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Abstract 
Current reinforcement learning (RL) methods use 
simulation models as simple black-box oracles. 
In this paper, with the goal of improving the per-
formance exhibited by RL algorithms, we explore 
a systematic way of leveraging the additional in-
formation provided by an emerging class of differ-
entiable simulators. Building on concepts estab-
lished by Deterministic Policy Gradients (DPG) 
methods, the neural network policies learned with 
our approach represent deterministic actions. In 
a departure from standard methodologies, how-
ever, learning these policies does not hinge on 
approximations of the value function that must 
be learned concurrently in an actor-critic fashion. 
Instead, we exploit differentiable simulators to 
directly compute the analytic gradient of a pol-
icy’s value function with respect to the actions 
it outputs. This, in turn, allows us to effciently 
perform locally optimal policy improvement iter-
ations. Compared against other state-of-the-art 
RL methods, we show that with minimal hyper-
parameter tuning our approach consistently leads 
to better asymptotic behavior across a set of pay-
load manipulation tasks that demand a high de-
gree of accuracy and precision. 

1. Introduction 
The main goal in RL is to formalize principled algorithmic 
approaches to solving sequential decision-making problems. 
As a defning characteristic of RL methodologies, agents 
gain experience by acting in their environments in order to 
learn how to achieve specifc goals. While learning directly 
in the real world (Haarnoja et al., 2019; Kalashnikov et al., 
2018) is perhaps the holy grail in the feld, this remains 
a fundamental challenge: RL is notoriously data hungry, 
and gathering real-world experience is slow, tedious and 
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potentially unsafe. Fortunately, recent years have seen excit-
ing progress in simulation technologies that create realistic 
virtual training grounds, and sim-2-real efforts (Tan et al., 
2018; Hwangbo et al., 2019) are beginning to produce im-
pressive results. 

A new class of differentiable simulators (Zimmermann et al., 
2019; Liang et al., 2019; de Avila Belbute-Peres et al., 2018; 
Degrave et al., 2019) is currently emerging. These simu-
lators not only predict the outcome of a particular action, 
but they also provide derivatives that capture the way in 
which the outcome will change due to infnitesimal changes 
in the action. Rather than using simulators as simple black 
box oracles, we therefore ask the following question: how 
can the additional information provided by differentiable 
simulators be exploited to improve RL algorithms? 

To provide an answer to this question, we propose a novel 
method to effciently learn control policies for fnite horizon 
problems. The policies learned with our approach use neural 
networks to model deterministic actions. In a departure from 
established methodologies, learning these policies does not 
hinge on learned approximations of the system dynamics 
or of the value function. Instead, we leverage differentiable 
simulators to directly compute the analytic gradient of a pol-
icy’s value function with respect to the actions it outputs for 
a specifc set of points sampled in state space. We show how 
to use this gradient information to compute frst and second 
order update rules for locally optimal policy improvement 
iterations. Through a simple line search procedure, the pro-
cess of updating a policy avoids instabilities and guarantees 
monotonic improvement of its value function. 

To evaluate the policy optimization scheme that we propose, 
we apply it to a set of control problems that require payloads 
to be manipulated via stiff or elastic cables. We have chosen 
to focus our attention on this class of high-precision dynamic 
manipulation tasks for the following reasons: 

• they are inspired by real-world applications ranging 
from cable-driven parallel robots and crane systems to 
UAV-based transportation to (Figure 1); 

• the systems we need to learn control policies for exhibit 
rich, highly non-linear dynamics; 

• the specifc tasks we consider constitute a challeng-
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ing benchmark because they require very precise se-
quences of actions. This is a feature that RL algorithms 
often struggle with, as the control policies they learn 
work well on average but tend to output noisy actions. 
Given that sub-optimal control signals can lead to sig-
nifcant oscillations in the motion of the payload, these 
manipulation tasks therefore make it possible to pro-
vide an easy-to-interpret comparison of the quality of 
the policies generated with different approaches; 

• by varying the confguration of the payloads and actua-
tion setups, we can fnely control the complexity of the 
problem to test systematically the way in which our 
method scales. 

Figure 1: Real-world applications that inspire the control 
problems we focus on in this paper 

The results of our experiments confrm our theoretical 
derivations and show that our method consistently out-
performs two state-of-the-art (SOTA) model-free RL al-
gorithms, Proximal Policy Optimization(PPO) (Wang et al., 
2019) and Soft Actor-Critic(SAC) (Haarnoja et al., 2018), 
as well as the model-based approach of Backpropagation 
Through Time (BPTT). Although our policy optimization 
scheme (PODS) can be interleaved within the algorithmic 
framework of most RL methods (e.g. by periodically updat-
ing the means of the probability distributions represented 
by stochastic policies), we focused our efforts on evaluat-
ing it in isolation to pinpoint the benefts it brings. This 
allowed us to show that with minimal hyper-parameter tun-
ing, the second order update rule that we derive provides 
an excellent balance between rapid, reliable convergence 
and computational complexity. In conjunction with the con-
tinued evolution of accurate differentiable simulators, our 
method promises to signifcantly improve the process of 
learning control policies using RL. 

2. Related work 
Deep Reinforcement Learning. Deep RL (DRL) algo-
rithms have been increasingly more successful in tackling 
challenging continuous control problems in robotics (Kober 
et al., 2013; Li, 2018). Recent notable advances include ap-
plications in robotic locomotion (Tan et al., 2018; Haarnoja 
et al., 2019), manipulation (OpenAI et al., 2018; Zhu et al., 
2019; Kalashnikov et al., 2018; Gu et al., 2016), and naviga-
tion (Anderson et al., 2018; Kempka et al., 2016; Mirowski 

et al., 2017) to mention a few. Many model-free DRL al-
gorithms have been proposed over the years, which can be 
roughly divided into two classes, off-policy methods (Mnih 
et al., 2016; Lillicrap et al., 2016; Fujimoto et al., 2018; 
Haarnoja et al., 2018) and on-policy methods (Schulman 
et al., 2015; 2016; Wang et al., 2019), based on whether 
the algorithm can learn independently from how the sam-
ples were generated. Recently, model-based RL algo-
rithms (Nagabandi et al., 2017; Kurutach et al., 2018; Clav-
era et al., 2018; Nagabandi et al., 2019) have emerged as a 
promising alternative for improving the sample effciency. 
Our method can be considered as an on-policy algorithm 
as it computes frst or second-order policy improvements 
given the current policy’s experience. 

Policy Update as Supervised Learning. Although pol-
icy gradient methods are some of the most popular ap-
proaches for optimizing a policy (Kurutach et al., 2018; 
Wang et al., 2019), many DRL algorithms also update the 
policy in a supervised learning (SL) fashion by explicitly 
aiming to mimic expert demonstration (Ross et al., 2011) 
or optimal trajectories (Levine & Koltun, 2013a;b; Mor-
datch & Todorov, 2015). Optimal trajectories, in particular, 
can be computed using numerical methods such as iterative 
linear–quadratic regulators (Levine & Koltun, 2013a;b) or 
contact invariant optimization (Mordatch & Todorov, 2015). 
The solutions they provide have the potential to improve the 
sample effciency of RL methods either by guiding the learn-
ing process through meaningful samples (Levine & Koltun, 
2013a) or by explicitly matching action distributions (Mor-
datch & Todorov, 2015). Importantly, these approaches are 
not only evaluated in simulation but have also been shown 
to be effective for many real-world robotic platforms, in-
cluding manipulators (Schenck & Fox, 2016; Levine et al., 
2016) and exoskeletons (Duburcq et al., 2019). Recently, 
Peng et al. (2019) proposed an off-policy RL algorithm that 
uses SL both to learn the value function and to ft the policy 
to the advantage-weighted target actions. While our method 
shares some similarities with this class of approaches that in-
terleave SL and RL, the updates of our policy do not rely on 
optimal trajectories that must be given as input. Rather, we 
show how to leverage differentiable simulators to compute 
locally optimal updates to a policy. These updates are com-
puted by explicitly taking the gradient of the value function 
with respect to the actions output by the policy. As such, 
our method also serves to reinforce the bridge between the 
felds of trajectory optimization and reinforcement learning. 

Differentiable Models. Our approach does not aim to 
learn a model of the system dynamics, but rather lever-
ages differentiable simulators that explicitly provide gra-
dients of simulation outcomes with respect to control ac-
tions. We note that traditional physics simulators such as 
ODE (Drumwright et al., 2010) or PyBullet (Coumans & 
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Bai, 2016–2019) are not designed to provide this informa-
tion. We build, in particular, on a recent class of analytically 
differentiable simulators that have been shown to effectively 
solve trajectory optimization problems, with a focus on sim-
2-real transfer, for both manipulation (Zimmermann et al., 
2019) and locomotion tasks (Bern et al., 2019). 

Further examples of the exciting differentiable simulators 
that can be used to model rigid and deformable objects, 
cloth, and frictional contact are presented in Liang et al. 
(2019) and Geilinger et al. (2020). Hu et al. (2020) presents 
a very general framework that can also deal with fuids, and 
electric felds, and Heiden et al. (2021) presents a differen-
tiable fracture mechanics model that is used to accurately 
predict the cutting force of a knife. 

Degrave et al. (2019) embed a differentiable rigid body sim-
ulator within a recurrent neural network to concurrently per-
form simulation steps while learning policies that minimize 
a loss corresponding to the control objective. While their 
goal is related to ours, we show how to leverage explicitly-
computed gradients to formulate second order policy up-
dates that have a signifcant positive effect on convergence. 
Furthermore, in contrast to Degrave et al. (2019), we show 
that PODS consistently outperforms two common RL base-
lines, PPO (Wang et al., 2019) and SAC (Haarnoja et al., 
2018). 

Also related to our method is the very recent work of Clavera 
et al. (2020). Their observation is that while most model-
based RL algorithms use models simply as a source of data 
augmentation or as a black-box oracle to sample from (Naga-
bandi et al., 2017), the differentiability of learned dynamics 
models can and should be exploited further. In an approach 
that is related to ours, they propose a policy optimization 
algorithm based on derivatives of the learned model. In 
contrast, we directly use differentiable simulators for pol-
icy optimization, bypassing altogether the need to learn 
the dynamics – including all the hyperparameters that are 
involved in the process, as well as the additional strate-
gies required to account for the inaccuracies introduced by 
the learned dynamics (Boney et al., 2019). Thanks to the 
second order update rule that we derive, our method consis-
tently outperforms SOTA model-free RL algorithms in the 
tasks we proposed. In contrast, their method only matches 
the asymptotic performance of model-free RL (which is 
a feat for model-based RL). It is also worth pointing out 
that while model-based approaches hold the promise of en-
abling learning directly in the real world, with continued 
progress in sim-2-real transfer, methods such as ours that 
rely on accurate simulation technologies will continue to be 
indispensable in the feld of RL. 

A common approach to leverage differentable models is 
that of backpropagating through time (BPTT) as is the main 
focus of Grzeszczuk et al. (1998), Deisenroth & Rasmussen 

(2011), Parmas (2018), Degrave et al. (2019), and Clavera 
et al. (2020), where a policy πθ parametrized by θ is opti-
mized directly in parameter space (PS), coupling the actions 
at each time step by the policy parameters. In contrast, our 
approach alternates between optimizing in trajectory space 
(TS), following gradient information of the value function 
for an independent set of actions at = πθ(s)| , and in s=st 

parameter space (PS) by doing imitation learning of the 
monotonically improved actions at by πθ. Alternating be-
tween TS and PS allows PODS to avoid the well-know 
problems of BPTT (vanishing and exploding gradients), that 
have been reported for a long time (Bengio et al., 1994). 

3. Policy Optimization on Differentiable 
simulators 

Following the formulation employed by DPG methods, for 
a deterministic neural network policy πθ parameterized by 
weights θ, the RL objective J(πθ) and its gradient rθJ(πθ) 
are defned as: Z 

J(πθ) = p(s0)V πθ (s0)ds0, (1) 
SZ 

rθ J(πθ) = p(s0)rθ V πθ (s0)ds0. 
S 

≈ 
1 
k 

kX 
rθ V πθ (s0,i). (2) 

i 

where p(s0) is the initial probability distribution over states, 
V πθ is the value function for πθ , and the second expression 
in Eq. 2 approximates the integral with a sum over a batch 
of k initial states sampled from S, as is standard. 

Restricting our attention to an episodic problem setup with 
fxed time horizon N and deterministic state dynamics 
st+1 = f(st, at), the value function gradient simplifes 
to: � N �X 
rθV πθ (s0) = rθ r(s0, πθ(s0)) + r(st, πθ(st)) . 

t=1 

(3) 

Noting that the state st can be specifed as a recursive func-
tion st = f(st−1, πθ(st−1)), the computation of the gradi-
ent in Eq 3 is equivalent to backpropagating through time 
(BPTT) into the policy parameters. However, BPTT can be 
challenging due to well known problems of vanishing or 
exploding gradients (Degrave et al., 2019). We therefore 
turn our focus to the task of performing policy improvement 
iterations. In particular, our goal is to fnd a new policy ā, in 
trajectory space, such that V πθ (s0) < V ā (s0) for a batch 
of initial states sampled according to s0 ∼ p(s0). 
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3.1. First order policy improvement 

While the parametrization of πθ is given in terms of θ (the 
weights of the neural net), we will choose TS policy ā to 
directly have as parameters the actions that are executed at 
each time step. By representing the actions independently 
of each other, rather than having them coupled through θ, 
BPTT is therefore not required. Moreover, at the start of 
each policy improvement step, we initialize the TS policy � � 
ā = a0, a1, . . . , aN−1 to match the output of πθ , where 
the individual terms at are the actions executed during a 
rollout of πθ(s)|s=st−1 . Thus, V πθ (s0) = a(s0) initially. V ¯ 

The value function gradient of policy ā is then: 

rā V ā (s0) = rā V ā (s(ā), ā). � N �� � X � � 
= rā r s0, a0 + r st(at−1), at . 

t=1 

(4) 

� � 
where s(ā) = s0, s1(a0), . . . , sN (aN−1) is the vector 
of the state trajectory associated to the policy rollout. For 
the sake of clarity we switch notation from rā to d(d¯ 

.) : a 

a adV ā (s0) ∂V ¯ ∂V ¯ ds 
= + . (5)

dā ∂ā ∂s dā 

a a

For a known, differentiable reward, the terms ∂V ¯ 

and ∂V ¯ 

∂ā ∂s 
can be easily computed analytically. In contrast, the Jaco-
bian ds , that represents the way in which the state trajectory dā 
changes as the policy ā changes, is the frst piece of infor-
mation that we will require from a differentiable simulator. 
Furthermore, notice that even though we are not using BPTT, 
the lower triangular structure of ds encodes the dependency dā 
of a particular point in state space on all the previous actions 
during a rollout (see the Appendix A.4 for more details on 
the Jacobian structure). 

The frst order update rule for policy ā is then computed as: 

dV ā (s0) 
ā = πθ + αa . (6)

dā 

Since this update rule uses the policy gradient (i.e. the 
direction of local steepest ascent), there exists a value αa > 
0 such that V πθ (s0) < V ā (s0). In practice, we use the 
simulator to run a standard line-search on αa to ensure the 
inequality holds. We note, however, that if desired, αa 

can also be treated as a hyperparameter that is tuned to a 
suffciently small value. 

Once the policy ā has been improved, we can use the corre-
sponding state trajectories s(ā) to update the parameters of 
the neural net policy πθ by running gradient descent on the 
following loss: 

k N 

Lθ =
1 XX 1 kπθ(st,i) − at,ik2 . (7)
k 2 

i t 

where the gradient and update rule are given by: 

k NXX1 rθLθ = rθπθ(si)(πθ(st,i) − at,i), (8)
k 

i t 

θ = θ − αθrθLθ. (9) 

Here, i indexes the batch of initial states used to approximate 
the integral in Eq 2. Notice that gradients rθJ(πθ ) and 
rθLθ are closely related for the frst iteration in the policy 
improvement operation, where: 

X1 
k 

dV ā (s0,i) rθLθ = −αθαa rθπθ (s0,i) . (10)
k dā 

i 

which explains why minimizing Eq.7 improves the value 
function formulated in Eq. 1. It is also worth noting that the 
stability of the policy improvement process is guaranteed 
by the parameter αa, which is found through a line search 
procedure such that V πθ (s0) < V ā (s0), as well as through 
the intermediate targets of Eq. 7, which eliminate poten-
tial overshooting problems that might occur if the gradient 
direction in Eq.10 was followed too aggressively. 

3.2. Second order policy improvement 
aV ¯ (s0)For a second order policy update rule, the Hessian d

2 

dā2 

is required. A brief derivation of this expression can be 
found in the Appendix and is summarized as follows: � � 

a ad2V ā (s0) d ∂V ¯ ∂V ¯ ds 
= + , (11)

2dā dā ∂ā ∂s dā � � 
∂V ā ds T ∂ ds ∂ ds 

= + + 
∂s dā ∂s dā ∂ā dā � �T ∂2V ā ∂2V ā ∂2V āds ds 

+ 2 + 
dā ∂s2 dā ∂s∂ā ∂ā2 

(12) 

∂ ds ∂ dsThe second order tensors and are additional∂s dā ∂ā dā 
terms that a differentiable simulator must provide. As de-
scribed in Zimmermann et al. (2019), these terms can be 
computed analytically. However, they are computationally 
expensive to compute, and they often lead to the Hessian 
becoming indefnite. As a consequence, ignoring these 
terms from the equation above results in a Gauss-Newton 
approximation of the Hessian: 

d2V ¯ T ∂2V ā ∂2V āa(s0) ds ds ≈ Ĥ = + . (13)
dā2 dā ∂s2 dā ∂a2 
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Algorithm 1 PODS: Policy Optimization via Differentiable 
Simulators 

for epoch = 1, M do 
for sample i = 1, k do 

Sample initial condition s0,i 
Collect πθ by rolling out πθ starting from s0,i 
Compute improved policy ā i (Eq 6. or Eq 14.) 

end for 
Run gradient descent on Lθ (Eq 7.) such that the 
output of πθ matches ā i for the entire sequence of 
states s(ā i) 

end for 

In the expression above we assume that the rewards do 
not couple s and a. As long as the second derivatives of 
the rewards with respect to states and actions are positive 
defnite, which is almost always the case, the Gauss-Newton 
approximation Ĥ is also guaranteed to be positive semi-
defnite. A second order update rule for ā can therefore be 
computed as: 

dV ā (s0)
Ĥ −1 ā = πθ + αa . (14)

dā 

Analogous to the frst order improvements discussed in the 
previous section, the same loss Lθ can be used to perform a 
policy update on πθ to strictly improve its value function. In 
this case, Lθ incorporates the second order policy updates 
of Eq. 14 without the need to compute the Hessian of the 
neural network policy, and with the additional beneft of 
allowing the use of well-defned acceleration methods such 
as Adam (Kingma & Ba, 2015). 

3.3. Monotonic policy improvement 

The combination of a simple line search on αa together with 
the use of Lθ to update πθ provides a simple and very effec-
tive way of preventing overshooting as θ is updated. PODS 
therefore features monotonic increases in performance, as 
shown through our experiments. As summarized in Figure 3 
for the task of controlling a 2D pendulum such that it goes 
to stop as quickly as possible (see the experiments section 
for a detailed description of task), both the frst and sec-
ond order policy improvement methods are well-behaved. 
Nevertheless, there is a drastic difference in convergence 
rates, with the second order method winning by a signifcant 
margin. 

In contrast to other approaches such as PPO (Wang et al., 
2019) and SAC (Haarnoja et al., 2018), our policy update 
scheme does not need to be regularized by a KL-divergence 
metric, demonstrating its numerical robustness. Our method 
is only limited by the expressive power of policy πθ , as 
it needs to approximate ā well. For reasonable network 

architectures, this is not a problem, especially since ā corre-
sponds to local improvements. The overall PODS formula-
tion is summarized in Algorithm 1. For the experiments we 
present in the next section, we collected k = 4000 rollouts 
for each epoch, and we performed 50 gradient descent steps 
on Lθ for each policy optimization iteration. 

4. Experiments 
Environments: The environments used in our experi-
ments set up cable-driven payload manipulation control 
problems that are inspired by the types of applications visu-
alized in Figure 1. For all these examples, as illustrated in 
Figure 2, the action space is defned by the velocity of one or 
more handles, which are assumed to be directly controlled 
by a robot, and the state space is defned by the position of 
the handle as well as the position and velocity of the payload. 
We model our dynamical systems as mass-spring networks 
by connecting payloads to handles or to each other via stiff 
bilateral or unilateral springs. Using a simulation engine 
that follows closely the description in Zimmermann et al. 
(2019), we use a BDF2 integration scheme, as it exhibits 
very little numerical damping and is stable even under large 
time steps. Although this is not a common choice for RL 
environments, the use of higher order integration schemes 
also improves simulation quality and accuracy, as pointed 
out by Zhong et al. (2020). The Jacobian ds , which is used dā 
for both the frst order and second order policy updates, is 
computed analytically via sensitivity analysis, as described 
in detail by Zimmermann et al. (2018). The computational 
cost of computing this Jacobian is signifcantly less than 
performing the sequence of simulation steps needed for a 
policy rollout. 

The control problems we study here are deceptively simple. 
All the environments fall in the category of underactuated 
systems and, in consequence, policies for such environments 
must fully leverage the system’s dynamics to successfully 
achieve a task. The lack of numerical damping in the mo-
tion’s payload, in particular, necessitates control policies 
that are very precise, as even small errors lead to noticeable 
oscillations. These environments also enable us to incre-
mentally increase the complexity of the tasks in order to 
study the scalability of our method, as well as that of the RL 
algorithms we compare against. For comparison purposes, 
in particular, we use different types of dynamical systems: 
2D Simple Pendulum, 3D Simple Pendulum, 3D Double 
Pendulum, cable driven payload, and discretized 3D rope. 
Furthermore, we also test the scalibilty of our approach 
with the task of laying a cloth on a table, which uses the 
the analytically differentiable contact model introduced in 
Geilinger et al. (2020) (See discussion section). A detailed 
description of these environments is presented in Appendix 
A.2. 
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Figure 2: Experiments left to right; 2D pendulum, 3D double pendulum, Cable driven payload 2D, Discretized 3D rope 

For all the environments, the action space describes instan-
taneous velocities of the handles, which are restricted to 
remain within physically reasonable limits. 

Tasks: In order to encode our tasks, we used continuous 
rewards that are a function of the following state variables: 
the position of the handle (p), the position of the mass points 
representing the payloads relative to a target position (x), 
and their global velocities (v). The reward also contains a 
term that is a function of the actions which are taken. This 
term takes the form of a simple regularizer that aims to 
discourage large control actions. 

r(st, at) = − wp||pt||2 − wx||xt||2 

− wv ||v||2 − wa||at||2 (15) 

where the coeffcients wp, wx, wv, wa allow each sub-
objective to be weighted independently, as is commonly 
done. This very general reward formulation allows us to 
defne two different tasks that we apply to each of the three 
systems described above: 

• Go to stop: Starting from an initial state with non-zero 
velocity, the pendulum must go to stop as quickly as 
possible in a downward confguration. For this task the 
weights wp = wx = 0. 

• Go to stop at the origin: In addition to stopping as fast 
as possible, the system must come to rest at a target 
location, which, without loss of generality, is chosen to 
be the origin. 

The architecture of the neural network policies that we used 
is detailed in Appendix A.3. For a fair comparison, the 
neural network policies for PODS, PPO, SAC and GPS 
were initialized with the same set of initial weights. We 
fne tuned hyper parameters to get the best performance we 
could, and otherwise ran standard implementations provided 
in Achiam (2018). All experiments were run using a desktop 

PC with an Intel® CoreTM i7-8700K CPU and a GeForce 
GTX 1080 Ti graphics card. 

The monotonically improving behavior of PODS can be 
seen in Figure 4. The reward reported is the result of av-
eraging the reward of 1000 rollouts started from a test bed 
of unseen initial states. Unless stated otherwise, we used 
a batch size of k = 4000 rollouts to compute PODS pol-
icy update. As a convention PODS 4000 and PODS 500 
refer to batch sizes of 4000 and 500 rollouts respectively. 
Even if the initial progress of PODS is not always as fast 
as SAC for PODS 4000, it consistently leads to a higher 
reward after a small number of epochs. We note that the 
standard deviations visualized in this fgure are indicative 
of a large variation in problem diffculty for the different 
state-space points that seed the test rollouts (e.g. a double 
pendulum that has little momentum is easier to be brought 
to a stop than one that is swinging wildly). As can be seen, 
the tasks that demand the payloads to be brought to a stop at 
a specifc location are considerably more challenging. The 
supplementary video illustrates the result of the rollouts to 
provide an intuition into the quality of the control policies 
learned with our method. 

4.1. Results 

PODS vs BPTT: To further explore the benefts of the 
PODS second order update rule, we compared against the 
approach of BPTT which naturally leverages the differentia-
bility of the model. We found BPTT to be highly sensitive 
to the weight initialization of the policy. In Figure 3, we 
report results using the weight initialization that we found 
to favor BPTT the most. When training neural network 
policies, doing BPTT for a 50 steps rollout is effectively 
equivalent to backpropagating through a network that is 50 
times deeper than the actual network policy, which is in 
itself a feat considering that despite introducing a terminal 
cost function to stabilize BPPT, Clavera et al. (2020) only 
reports results of effectively BPTT for a maximum of 10 
steps. Nonetheless, BPTT is able to outperform PODS with 
the 1st order update rule. However, PODS with the 2nd 
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Table 1: Results summary: PODS leads to better rewards overall and is 10 to 30 times faster than SAC 

Reward Compute time [h] 
PODS 

500 
PODS 
4000 SAC PPO GPS PODS 

500 
PODS SAC PPO4000 GPS 

2D Pendulum -17 -18 -20 -48 -37 0.11 0.15 4.8 1.1 0.6 
3D Pendulum -39 -44 -45 -199 -193 0.22 0.23 4.9 1.1 1.07 
3D Double Pendulum -180 -185 -213 -470 -365 0.74 0.57 10.9 2.9 2.2 
2D Pendulum 
Stop Origin -183 -184 -191 -395 -218 0.11 0.75 4.8 1.2 0.6 

3D Pendulum 
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3D Double Pendulum 
Stop Origin -732 -737 -836 -2310 -845 1.01 0.99 9.7 2.9 2.9 

Cable driven payload -13 -11 -14 -50 -13 0.7 0.5 8.2 2.5 4.4 
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Figure 3: Comparison of PODS 1st and 2nd order update 
rules against BPTT for the 2D simple pendulum with 50-
steps rollouts 

order update rule is able to signifcantly outperform BPTT 
both in terms on convergence rates and fnal performance. 
Even though, a second order formulation of BPTT could be 
derived, it’s deployment would involve the hessian of the 
neural network policy which is computationally expensive. 
In contrast, PODS frst order and second order formulations 
are equally easy to deploy. 

PODS, SAC, and PPO: To better understand the relative 
performance of the control policies learned with PODS, 
SAC and PPO, we report the terminal kinetic energy (KE) of 
the payload (Figure 8 – Appendix), the average magnitude 
of control action (Figure 10 – Appendix), and the average 
distance to the target location for the Stop At Origin tasks 

(Figure 9 – Appendix) – note, lower is better, and upon 
convergence, control policies learned with PODS adequately 
solve each individual problem in our randomized test bed. 
The shaded areas represent half the standard deviation of 
each metric. For convenience only the upper side of the 
standard deviation is presented. 

For the task of stopping as fast as possible, PODS leads to a 
terminal kinetic energy that is typically orders of magnitude 
better than the other approaches (Top row Figure 8). For 
the tasks of stopping at the origin, SAC achieves very good 
terminal KE. PODS, however, stops closer to the origin. It 
is also worth noticing that upon convergence PODS leads in 
overall to better rewards as can be seen in Table 1. Further-
more, PODS is 10 to 30 times faster than SAC in terms of 
compute time. 

PODS and GPS: PODS shares a common goal with the 
family of Guided Policy Search (GPS) algorithms (Mont-
gomery & Levine, 2016). However, the mathematical formu-
lation of both approaches is substantially different, as GPS 
is based on dual descent formulations while our approach 
is inspired by the policy gradient, which is also why we 
included the comparison against backpropagation through 
time. 

A frst departure point of PODS w.r.t GPS is that at each iter-
ation the ”control phase” or c-step reported in Montgomery 
& Levine (2016) requires to solve an optimization problem 
until convergence i.e. it requires a control oracle, usually 
iLQG, that internally performs several updates to the control 
actions. PODS does not require such an oracle. Instead, it 
only relies on gradient information which encodes locally 
optimal changes to the output of an existing policy. This 
information, which we show can be computed effciently 
with the help of differentiable simulators, allows control 
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Figure 4: Comparison of reward curves. Our algorithm, PODS, achieves better performance compared to other algorithms 
(PPO, SAC, GPS), while requiring at the same time less compute time (See Table 1). 

actions to be updated once per improvement step. In ef-
fect, we perform gradient-based optimization directly on the 
parameter space of the control policies (Eq 10). 

Another defning characteristic of GPS is the use of a KL di-
vergence constraint on the trajectory distributions. Levine & 
Abbeel (2014) introduce such constraint by pointing out that 
the ftted dynamics used by GPS are only valid locally and 
that the new actions generated by iLQG can be arbitrarily 
far from the old ones, potentially leading to regions of the 
state space where the dynamics are no longer valid, which 
in turn prevents convergence. In contrast, PODS combines 
gradient information with a line search procedure to ensure 
that updates produce monotonic improvements to the output 
of the control policy. 

If we think of updating the control actions once by following 
the gradient information as one of the many updates that 
a control oracle performs internally, then we can see that 
PODS is learning from the intermediate internal updates 
of an unconstrained control oracle, while GPS learns from 
the solutions of a constraint control oracle. This means 
that each update step for PODS is much faster, since target 
update values are faster to compute. 

We note that our implementation of GPS uses the true dy-
namics, rather than learned models and as such we see it as 
another model-based baseline. Figure 4 shows good con-
vergence behavior for GPS, however, it tends to be overly 
conservative. Such conservative behavior is characteristic 
of policy constraint methods and is particularly notable in 
the case of Offine-RL methods (Levine et al., 2020). 

4.2. Discussion 

To further test performance of our approach in terms of the 
scalability and complexity of the tasks we can deal with, 
we look at the problem of laying a piece of cloth fat on a 
table at a prespecifed location, as depicted in Figure 5. The 
dimension of the state space for this task is 162, and PODS 
is still very effective in learning high-quality policies for it. 

As reported in Table 1, PODS outperforms SAC both in 
terms of fnal performance and wall-clock time. We note 
that PODS sample effciency improves in general, by us-
ing smaller batch sizes for the policy update. However, 
smaller batch sizes, can also prevent PODS from showing a 
monotonic improvement for unseen data. 

Larger batch sizes take better advantage of GPU paralleliza-
tion, while smaller batch sizes lead to more frequent policy 
updates; these come with an increase in computational cost, 
but also provide an opportunity to obtain better initial so-
lutions for subsequent rollouts. As can be seen in Figure 
6, with smaller batch sizes PODS is faster in wall-clock 
time than SAC, and better in terms of sample effciency. We 
note that while it is initially easy for SAC to increase the 
cumulative reward, these are fne manipulation tasks that 
require precise, very accurate actions. After good progress 
in the early iterations, SAC struggles to achieve the level 
of performance that PODS policies quickly converge to; as 
such, it needs much longer training times. 

Although the current experiment showcases PODS potential, 
further investigations are needed to expose the ceiling of 
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Sampled initial state 

Intermediate state 

Target location 

Figure 5: Depiction for the task of laying a cloth on a table. 
The cloth is modeled as a mass spring network together with 
analytically differentiable frictional contact. 

complexity for the tasks that PODS can be applied to. In 
this context, learning visuomotor policies end-to-end is an 
exciting avenue for future investigations. 

5. Conclusion and future work 
In this paper, we presented a highly effective strategy for 
policy optimization. As a core idea behind our approach, 
we exploit differentiable simulators to directly compute the 
analytic gradient of a policy’s value function with respect 
to the actions it outputs. Through specialized update rules, 
this gradient information is used to monotonically improve 
the policy’s value function. We demonstrated the effcacy 
of our approach by applying it to a series of increasingly 
challenging payload manipulation problems, and we showed 
that it outperforms two SOTA RL methods both in terms 
of convergence rates, and in terms of quality of the learned 
policies. 

Our work opens up exciting avenues for future investiga-
tions. For example, although we evaluated PODS in isola-
tion in order to best understand its strengths, it would be 
interesting to interleave it with existing RL methods. This 
will require extensions of our formulation to stochastic poli-
cies, and it would allow the relative strengths of different 
approaches to be effectively combined (e.g. exploration vs 
exploitation, with PODS excelling in the latter but not being 
designed for the former). Furthermore, while PODS current 
formulation can already handle problems where rewards 
are specifed only for the terminal step, in the case of non-

Laying cloth with friction ·105 
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Figure 6: Sample effciency on cloth task. TT in the legends 
stands for the total time to go over 500 rollouts. 

smooth rewards, one could easily extend PODS to leverage 
advances in inverse reinforcement learning to obtain a sur-
rogate reward function that is differentiable. We are also 
excited about the prospect of applying PODS to other types 
of control problems, particularly ones that include contacts 
(e.g. locomotion, grasping, etc). Although the need for a 
specialized simulator makes the application to standard RL 
benchmark suites (Brockman et al., 2016; Tassa et al., 2018) 
challenging, we note that sim-2-real success with a differen-
tiable simulator has been recently reported in the context of 
soft locomoting robots (Bern et al., 2019). With continued 
evolution of such simulation technologies, we are excited 
about the prospect of creating a new benchmark suite appli-
cable to approaches such as PODS that use differentiable 
simulators at their core. 
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