., a video frame. FE is a feature extractor. TI is a temporal
integrator, which allows two inputs: the feature vector and a hidden
state vector, which encodes the information of the past frames.
We use ResNet and LSTM for FE and TI, respectively, but are
not limited to them in general. The output posterior densities
are highlighted with pink circles. By aggregating the posterior
densities, the multiplet loss is calculated. Also, the estimated LLR
matrix λ̂ is constructed using the M-TANDEM or M-TANDEMwO
formulae. Finally, λ̂ is input to the LSEL. L̂LSEL + L̂mult is
optimized with gradient descent. In the test phase, λ̂(X(1,t)) is
used to execute the MSPRT (Figure 1 and Definition 3.1).

the output of the network (p̂(y|X(1,t))) to the likelihood
p̂(X(1,t)|y) under the N -th order Markov approximation,
which avoids the gradient vanishing of recurrent neural net-
works (Ebihara et al., 2021):

λ̂kl(X
(1,t)) ;

t∑
s=N+1

log

(
p̂θ(k|X(s−N,s))

p̂θ(l|X(s−N,s))

)

−
t∑

s=N+2

log

(
p̂θ(k|X(s−N,s−1))

p̂θ(l|X(s−N,s−1))

)
, (5)

where we do not use the prior ratio term− log(p̂(k)/p̂(l)) =
− log(Mk/Ml) in our experiments because it plays a similar
role to the cost matrix (Menon et al., 2021). Note that (5) is
a generalization of the original to DRME, and thus we call
it the M-TANDEM formula.

However, we find that the M-TANDEM formula contains
contradictory gradient updates caused by the middle
minus sign. Let us consider an example zi := (X

(1,t)
i , yi).

The posterior p̂θ(y = yi|X(s−N,s−1)
i ) (appears in (5))

should take a large value for zi because the posterior
density represents the probability that the label is yi. For
the same reason, λ̂yil(X

(1,t)) should take a high value;
thus p̂θ(y = yi|x(s−N), ..., x(s−1)) should take a small
value in accordance with (5) — an apparent contradiction.
These contradictory updates may cause a conflict of
gradients and slow the convergence of training, leading to
performance deterioration. Therefore, in the experiments,
we use either (5) or another approximation formula:
λ̂kl(X

(1,t);θ) ; log(p̂θ(k|X(t−N,t))/p̂θ(l|X(t−N,t))),
which we call the M-TANDEM with Oblivion (M-
TANDEMwO) formula. Clearly, the gradient does
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not conflict. Note that both the M-TANDEM and M-
TANDEMwO formulae are anti-symmetric and do not
violate the constraint λ̂kl + λ̂lm = λ̂km (∀k, l,m ∈ [K]).
See Appendix F for a more detailed empirical comparison.
Finally, the multiplet loss is a cross-entropy loss combined
with the N -th order approximation: L̂mult(θ;S) :=
1
M

∑M
i=1

∑N+1
k=1

∑T−(N+1−k)
t=k (− log p̂θ(yi|X(t−k+1,t)

i )).
An ablation study of the multiplet loss and the LSEL is
provided in Appendix H.

The overall architecture, MSPRT-TANDEM, is illustrated
in Figure 4. MSPRT-TANDEM can be used for arbitrary
sequential data and thus has a wide variety of potential
applications, such as computer vision, natural language
processing, and signal processing. We focus on vision tasks
in our experiments.

Note that in the training phase, MSPRT-TANDEM does not
require a hyperparameter that controls the speed-accuracy
tradeoff. A common strategy in early classification of
time series is to construct a model that optimizes two cost
functions: one for earliness and the other for accuracy
(Dachraoui et al., 2015; Mori et al., 2015; Tavenard & Mali-
nowski, 2016; Mori et al., 2018; Martinez et al., 2020). This
approach typically requires a hyperparameter that controls
earliness and accuracy (Achenchabe et al., 2020). The trade-
off hyperparameter is determined by heuristics and cannot
be changed after training. However, MSPRT-TANDEM
does not require such a hyperparameter and enables us to
control the speed-accuracy tradeoff after training because
we can change the threshold of MSPRT-TANDEM with-
out retraining. This flexibility is an advantage for efficient
deployment (Cai et al., 2020).

4. Experiment
To evaluate the performance of MSPRT-TANDEM, we use
averaged per-class error rate and mean hitting time: Both
measures are necessary because early classification of time
series is a multi-objective optimization problem. The av-
eraged per-class error rate, or balanced error, is defined as
1− 1

K

∑K
k=1

|{i∈[M ]|hi=yi=k}|
|{i∈[M ]|yi=k}| , where hi ∈ [K] is the pre-

diction of the model for i ∈ [M ] in the dataset. The mean
hitting time is defined as the arithmetic mean of the stopping
times of all sequences.

We use four datasets: two are new simulated datasets
made from MNIST (LeCun et al., 2010) (NMNIST-H and
NMNIST-100f), and two real-world public datasets for mul-
ticlass action recognition (UCF101 (Soomro et al., 2012)
and HMDB51 (Kuehne et al., 2011)). A sequence in
NMNIST-H consists of 20 frames of an MNIST image filled
with dense random noise, which is gradually removed (10
pixels per frame), while a sequence in NMNIST-100f con-
sists of 100 frames of an MNIST image filled with random

noise that is so dense that humans cannot classify any video
(Appendix K); only 15 of 28× 28 pixels maintain the origi-
nal image. The noise changes temporally and randomly and
is not removed, unlike in NMNIST-H.

4.1. Models

We compare the performance of MSPRT-TANDEM with
four other models: LSTM-s, LSTM-m (Ma et al., 2016),
EARLIEST (Hartvigsen et al., 2019), and the Neyman-
Pearson (NP) test (Neyman & Pearson, 1933). LSTM-s and
LSTM-m, proposed in a pioneering work in deep learning-
based early detection of human action (Ma et al., 2016), use
loss functions that enhance monotonicity of class probabili-
ties (LSTM-s) and margins of class probabilities (LSTM-m).
Note that LSTM-s/m support only the fixed-length test;
i.e., the stopping time is fixed, unlike MSPRT-TANDEM.
EARLIEST is a reinforcement learning algorithm based
on recurrent neural networks (RNNs). The base RNN of
EARLIEST calculates a current state vector from an in-
coming time series. The state vector is then used to gen-
erate a stopping probability in accordance with the binary
action sampled: Halt or Continue. EARLIEST has two
objective functions in the total loss: one for classification
error and one for earliness. The balance between them can-
not change after training. The NP test is known to be the
most powerful, Bayes optimal, and minimax optimal test
(Borovkov, 1998; Lehmann & Romano, 2006). The NP test
uses the LLR to make a decision in a similar manner to the
MSPRT, but the decision time is fixed. The decision rule is
dNP(X(1,t)) := argmaxk∈[K] minl∈[K] λkl(X

(1,t)) with a
fixed t ∈ [T ]. In summary, LSTM-s/m have different loss
functions from MSPRT-TANDEM, and the stopping time is
fixed. EARLIEST is based on reinforcement learning, and
its stopping rule is stochastic. The only difference between
the NP test and MSPRT-TANDEM is whether the stopping
time is fixed.

We first train the feature extractor (ResNet (He et al.,
2016a;b)) by solving multiclass classification with the soft-
max loss and extract the bottleneck features, which are then
used to train LSTM-s/m, EARLIEST, and the temporal in-
tegrator for MSPRT-TANDEM and NP test. Note that all
models use the same feature vectors for the training. For a
fair comparison, hyperparameter tuning is carried out with
the default algorithm of Optuna (Akiba et al., 2019) with
an equal number of tuning trials for all models. Also, all
models have the same order of trainable parameters. After
fixing the hyperparameters, we repeatedly train the models
with different random seeds to consider statistical fluctua-
tion due to random initialization and stochastic optimizers.
Finally, we test the statistical significance of the models
with the two-way ANOVA followed by the Tukey-Kramer
multi-comparison test. More detailed settings are given in
Appendix I.
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Figure 5. Speed-Accuracy Tradeoff (SAT) Curves. The vertical axis represents the averaged per-class error rate, and the horizontal axis
represents the mean hitting time. Early and accurate models come in the lower-left area. The vertical error bars are the standard error
of mean (SEM); however, some of the error bars are too small and are collapsed. Upper left: NMNIST-H. The Neyman-Pearson test,
LSTM-s, and LSTM-m almost completely overlap. Upper right: NMNIST-100f. LSTM-s and LSTM-m completely overlap. Lower
left: UCF101. Lower right: HMDB51.

4.2. Results

The performances of all the models are summarized in Fig-
ure 5 (The lower left area is preferable). We can see that
MSPRT-TANDEM outperforms all the other models by a
large margin, especially in the early stage of sequential ob-
servations. We confirm that the results have statistical signif-
icance; i.e., our results are reproducible (Appendix L). The
loss functions of LSTM-s/m force the prediction score to be
monotonic, even when noisy data are temporally observed,
leading to a suboptimal prediction. In addition, LSTM-s/m
have to make a decision, even when the prediction score is
too small to make a confident prediction. However, MSPRT-
TANDEM can wait until a sufficient amount of evidence is
accumulated. A potential weakness of EARLIEST is that
reinforcement learning is generally unstable during training,
as pointed out in (Nikishin et al., 2018; Kumar et al., 2020).
The NP test requires more observations to attain a compa-
rable error rate to that of MSPRT-TANDEM, as expected
from the theoretical perspective (Tartakovsky et al., 2014):
In fact, the SPRT was originally developed to outperform

the NP test in sequential testing (Wald, 1945; 1947).

5. Conclusion
We propose the LSEL for DRME, which has yet to be
explored in the literature. The LSEL relaxes the crucial
assumption of the MSPRT and enables its real-world appli-
cations. We prove that the LSEL has a theoretically strong
background: consistency, hard class weighting, and guess-
aversion. We also propose MSPRT-TANDEM, the first
DRE-based model for early multiclass classification in deep
learning. The experiment shows that the LSEL and MSPRT-
TANDEM outperform other baseline models statistically
significantly.
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