
PODS: Policy Optimization via Differentiable Simulation

Miguel Zamora 1 Momchil Peychev 1 Sehoon Ha 2 Martin Vechev 1 Stelian Coros 1

Abstract
Current reinforcement learning (RL) methods use
simulation models as simple black-box oracles.
In this paper, with the goal of improving the per-
formance exhibited by RL algorithms, we explore
a systematic way of leveraging the additional in-
formation provided by an emerging class of differ-
entiable simulators. Building on concepts estab-
lished by Deterministic Policy Gradients (DPG)
methods, the neural network policies learned with
our approach represent deterministic actions. In
a departure from standard methodologies, how-
ever, learning these policies does not hinge on
approximations of the value function that must
be learned concurrently in an actor-critic fashion.
Instead, we exploit differentiable simulators to
directly compute the analytic gradient of a pol-
icy’s value function with respect to the actions
it outputs. This, in turn, allows us to effciently
perform locally optimal policy improvement iter-
ations. Compared against other state-of-the-art
RL methods, we show that with minimal hyper-
parameter tuning our approach consistently leads
to better asymptotic behavior across a set of pay-
load manipulation tasks that demand a high de-
gree of accuracy and precision.

1. Introduction
The main goal in RL is to formalize principled algorithmic
approaches to solving sequential decision-making problems.
As a defning characteristic of RL methodologies, agents
gain experience by acting in their environments in order to
learn how to achieve specifc goals. While learning directly
in the real world (Haarnoja et al., 2019; Kalashnikov et al.,
2018) is perhaps the holy grail in the feld, this remains
a fundamental challenge: RL is notoriously data hungry,
and gathering real-world experience is slow, tedious and

1Department of Computer Science, ETH Zurich, Zurich,
Switzerland 2School of Interactive Computing, Georgia Institute
of Technology, Georgia, USA. Correspondence to: Miguel Zamora
<miguel.zamora@inf.ethz.ch>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

potentially unsafe. Fortunately, recent years have seen excit-
ing progress in simulation technologies that create realistic
virtual training grounds, and sim-2-real efforts (Tan et al.,
2018; Hwangbo et al., 2019) are beginning to produce im-
pressive results.

A new class of differentiable simulators (Zimmermann et al.,
2019; Liang et al., 2019; de Avila Belbute-Peres et al., 2018;
Degrave et al., 2019) is currently emerging. These simu-
lators not only predict the outcome of a particular action,
but they also provide derivatives that capture the way in
which the outcome will change due to infnitesimal changes
in the action. Rather than using simulators as simple black
box oracles, we therefore ask the following question: how
can the additional information provided by differentiable
simulators be exploited to improve RL algorithms?

To provide an answer to this question, we propose a novel
method to effciently learn control policies for fnite horizon
problems. The policies learned with our approach use neural
networks to model deterministic actions. In a departure from
established methodologies, learning these policies does not
hinge on learned approximations of the system dynamics
or of the value function. Instead, we leverage differentiable
simulators to directly compute the analytic gradient of a pol-
icy’s value function with respect to the actions it outputs for
a specifc set of points sampled in state space. We show how
to use this gradient information to compute frst and second
order update rules for locally optimal policy improvement
iterations. Through a simple line search procedure, the pro-
cess of updating a policy avoids instabilities and guarantees
monotonic improvement of its value function.

To evaluate the policy optimization scheme that we propose,
we apply it to a set of control problems that require payloads
to be manipulated via stiff or elastic cables. We have chosen
to focus our attention on this class of high-precision dynamic
manipulation tasks for the following reasons:

• they are inspired by real-world applications ranging
from cable-driven parallel robots and crane systems to
UAV-based transportation to (Figure 1);

• the systems we need to learn control policies for exhibit
rich, highly non-linear dynamics;

• the specifc tasks we consider constitute a challeng-

mailto:miguel.zamora@inf.ethz.ch

PODS: Policy Optimization via Differentiable Simulation

ing benchmark because they require very precise se-
quences of actions. This is a feature that RL algorithms
often struggle with, as the control policies they learn
work well on average but tend to output noisy actions.
Given that sub-optimal control signals can lead to sig-
nifcant oscillations in the motion of the payload, these
manipulation tasks therefore make it possible to pro-
vide an easy-to-interpret comparison of the quality of
the policies generated with different approaches;

• by varying the confguration of the payloads and actua-
tion setups, we can fnely control the complexity of the
problem to test systematically the way in which our
method scales.

Figure 1: Real-world applications that inspire the control
problems we focus on in this paper

The results of our experiments confrm our theoretical
derivations and show that our method consistently out-
performs two state-of-the-art (SOTA) model-free RL al-
gorithms, Proximal Policy Optimization(PPO) (Wang et al.,
2019) and Soft Actor-Critic(SAC) (Haarnoja et al., 2018),
as well as the model-based approach of Backpropagation
Through Time (BPTT). Although our policy optimization
scheme (PODS) can be interleaved within the algorithmic
framework of most RL methods (e.g. by periodically updat-
ing the means of the probability distributions represented
by stochastic policies), we focused our efforts on evaluat-
ing it in isolation to pinpoint the benefts it brings. This
allowed us to show that with minimal hyper-parameter tun-
ing, the second order update rule that we derive provides
an excellent balance between rapid, reliable convergence
and computational complexity. In conjunction with the con-
tinued evolution of accurate differentiable simulators, our
method promises to signifcantly improve the process of
learning control policies using RL.

2. Related work
Deep Reinforcement Learning. Deep RL (DRL) algo-
rithms have been increasingly more successful in tackling
challenging continuous control problems in robotics (Kober
et al., 2013; Li, 2018). Recent notable advances include ap-
plications in robotic locomotion (Tan et al., 2018; Haarnoja
et al., 2019), manipulation (OpenAI et al., 2018; Zhu et al.,
2019; Kalashnikov et al., 2018; Gu et al., 2016), and naviga-
tion (Anderson et al., 2018; Kempka et al., 2016; Mirowski

et al., 2017) to mention a few. Many model-free DRL al-
gorithms have been proposed over the years, which can be
roughly divided into two classes, off-policy methods (Mnih
et al., 2016; Lillicrap et al., 2016; Fujimoto et al., 2018;
Haarnoja et al., 2018) and on-policy methods (Schulman
et al., 2015; 2016; Wang et al., 2019), based on whether
the algorithm can learn independently from how the sam-
ples were generated. Recently, model-based RL algo-
rithms (Nagabandi et al., 2017; Kurutach et al., 2018; Clav-
era et al., 2018; Nagabandi et al., 2019) have emerged as a
promising alternative for improving the sample effciency.
Our method can be considered as an on-policy algorithm
as it computes frst or second-order policy improvements
given the current policy’s experience.

Policy Update as Supervised Learning. Although pol-
icy gradient methods are some of the most popular ap-
proaches for optimizing a policy (Kurutach et al., 2018;
Wang et al., 2019), many DRL algorithms also update the
policy in a supervised learning (SL) fashion by explicitly
aiming to mimic expert demonstration (Ross et al., 2011)
or optimal trajectories (Levine & Koltun, 2013a;b; Mor-
datch & Todorov, 2015). Optimal trajectories, in particular,
can be computed using numerical methods such as iterative
linear–quadratic regulators (Levine & Koltun, 2013a;b) or
contact invariant optimization (Mordatch & Todorov, 2015).
The solutions they provide have the potential to improve the
sample effciency of RL methods either by guiding the learn-
ing process through meaningful samples (Levine & Koltun,
2013a) or by explicitly matching action distributions (Mor-
datch & Todorov, 2015). Importantly, these approaches are
not only evaluated in simulation but have also been shown
to be effective for many real-world robotic platforms, in-
cluding manipulators (Schenck & Fox, 2016; Levine et al.,
2016) and exoskeletons (Duburcq et al., 2019). Recently,
Peng et al. (2019) proposed an off-policy RL algorithm that
uses SL both to learn the value function and to ft the policy
to the advantage-weighted target actions. While our method
shares some similarities with this class of approaches that in-
terleave SL and RL, the updates of our policy do not rely on
optimal trajectories that must be given as input. Rather, we
show how to leverage differentiable simulators to compute
locally optimal updates to a policy. These updates are com-
puted by explicitly taking the gradient of the value function
with respect to the actions output by the policy. As such,
our method also serves to reinforce the bridge between the
felds of trajectory optimization and reinforcement learning.

Differentiable Models. Our approach does not aim to
learn a model of the system dynamics, but rather lever-
ages differentiable simulators that explicitly provide gra-
dients of simulation outcomes with respect to control ac-
tions. We note that traditional physics simulators such as
ODE (Drumwright et al., 2010) or PyBullet (Coumans &

PODS: Policy Optimization via Differentiable Simulation

Bai, 2016–2019) are not designed to provide this informa-
tion. We build, in particular, on a recent class of analytically
differentiable simulators that have been shown to effectively
solve trajectory optimization problems, with a focus on sim-
2-real transfer, for both manipulation (Zimmermann et al.,
2019) and locomotion tasks (Bern et al., 2019).

Further examples of the exciting differentiable simulators
that can be used to model rigid and deformable objects,
cloth, and frictional contact are presented in Liang et al.
(2019) and Geilinger et al. (2020). Hu et al. (2020) presents
a very general framework that can also deal with fuids, and
electric felds, and Heiden et al. (2021) presents a differen-
tiable fracture mechanics model that is used to accurately
predict the cutting force of a knife.

Degrave et al. (2019) embed a differentiable rigid body sim-
ulator within a recurrent neural network to concurrently per-
form simulation steps while learning policies that minimize
a loss corresponding to the control objective. While their
goal is related to ours, we show how to leverage explicitly-
computed gradients to formulate second order policy up-
dates that have a signifcant positive effect on convergence.
Furthermore, in contrast to Degrave et al. (2019), we show
that PODS consistently outperforms two common RL base-
lines, PPO (Wang et al., 2019) and SAC (Haarnoja et al.,
2018).

Also related to our method is the very recent work of Clavera
et al. (2020). Their observation is that while most model-
based RL algorithms use models simply as a source of data
augmentation or as a black-box oracle to sample from (Naga-
bandi et al., 2017), the differentiability of learned dynamics
models can and should be exploited further. In an approach
that is related to ours, they propose a policy optimization
algorithm based on derivatives of the learned model. In
contrast, we directly use differentiable simulators for pol-
icy optimization, bypassing altogether the need to learn
the dynamics – including all the hyperparameters that are
involved in the process, as well as the additional strate-
gies required to account for the inaccuracies introduced by
the learned dynamics (Boney et al., 2019). Thanks to the
second order update rule that we derive, our method consis-
tently outperforms SOTA model-free RL algorithms in the
tasks we proposed. In contrast, their method only matches
the asymptotic performance of model-free RL (which is
a feat for model-based RL). It is also worth pointing out
that while model-based approaches hold the promise of en-
abling learning directly in the real world, with continued
progress in sim-2-real transfer, methods such as ours that
rely on accurate simulation technologies will continue to be
indispensable in the feld of RL.

A common approach to leverage differentable models is
that of backpropagating through time (BPTT) as is the main
focus of Grzeszczuk et al. (1998), Deisenroth & Rasmussen

(2011), Parmas (2018), Degrave et al. (2019), and Clavera
et al. (2020), where a policy πθ parametrized by θ is opti-
mized directly in parameter space (PS), coupling the actions
at each time step by the policy parameters. In contrast, our
approach alternates between optimizing in trajectory space
(TS), following gradient information of the value function
for an independent set of actions at = πθ(s)| , and in s=st

parameter space (PS) by doing imitation learning of the
monotonically improved actions at by πθ. Alternating be-
tween TS and PS allows PODS to avoid the well-know
problems of BPTT (vanishing and exploding gradients), that
have been reported for a long time (Bengio et al., 1994).

3. Policy Optimization on Differentiable
simulators

Following the formulation employed by DPG methods, for
a deterministic neural network policy πθ parameterized by
weights θ, the RL objective J(πθ) and its gradient rθJ(πθ)
are defned as: Z

J(πθ) = p(s0)V πθ (s0)ds0, (1)
SZ

rθ J(πθ) = p(s0)rθ V πθ (s0)ds0.
S

≈
1
k

kX
rθ V πθ (s0,i). (2)

i

where p(s0) is the initial probability distribution over states,
V πθ is the value function for πθ , and the second expression
in Eq. 2 approximates the integral with a sum over a batch
of k initial states sampled from S, as is standard.

Restricting our attention to an episodic problem setup with
fxed time horizon N and deterministic state dynamics
st+1 = f(st, at), the value function gradient simplifes
to: � N �X
rθV πθ (s0) = rθ r(s0, πθ(s0)) + r(st, πθ(st)) .

t=1

(3)

Noting that the state st can be specifed as a recursive func-
tion st = f(st−1, πθ(st−1)), the computation of the gradi-
ent in Eq 3 is equivalent to backpropagating through time
(BPTT) into the policy parameters. However, BPTT can be
challenging due to well known problems of vanishing or
exploding gradients (Degrave et al., 2019). We therefore
turn our focus to the task of performing policy improvement
iterations. In particular, our goal is to fnd a new policy ā, in
trajectory space, such that V πθ (s0) < V ā (s0) for a batch
of initial states sampled according to s0 ∼ p(s0).

PODS: Policy Optimization via Differentiable Simulation

3.1. First order policy improvement

While the parametrization of πθ is given in terms of θ (the
weights of the neural net), we will choose TS policy ā to
directly have as parameters the actions that are executed at
each time step. By representing the actions independently
of each other, rather than having them coupled through θ,
BPTT is therefore not required. Moreover, at the start of
each policy improvement step, we initialize the TS policy � �
ā = a0, a1, . . . , aN−1 to match the output of πθ , where
the individual terms at are the actions executed during a
rollout of πθ(s)|s=st−1 . Thus, V πθ (s0) = a(s0) initially. V ¯

The value function gradient of policy ā is then:

rā V ā (s0) = rā V ā (s(ā), ā). � N �� � X � �
= rā r s0, a0 + r st(at−1), at .

t=1

(4)

� �
where s(ā) = s0, s1(a0), . . . , sN (aN−1) is the vector
of the state trajectory associated to the policy rollout. For
the sake of clarity we switch notation from rā to d(d¯

.) : a

a adV ā (s0) ∂V ¯ ∂V ¯ ds
= + . (5)

dā ∂ā ∂s dā

a a

For a known, differentiable reward, the terms ∂V ¯

and ∂V ¯

∂ā ∂s
can be easily computed analytically. In contrast, the Jaco-
bian ds , that represents the way in which the state trajectory dā
changes as the policy ā changes, is the frst piece of infor-
mation that we will require from a differentiable simulator.
Furthermore, notice that even though we are not using BPTT,
the lower triangular structure of ds encodes the dependency dā
of a particular point in state space on all the previous actions
during a rollout (see the Appendix A.4 for more details on
the Jacobian structure).

The frst order update rule for policy ā is then computed as:

dV ā (s0)
ā = πθ + αa . (6)

dā

Since this update rule uses the policy gradient (i.e. the
direction of local steepest ascent), there exists a value αa >
0 such that V πθ (s0) < V ā (s0). In practice, we use the
simulator to run a standard line-search on αa to ensure the
inequality holds. We note, however, that if desired, αa

can also be treated as a hyperparameter that is tuned to a
suffciently small value.

Once the policy ā has been improved, we can use the corre-
sponding state trajectories s(ā) to update the parameters of
the neural net policy πθ by running gradient descent on the
following loss:

k N

Lθ =
1 XX 1 kπθ(st,i) − at,ik2 . (7)
k 2

i t

where the gradient and update rule are given by:

k NXX1 rθLθ = rθπθ(si)(πθ(st,i) − at,i), (8)
k

i t

θ = θ − αθrθLθ. (9)

Here, i indexes the batch of initial states used to approximate
the integral in Eq 2. Notice that gradients rθJ(πθ) and
rθLθ are closely related for the frst iteration in the policy
improvement operation, where:

X1
k

dV ā (s0,i) rθLθ = −αθαa rθπθ (s0,i) . (10)
k dā

i

which explains why minimizing Eq.7 improves the value
function formulated in Eq. 1. It is also worth noting that the
stability of the policy improvement process is guaranteed
by the parameter αa, which is found through a line search
procedure such that V πθ (s0) < V ā (s0), as well as through
the intermediate targets of Eq. 7, which eliminate poten-
tial overshooting problems that might occur if the gradient
direction in Eq.10 was followed too aggressively.

3.2. Second order policy improvement
aV ¯ (s0)For a second order policy update rule, the Hessian d

2

dā2

is required. A brief derivation of this expression can be
found in the Appendix and is summarized as follows: � �

a ad2V ā (s0) d ∂V ¯ ∂V ¯ ds
= + , (11)

2dā dā ∂ā ∂s dā � �
∂V ā ds T ∂ ds ∂ ds

= + +
∂s dā ∂s dā ∂ā dā � �T ∂2V ā ∂2V ā ∂2V āds ds

+ 2 +
dā ∂s2 dā ∂s∂ā ∂ā2

(12)

∂ ds ∂ dsThe second order tensors and are additional∂s dā ∂ā dā
terms that a differentiable simulator must provide. As de-
scribed in Zimmermann et al. (2019), these terms can be
computed analytically. However, they are computationally
expensive to compute, and they often lead to the Hessian
becoming indefnite. As a consequence, ignoring these
terms from the equation above results in a Gauss-Newton
approximation of the Hessian:

d2V ¯ T ∂2V ā ∂2V āa(s0) ds ds ≈ Ĥ = + . (13)
dā2 dā ∂s2 dā ∂a2

PODS: Policy Optimization via Differentiable Simulation

Algorithm 1 PODS: Policy Optimization via Differentiable
Simulators

for epoch = 1, M do
for sample i = 1, k do

Sample initial condition s0,i
Collect πθ by rolling out πθ starting from s0,i
Compute improved policy ā i (Eq 6. or Eq 14.)

end for
Run gradient descent on Lθ (Eq 7.) such that the
output of πθ matches ā i for the entire sequence of
states s(ā i)

end for

In the expression above we assume that the rewards do
not couple s and a. As long as the second derivatives of
the rewards with respect to states and actions are positive
defnite, which is almost always the case, the Gauss-Newton
approximation Ĥ is also guaranteed to be positive semi-
defnite. A second order update rule for ā can therefore be
computed as:

dV ā (s0)
Ĥ −1 ā = πθ + αa . (14)

dā

Analogous to the frst order improvements discussed in the
previous section, the same loss Lθ can be used to perform a
policy update on πθ to strictly improve its value function. In
this case, Lθ incorporates the second order policy updates
of Eq. 14 without the need to compute the Hessian of the
neural network policy, and with the additional beneft of
allowing the use of well-defned acceleration methods such
as Adam (Kingma & Ba, 2015).

3.3. Monotonic policy improvement

The combination of a simple line search on αa together with
the use of Lθ to update πθ provides a simple and very effec-
tive way of preventing overshooting as θ is updated. PODS
therefore features monotonic increases in performance, as
shown through our experiments. As summarized in Figure 3
for the task of controlling a 2D pendulum such that it goes
to stop as quickly as possible (see the experiments section
for a detailed description of task), both the frst and sec-
ond order policy improvement methods are well-behaved.
Nevertheless, there is a drastic difference in convergence
rates, with the second order method winning by a signifcant
margin.

In contrast to other approaches such as PPO (Wang et al.,
2019) and SAC (Haarnoja et al., 2018), our policy update
scheme does not need to be regularized by a KL-divergence
metric, demonstrating its numerical robustness. Our method
is only limited by the expressive power of policy πθ , as
it needs to approximate ā well. For reasonable network

architectures, this is not a problem, especially since ā corre-
sponds to local improvements. The overall PODS formula-
tion is summarized in Algorithm 1. For the experiments we
present in the next section, we collected k = 4000 rollouts
for each epoch, and we performed 50 gradient descent steps
on Lθ for each policy optimization iteration.

4. Experiments
Environments: The environments used in our experi-
ments set up cable-driven payload manipulation control
problems that are inspired by the types of applications visu-
alized in Figure 1. For all these examples, as illustrated in
Figure 2, the action space is defned by the velocity of one or
more handles, which are assumed to be directly controlled
by a robot, and the state space is defned by the position of
the handle as well as the position and velocity of the payload.
We model our dynamical systems as mass-spring networks
by connecting payloads to handles or to each other via stiff
bilateral or unilateral springs. Using a simulation engine
that follows closely the description in Zimmermann et al.
(2019), we use a BDF2 integration scheme, as it exhibits
very little numerical damping and is stable even under large
time steps. Although this is not a common choice for RL
environments, the use of higher order integration schemes
also improves simulation quality and accuracy, as pointed
out by Zhong et al. (2020). The Jacobian ds , which is used dā
for both the frst order and second order policy updates, is
computed analytically via sensitivity analysis, as described
in detail by Zimmermann et al. (2018). The computational
cost of computing this Jacobian is signifcantly less than
performing the sequence of simulation steps needed for a
policy rollout.

The control problems we study here are deceptively simple.
All the environments fall in the category of underactuated
systems and, in consequence, policies for such environments
must fully leverage the system’s dynamics to successfully
achieve a task. The lack of numerical damping in the mo-
tion’s payload, in particular, necessitates control policies
that are very precise, as even small errors lead to noticeable
oscillations. These environments also enable us to incre-
mentally increase the complexity of the tasks in order to
study the scalability of our method, as well as that of the RL
algorithms we compare against. For comparison purposes,
in particular, we use different types of dynamical systems:
2D Simple Pendulum, 3D Simple Pendulum, 3D Double
Pendulum, cable driven payload, and discretized 3D rope.
Furthermore, we also test the scalibilty of our approach
with the task of laying a cloth on a table, which uses the
the analytically differentiable contact model introduced in
Geilinger et al. (2020) (See discussion section). A detailed
description of these environments is presented in Appendix
A.2.

PODS: Policy Optimization via Differentiable Simulation

Handle Trajectory
Handle

El
as

tic
 ca

bl
e o

r

Pa
yl

oa
d

Point mass trajectory

in
ex

te
ns

ib
le

 ro
d

a

x

Figure 2: Experiments left to right; 2D pendulum, 3D double pendulum, Cable driven payload 2D, Discretized 3D rope

For all the environments, the action space describes instan-
taneous velocities of the handles, which are restricted to
remain within physically reasonable limits.

Tasks: In order to encode our tasks, we used continuous
rewards that are a function of the following state variables:
the position of the handle (p), the position of the mass points
representing the payloads relative to a target position (x),
and their global velocities (v). The reward also contains a
term that is a function of the actions which are taken. This
term takes the form of a simple regularizer that aims to
discourage large control actions.

r(st, at) = − wp||pt||2 − wx||xt||2

− wv ||v||2 − wa||at||2 (15)

where the coeffcients wp, wx, wv, wa allow each sub-
objective to be weighted independently, as is commonly
done. This very general reward formulation allows us to
defne two different tasks that we apply to each of the three
systems described above:

• Go to stop: Starting from an initial state with non-zero
velocity, the pendulum must go to stop as quickly as
possible in a downward confguration. For this task the
weights wp = wx = 0.

• Go to stop at the origin: In addition to stopping as fast
as possible, the system must come to rest at a target
location, which, without loss of generality, is chosen to
be the origin.

The architecture of the neural network policies that we used
is detailed in Appendix A.3. For a fair comparison, the
neural network policies for PODS, PPO, SAC and GPS
were initialized with the same set of initial weights. We
fne tuned hyper parameters to get the best performance we
could, and otherwise ran standard implementations provided
in Achiam (2018). All experiments were run using a desktop

PC with an Intel® CoreTM i7-8700K CPU and a GeForce
GTX 1080 Ti graphics card.

The monotonically improving behavior of PODS can be
seen in Figure 4. The reward reported is the result of av-
eraging the reward of 1000 rollouts started from a test bed
of unseen initial states. Unless stated otherwise, we used
a batch size of k = 4000 rollouts to compute PODS pol-
icy update. As a convention PODS 4000 and PODS 500
refer to batch sizes of 4000 and 500 rollouts respectively.
Even if the initial progress of PODS is not always as fast
as SAC for PODS 4000, it consistently leads to a higher
reward after a small number of epochs. We note that the
standard deviations visualized in this fgure are indicative
of a large variation in problem diffculty for the different
state-space points that seed the test rollouts (e.g. a double
pendulum that has little momentum is easier to be brought
to a stop than one that is swinging wildly). As can be seen,
the tasks that demand the payloads to be brought to a stop at
a specifc location are considerably more challenging. The
supplementary video illustrates the result of the rollouts to
provide an intuition into the quality of the control policies
learned with our method.

4.1. Results

PODS vs BPTT: To further explore the benefts of the
PODS second order update rule, we compared against the
approach of BPTT which naturally leverages the differentia-
bility of the model. We found BPTT to be highly sensitive
to the weight initialization of the policy. In Figure 3, we
report results using the weight initialization that we found
to favor BPTT the most. When training neural network
policies, doing BPTT for a 50 steps rollout is effectively
equivalent to backpropagating through a network that is 50
times deeper than the actual network policy, which is in
itself a feat considering that despite introducing a terminal
cost function to stabilize BPPT, Clavera et al. (2020) only
reports results of effectively BPTT for a maximum of 10
steps. Nonetheless, BPTT is able to outperform PODS with
the 1st order update rule. However, PODS with the 2nd

PODS: Policy Optimization via Differentiable Simulation

Table 1: Results summary: PODS leads to better rewards overall and is 10 to 30 times faster than SAC

Reward Compute time [h]
PODS

500
PODS
4000 SAC PPO GPS PODS

500
PODS SAC PPO4000 GPS

2D Pendulum -17 -18 -20 -48 -37 0.11 0.15 4.8 1.1 0.6
3D Pendulum -39 -44 -45 -199 -193 0.22 0.23 4.9 1.1 1.07
3D Double Pendulum -180 -185 -213 -470 -365 0.74 0.57 10.9 2.9 2.2
2D Pendulum
Stop Origin -183 -184 -191 -395 -218 0.11 0.75 4.8 1.2 0.6

3D Pendulum
Stop Origin -291 -331 -315 -997 -546 0.20 0.24 4.9 1.2 0.8

3D Double Pendulum
Stop Origin -732 -737 -836 -2310 -845 1.01 0.99 9.7 2.9 2.9

Cable driven payload -13 -11 -14 -50 -13 0.7 0.5 8.2 2.5 4.4
Discrete rope -3023 -2928 -3030 -7730 -2975 1.77 1.34 13.6 3.4 6.4

R
ew

ar
d

2D Simple Pendulum
0

−112.5

−225

−337.5

−4500 0.5 1 1.5
Steps (x106)

BPTT PODS 1st order PODS 2nd order

Figure 3: Comparison of PODS 1st and 2nd order update
rules against BPTT for the 2D simple pendulum with 50-
steps rollouts

order update rule is able to signifcantly outperform BPTT
both in terms on convergence rates and fnal performance.
Even though, a second order formulation of BPTT could be
derived, it’s deployment would involve the hessian of the
neural network policy which is computationally expensive.
In contrast, PODS frst order and second order formulations
are equally easy to deploy.

PODS, SAC, and PPO: To better understand the relative
performance of the control policies learned with PODS,
SAC and PPO, we report the terminal kinetic energy (KE) of
the payload (Figure 8 – Appendix), the average magnitude
of control action (Figure 10 – Appendix), and the average
distance to the target location for the Stop At Origin tasks

(Figure 9 – Appendix) – note, lower is better, and upon
convergence, control policies learned with PODS adequately
solve each individual problem in our randomized test bed.
The shaded areas represent half the standard deviation of
each metric. For convenience only the upper side of the
standard deviation is presented.

For the task of stopping as fast as possible, PODS leads to a
terminal kinetic energy that is typically orders of magnitude
better than the other approaches (Top row Figure 8). For
the tasks of stopping at the origin, SAC achieves very good
terminal KE. PODS, however, stops closer to the origin. It
is also worth noticing that upon convergence PODS leads in
overall to better rewards as can be seen in Table 1. Further-
more, PODS is 10 to 30 times faster than SAC in terms of
compute time.

PODS and GPS: PODS shares a common goal with the
family of Guided Policy Search (GPS) algorithms (Mont-
gomery & Levine, 2016). However, the mathematical formu-
lation of both approaches is substantially different, as GPS
is based on dual descent formulations while our approach
is inspired by the policy gradient, which is also why we
included the comparison against backpropagation through
time.

A frst departure point of PODS w.r.t GPS is that at each iter-
ation the ”control phase” or c-step reported in Montgomery
& Levine (2016) requires to solve an optimization problem
until convergence i.e. it requires a control oracle, usually
iLQG, that internally performs several updates to the control
actions. PODS does not require such an oracle. Instead, it
only relies on gradient information which encodes locally
optimal changes to the output of an existing policy. This
information, which we show can be computed effciently
with the help of differentiable simulators, allows control

0

PODS: Policy Optimization via Differentiable Simulation

2D Simple Pendulum 3D Simple Pendulum 3D Double Pendulum Cable driven payload (Stop Origin)

−400

−300

−200

−100

0

R
ew

ar
d

−2,500

−1,750

−1,000

−250

500

R
ew

ar
d

−2,000

−1,500

−1,000

−500

0

R
ew

ar
d

−1,800

−1,350

−900

−450

0

R
ew

ar
d

0 1 2 3 4 0 1 2 3 4 0 2 4 6 8 0 2 4 6 8
Steps (x106) Steps (x106) Steps (x106) Steps (x106)

2D Simple Pendulum (Stop Origin) 3D Simple Pendulum (Stop Origin) 3D Double Pendulum (Stop Origin) Discrete Rope (Stop Origin) ·104

1,000 0 0
R

ew
ar

d

−2,000−500 −500 −0.63

R
ew

ar
d

−2,000

R
ew

ar
d

0 1 2 3 4

R
ew

ar
d

−1,000 −4,000 −1.25

−1,500 −3,500 −6,000 −1.88

−2,000 −5,000 −8,000 −2.5
0 1 2 3 4 0 3 6 9 12 0 3 6 9

Steps (x106) Steps (x106) Steps (x106) Steps (x106)

SAC PPO GPS PODS 4000 PODS 500

Figure 4: Comparison of reward curves. Our algorithm, PODS, achieves better performance compared to other algorithms
(PPO, SAC, GPS), while requiring at the same time less compute time (See Table 1).

actions to be updated once per improvement step. In ef-
fect, we perform gradient-based optimization directly on the
parameter space of the control policies (Eq 10).

Another defning characteristic of GPS is the use of a KL di-
vergence constraint on the trajectory distributions. Levine &
Abbeel (2014) introduce such constraint by pointing out that
the ftted dynamics used by GPS are only valid locally and
that the new actions generated by iLQG can be arbitrarily
far from the old ones, potentially leading to regions of the
state space where the dynamics are no longer valid, which
in turn prevents convergence. In contrast, PODS combines
gradient information with a line search procedure to ensure
that updates produce monotonic improvements to the output
of the control policy.

If we think of updating the control actions once by following
the gradient information as one of the many updates that
a control oracle performs internally, then we can see that
PODS is learning from the intermediate internal updates
of an unconstrained control oracle, while GPS learns from
the solutions of a constraint control oracle. This means
that each update step for PODS is much faster, since target
update values are faster to compute.

We note that our implementation of GPS uses the true dy-
namics, rather than learned models and as such we see it as
another model-based baseline. Figure 4 shows good con-
vergence behavior for GPS, however, it tends to be overly
conservative. Such conservative behavior is characteristic
of policy constraint methods and is particularly notable in
the case of Offine-RL methods (Levine et al., 2020).

4.2. Discussion

To further test performance of our approach in terms of the
scalability and complexity of the tasks we can deal with,
we look at the problem of laying a piece of cloth fat on a
table at a prespecifed location, as depicted in Figure 5. The
dimension of the state space for this task is 162, and PODS
is still very effective in learning high-quality policies for it.

As reported in Table 1, PODS outperforms SAC both in
terms of fnal performance and wall-clock time. We note
that PODS sample effciency improves in general, by us-
ing smaller batch sizes for the policy update. However,
smaller batch sizes, can also prevent PODS from showing a
monotonic improvement for unseen data.

Larger batch sizes take better advantage of GPU paralleliza-
tion, while smaller batch sizes lead to more frequent policy
updates; these come with an increase in computational cost,
but also provide an opportunity to obtain better initial so-
lutions for subsequent rollouts. As can be seen in Figure
6, with smaller batch sizes PODS is faster in wall-clock
time than SAC, and better in terms of sample effciency. We
note that while it is initially easy for SAC to increase the
cumulative reward, these are fne manipulation tasks that
require precise, very accurate actions. After good progress
in the early iterations, SAC struggles to achieve the level
of performance that PODS policies quickly converge to; as
such, it needs much longer training times.

Although the current experiment showcases PODS potential,
further investigations are needed to expose the ceiling of

12

PODS: Policy Optimization via Differentiable Simulation

Sampled initial state

Intermediate state

Target location

Figure 5: Depiction for the task of laying a cloth on a table.
The cloth is modeled as a mass spring network together with
analytically differentiable frictional contact.

complexity for the tasks that PODS can be applied to. In
this context, learning visuomotor policies end-to-end is an
exciting avenue for future investigations.

5. Conclusion and future work
In this paper, we presented a highly effective strategy for
policy optimization. As a core idea behind our approach,
we exploit differentiable simulators to directly compute the
analytic gradient of a policy’s value function with respect
to the actions it outputs. Through specialized update rules,
this gradient information is used to monotonically improve
the policy’s value function. We demonstrated the effcacy
of our approach by applying it to a series of increasingly
challenging payload manipulation problems, and we showed
that it outperforms two SOTA RL methods both in terms
of convergence rates, and in terms of quality of the learned
policies.

Our work opens up exciting avenues for future investiga-
tions. For example, although we evaluated PODS in isola-
tion in order to best understand its strengths, it would be
interesting to interleave it with existing RL methods. This
will require extensions of our formulation to stochastic poli-
cies, and it would allow the relative strengths of different
approaches to be effectively combined (e.g. exploration vs
exploitation, with PODS excelling in the latter but not being
designed for the former). Furthermore, while PODS current
formulation can already handle problems where rewards
are specifed only for the terminal step, in the case of non-

Laying cloth with friction ·105

−0.5

−1.13

−1.75

−2.38

−3

Rollout Time horizon: 60 steps

PODS batch of 16 rollouts. TT = 82s
PODS batch of 32 rollouts. TT = 84s
PODS batch of 64 rollouts. TT = 90s
SAC. TT = 159s

0 10 20 30

R
ew

ar
d

Steps (x103)

Figure 6: Sample effciency on cloth task. TT in the legends
stands for the total time to go over 500 rollouts.

smooth rewards, one could easily extend PODS to leverage
advances in inverse reinforcement learning to obtain a sur-
rogate reward function that is differentiable. We are also
excited about the prospect of applying PODS to other types
of control problems, particularly ones that include contacts
(e.g. locomotion, grasping, etc). Although the need for a
specialized simulator makes the application to standard RL
benchmark suites (Brockman et al., 2016; Tassa et al., 2018)
challenging, we note that sim-2-real success with a differen-
tiable simulator has been recently reported in the context of
soft locomoting robots (Bern et al., 2019). With continued
evolution of such simulation technologies, we are excited
about the prospect of creating a new benchmark suite appli-
cable to approaches such as PODS that use differentiable
simulators at their core.

PODS: Policy Optimization via Differentiable Simulation

References
Achiam, J. Spinning Up in Deep Reinforcement Learning.

2018.

Anderson, P., Chang, A., Chaplot, D. S., Dosovitskiy, A.,
Gupta, S., Koltun, V., Kosecka, J., Malik, J., Mottaghi, R.,
Savva, M., et al. On evaluation of embodied navigation
agents. arXiv preprint arXiv:1807.06757, 2018.

Bengio, Y., Simard, P., and Frasconi, P. Learning long-term
dependencies with gradient descent is diffcult. IEEE
Transactions on Neural Networks, 5(2):157–166, 1994.

Bern, J., Banzet, P., Poranne, R., and Coros, S. Trajectory
optimization for cable-driven soft robot locomotion. In
Proc. Robot. Sci. Syst., 2019.

Boney, R., Palo, N. D., Berglund, M., Ilin, A., Kan-
nala, J., Rasmus, A., and Valpola, H. Regularizing
trajectory optimization with denoising autoencoders.
In Wallach, H. M., Larochelle, H., Beygelzimer, A.,
d’Alché-Buc, F., Fox, E. B., and Garnett, R. (eds.),
Advances in Neural Information Processing Systems
32: Annual Conference on Neural Information Pro-
cessing Systems 2019, NeurIPS 2019, December 8-14,
2019, Vancouver, BC, Canada, pp. 2855–2865, 2019.
URL https://proceedings.neurips.cc/
paper/2019/hash/
21fe5b8ba755eeaece7a450849876228-
Abstract.html.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. OpenAI
Gym. CoRR, abs/1606.01540, 2016. URL http:
//arxiv.org/abs/1606.01540.

Clavera, I., Rothfuss, J., Schulman, J., Fujita, Y., Asfour, T.,
and Abbeel, P. Model-Based Reinforcement Learning via
Meta-Policy Optimization. In Billard, A., Dragan, A., Pe-
ters, J., and Morimoto, J. (eds.), Proceedings of The 2nd
Conference on Robot Learning, volume 87 of Proceed-
ings of Machine Learning Research, pp. 617–629. PMLR,
2018. URL http://proceedings.mlr.press/
v87/clavera18a.html.

Clavera, I., Fu, Y., and Abbeel, P. Model-augmented actor-
critic: Backpropagating through paths. In 8th Interna-
tional Conference on Learning Representations, ICLR
2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenRe-
view.net, 2020. URL https://openreview.net/
forum?id=Skln2A4YDB.

Coumans, E. and Bai, Y. Pybullet, a python module for
physics simulation for games, robotics and machine learn-
ing. http://pybullet.org, 2016–2019.

de Avila Belbute-Peres, F., Smith, K. A., Allen, K. R.,
Tenenbaum, J., and Kolter, J. Z. End-to-end differentiable
physics for learning and control. In Bengio, S., Wallach,
H. M., Larochelle, H., Grauman, K., Cesa-Bianchi, N.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems 31: Annual Conference on Neural
Information Processing Systems 2018, NeurIPS 2018,
December 3-8, 2018, Montréal, Canada, pp. 7178–7189,
2018. URL https://proceedings.neurips.cc/
paper/2018/hash/
842424a1d0595b76ec4fa03c46e8d755-
Abstract.html.

Degrave, J., Hermans, M., Dambre, J., and wyffels, F.
A differentiable physics engine for deep learning in
robotics. Frontiers in Neurorobotics, 13:6, 2019. ISSN
1662-5218. doi: 10.3389/fnbot.2019.00006. URL
https://www.frontiersin.org/article/
10.3389/fnbot.2019.00006.

Deisenroth, M. P. and Rasmussen, C. E. PILCO: A model-
based and data-effcient approach to policy search. In
Getoor, L. and Scheffer, T. (eds.), Proceedings of the
28th International Conference on Machine Learning,
ICML 2011, Bellevue, Washington, USA, June 28 - July 2,
2011, pp. 465–472. Omnipress, 2011. URL https://
icml.cc/2011/papers/323 icmlpaper.pdf.

Drumwright, E., Hsu, J., Koenig, N. P., and Shell, D. A.
Extending open dynamics engine for robotics simulation.
In Ando, N., Balakirsky, S., Hemker, T., Reggiani, M.,
and von Stryk, O. (eds.), Simulation, Modeling, and Pro-
gramming for Autonomous Robots - Second International
Conference, SIMPAR 2010, Darmstadt, Germany, Novem-
ber 15-18, 2010. Proceedings, volume 6472 of Lecture
Notes in Computer Science, pp. 38–50. Springer, 2010.
doi: 10.1007/978-3-642-17319-6\ 7. URL https:
//doi.org/10.1007/978-3-642-17319-6 7.

Duburcq, A., Chevaleyre, Y., Bredech, N., and Boéris,
G. Online trajectory planning through combined tra-
jectory optimization and function approximation: Ap-
plication to the exoskeleton atalante. arXiv preprint
arXiv:1910.00514, 2019.

Fujimoto, S., van Hoof, H., and Meger, D. Addressing Func-
tion Approximation Error in Actor-Critic Methods. CoRR,
abs/1802.09477, 2018. URL http://arxiv.org/
abs/1802.09477.

Geilinger, M., Hahn, D., Zehnder, J., acher,B¨ M.,
Thomaszewski, B., and Coros, S. Add: An-
alytically differentiable dynamics for multi-
body systems with frictional contact. ACM
Trans. Graph., 39(6), 2020. ISSN 0730-0301.
doi: 10.1145/3414685.3417766. URL https:
//doi.org/10.1145/3414685.3417766.

https://proceedings.neurips.cc/paper/2019/hash/21fe5b8ba755eeaece7a450849876228-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/21fe5b8ba755eeaece7a450849876228-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/21fe5b8ba755eeaece7a450849876228-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/21fe5b8ba755eeaece7a450849876228-Abstract.html
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1606.01540
http://proceedings.mlr.press/v87/clavera18a.html
http://proceedings.mlr.press/v87/clavera18a.html
http://proceedings.mlr.press/v87/clavera18a.html
http://proceedings.mlr.press/v87/clavera18a.html
https://openreview.net/forum?id=Skln2A4YDB
https://openreview.net/forum?id=Skln2A4YDB
http://pybullet.org
https://proceedings.neurips.cc/paper/2018/hash/842424a1d0595b76ec4fa03c46e8d755-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/842424a1d0595b76ec4fa03c46e8d755-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/842424a1d0595b76ec4fa03c46e8d755-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/842424a1d0595b76ec4fa03c46e8d755-Abstract.html
https://www.frontiersin.org/article/10.3389/fnbot.2019.00006
https://www.frontiersin.org/article/10.3389/fnbot.2019.00006
https://icml.cc/2011/papers/323_icmlpaper.pdf
https://icml.cc/2011/papers/323_icmlpaper.pdf
https://doi.org/10.1007/978-3-642-17319-6_7
https://doi.org/10.1007/978-3-642-17319-6_7
http://arxiv.org/abs/1802.09477
http://arxiv.org/abs/1802.09477
http://arxiv.org/abs/1802.09477
http://arxiv.org/abs/1802.09477
https://doi.org/10.1145/3414685.3417766
https://doi.org/10.1145/3414685.3417766
https://view.net

PODS: Policy Optimization via Differentiable Simulation

Grzeszczuk, R., Terzopoulos, D., and Hinton, G. Neu-
roanimator: Fast neural network emulation and control
of physics-based models. In Proceedings of the 25th
Annual Conference on Computer Graphics and Interac-
tive Techniques, SIGGRAPH ’98, pp. 9–20, New York,
NY, USA, 1998. Association for Computing Machinery.
ISBN 0897919998. doi: 10.1145/280814.280816. URL
https://doi.org/10.1145/280814.280816.

Gu, S., Holly, E., Lillicrap, T. P., and Levine, S. Deep Re-
inforcement Learning for Robotic Manipulation. CoRR,
abs/1610.00633, 2016. URL http://arxiv.org/
abs/1610.00633.

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha,
S., Tan, J., Kumar, V., Zhu, H., Gupta, A., Abbeel, P.,
and Levine, S. Soft Actor-Critic Algorithms and Ap-
plications. CoRR, abs/1812.05905, 2018. URL http:
//arxiv.org/abs/1812.05905.

Haarnoja, T., Ha, S., Zhou, A., Tan, J., Tucker, G., and
Levine, S. Learning to Walk Via Deep Reinforce-
ment Learning. In Proceedings of Robotics: Science
and Systems, FreiburgimBreisgau, Germany, 2019. doi:
10.15607/RSS.2019.XV.011.

Heiden, E., Macklin, M., Narang, Y. S., Fox, D., Garg,
A., and Ramos, F. Disect: A differentiable simula-
tion engine for autonomous robotic cutting. CoRR,
abs/2105.12244, 2021. URL https://arxiv.org/
abs/2105.12244.

Hu, Y., Anderson, L., Li, T., Sun, Q., Carr, N., Ragan-
Kelley, J., and Durand, F. Difftaichi: Differentiable
programming for physical simulation. In 8th Interna-
tional Conference on Learning Representations, ICLR
2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenRe-
view.net, 2020. URL https://openreview.net/
forum?id=B1eB5xSFvr.

Hwangbo, J., Lee, J., Dosovitskiy, A., Bellicoso, D., Tsou-
nis, V., Koltun, V., and Hutter, M. Learning agile and
dynamic motor skills for legged robots. Science Robotics,
4(26):eaau5872, 2019.

Kalashnikov, D., Irpan, A., Pastor, P., Ibarz, J., Herzog,
A., Jang, E., Quillen, D., Holly, E., Kalakrishnan, M.,
Vanhoucke, V., and Levine, S. QT-Opt: Scalable Deep
Reinforcement Learning for Vision-Based Robotic Ma-
nipulation. CoRR, abs/1806.10293, 2018. URL http:
//arxiv.org/abs/1806.10293.

Kempka, M., Wydmuch, M., Runc, G., Toczek, J., and
Jaśkowski, W. Vizdoom: A doom-based ai research plat-
form for visual reinforcement learning. In 2016 IEEE
Conference on Computational Intelligence and Games
(CIG), pp. 1–8. IEEE, 2016.

Kingma, D. P. and Ba, J. Adam: A method for stochas-
tic optimization. In Bengio, Y. and LeCun, Y. (eds.),
3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6980.

Kober, J., Bagnell, J. A., and Peters, J. Reinforcement
learning in robotics: A survey. The International
Journal of Robotics Research, 32(11):1238–1274, 2013.
doi: 10.1177/0278364913495721. URL https://
doi.org/10.1177/0278364913495721.

Kurutach, T., Clavera, I., Duan, Y., Tamar, A., and Abbeel,
P. Model-Ensemble Trust-Region Policy Optimiza-
tion. CoRR, abs/1802.10592, 2018. URL http://
arxiv.org/abs/1802.10592.

Levine, S. and Abbeel, P. Learning neural network
policies with guided policy search under unknown
dynamics. In Ghahramani, Z., Welling, M., Cortes,
C., Lawrence, N. D., and Weinberger, K. Q. (eds.),
Advances in Neural Information Processing Sys-
tems 27: Annual Conference on Neural Information
Processing Systems 2014, December 8-13 2014,
Montreal, Quebec, Canada, pp. 1071–1079, 2014.
URL https://proceedings.neurips.cc/
paper/2014/hash/
6766aa2750c19aad2fa1b32f36ed4aee-
Abstract.html.

Levine, S. and Koltun, V. Guided policy search. In
Proceedings of the 30th International Conference on
Machine Learning, ICML 2013, Atlanta, GA, USA,
16-21 June 2013, volume 28 of JMLR Workshop
and Conference Proceedings, pp. 1–9. JMLR.org,
2013a. URL http://proceedings.mlr.press/
v28/levine13.html.

Levine, S. and Koltun, V. Variational policy search
via trajectory optimization. In Burges, C. J. C.,
Bottou, L., Ghahramani, Z., and Weinberger, K. Q.
(eds.), Advances in Neural Information Processing
Systems 26: 27th Annual Conference on Neural
Information Processing Systems 2013. Proceed-
ings of a meeting held December 5-8, 2013, Lake
Tahoe, Nevada, United States, pp. 207–215, 2013b.
URL https://proceedings.neurips.cc/
paper/2013/hash/
38af86134b65d0f10fe33d30dd76442e-
Abstract.html.

Levine, S., Finn, C., Darrell, T., and Abbeel, P. End-to-
end training of deep visuomotor policies. The Journal of
Machine Learning Research, 17(1):1334–1373, 2016.

https://doi.org/10.1145/280814.280816
https://arxiv.org/abs/1610.00633
https://arxiv.org/abs/1610.00633
http://arxiv.org/abs/1610.00633
http://arxiv.org/abs/1610.00633
http://arxiv.org/abs/1812.05905
http://arxiv.org/abs/1812.05905
http://arxiv.org/abs/1812.05905
http://arxiv.org/abs/1812.05905
http://www.roboticsproceedings.org/rss15/p11.html
http://www.roboticsproceedings.org/rss15/p11.html
https://arxiv.org/abs/2105.12244
https://arxiv.org/abs/2105.12244
https://openreview.net/forum?id=B1eB5xSFvr
https://openreview.net/forum?id=B1eB5xSFvr
https://arxiv.org/abs/1806.10293
https://arxiv.org/abs/1806.10293
https://arxiv.org/abs/1806.10293
http://arxiv.org/abs/1806.10293
http://arxiv.org/abs/1806.10293
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://journals.sagepub.com/doi/10.1177/0278364913495721
https://journals.sagepub.com/doi/10.1177/0278364913495721
https://doi.org/10.1177/0278364913495721
https://doi.org/10.1177/0278364913495721
http://arxiv.org/abs/1802.10592
http://arxiv.org/abs/1802.10592
http://arxiv.org/abs/1802.10592
http://arxiv.org/abs/1802.10592
https://proceedings.neurips.cc/paper/2014/hash/6766aa2750c19aad2fa1b32f36ed4aee-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/6766aa2750c19aad2fa1b32f36ed4aee-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/6766aa2750c19aad2fa1b32f36ed4aee-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/6766aa2750c19aad2fa1b32f36ed4aee-Abstract.html
http://proceedings.mlr.press/v28/levine13.html
http://proceedings.mlr.press/v28/levine13.html
https://proceedings.neurips.cc/paper/2013/hash/38af86134b65d0f10fe33d30dd76442e-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/38af86134b65d0f10fe33d30dd76442e-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/38af86134b65d0f10fe33d30dd76442e-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/38af86134b65d0f10fe33d30dd76442e-Abstract.html
https://JMLR.org
https://view.net

PODS: Policy Optimization via Differentiable Simulation

Levine, S., Kumar, A., Tucker, G., and Fu, J. Offine rein-
forcement learning: Tutorial, review, and perspectives on
open problems, 2020.

Li, Y. Deep Reinforcement Learning. CoRR,
abs/1810.06339, 2018. URL http://arxiv.org/
abs/1810.06339.

Liang, J., Lin, M. C., and Koltun, V. Differentiable
cloth simulation for inverse problems. In Wallach,
H. M., Larochelle, H., Beygelzimer, A., d’Alché-Buc,
F., Fox, E. B., and Garnett, R. (eds.), Advances
in Neural Information Processing Systems 32: An-
nual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, December 8-14,
2019, Vancouver, BC, Canada, pp. 771–780, 2019.
URL https://proceedings.neurips.cc/
paper/2019/hash/
28f0b864598a1291557bed248a998d4e-
Abstract.html.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T.,
Tassa, Y., Silver, D., and Wierstra, D. Continuous control
with deep reinforcement learning. In 4th International
Conference on Learning Representations, ICLR 2016,
San Juan, Puerto Rico, May 2-4, 2016, Conference Track
Proceedings, 2016. URL http://arxiv.org/abs/
1509.02971.

Mirowski, P., Pascanu, R., Viola, F., Soyer, H., Ballard,
A., Banino, A., Denil, M., Goroshin, R., Sifre, L.,
Kavukcuoglu, K., Kumaran, D., and Hadsell, R. Learn-
ing to navigate in complex environments. In 5th Inter-
national Conference on Learning Representations, ICLR
2017, Toulon, France, April 24-26, 2017, Conference
Track Proceedings. OpenReview.net, 2017. URL https:
//openreview.net/forum?id=SJMGPrcle.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap,
T., Harley, T., Silver, D., and Kavukcuoglu, K. Asyn-
chronous Methods for Deep Reinforcement Learning. In
Balcan, M. F. and Weinberger, K. Q. (eds.), Proceedings
of The 33rd International Conference on Machine Learn-
ing, volume 48 of Proceedings of Machine Learning Re-
search, pp. 1928–1937, New York, New York, USA, 2016.
PMLR. URL http://proceedings.mlr.press/
v48/mniha16.html.

Montgomery, W. H. and Levine, S. Guided policy
search via approximate mirror descent. In Lee, D. D.,
Sugiyama, M., von Luxburg, U., Guyon, I., and
Garnett, R. (eds.), Advances in Neural Information
Processing Systems 29: Annual Conference on Neural
Information Processing Systems 2016, December
5-10, 2016, Barcelona, Spain, pp. 4008–4016, 2016.
URL https://proceedings.neurips.cc/

paper/2016/hash/
a00e5eb0973d24649a4a920fc53d9564-
Abstract.html.

Mordatch, I. and Todorov, E. Combining the benefts of
function approximation and trajectory optimization. 2015.
doi: 10.15607/rss.2014.x.052.

Nagabandi, A., Kahn, G., Fearing, R. S., and Levine, S.
Neural Network Dynamics for Model-Based Deep Rein-
forcement Learning with Model-Free Fine-Tuning. CoRR,
abs/1708.02596, 2017. URL http://arxiv.org/
abs/1708.02596.

Nagabandi, A., Konoglie, K., Levine, S., and Kumar, V.
Deep Dynamics Models for Learning Dexterous Manipu-
lation. In Conference on Robot Learning (CoRL), 2019.

OpenAI, Andrychowicz, M., Baker, B., Chociej, M.,
Józefowicz, R., McGrew, B., Pachocki, J. W., Pachocki,
J., Petron, A., Plappert, M., Powell, G., Ray, A., Schnei-
der, J., Sidor, S., Tobin, J., Welinder, P., Weng, L.,
and Zaremba, W. Learning Dexterous In-Hand Manip-
ulation. CoRR, abs/1808.00177, 2018. URL http:
//arxiv.org/abs/1808.00177.

Parmas, P. Total stochastic gradient algorithms and applica-
tions in reinforcement learning. In Bengio, S., Wallach,
H. M., Larochelle, H., Grauman, K., Cesa-Bianchi, N.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems 31: Annual Conference on Neural
Information Processing Systems 2018, NeurIPS 2018, De-
cember 3-8, 2018, Montréal, Canada, pp. 10225–10235,
2018. URL https://proceedings.neurips.cc/
paper/2018/hash/
0d59701b3474225fca5563e015965886-
Abstract.html.

Peng, X. B., Kumar, A., Zhang, G., and Levine, S.
Advantage-weighted regression: Simple and scalable
off-policy reinforcement learning. arXiv preprint
arXiv:1910.00177, 2019.

Ross, S., Gordon, G., and Bagnell, D. A Reduction of Imita-
tion Learning and Structured Prediction to No-Regret
Online Learning. In Gordon, G., Dunson, D., and
Dudı́k, M. (eds.), Proceedings of the Fourteenth Inter-
national Conference on Artifcial Intelligence and Statis-
tics, volume 15 of Proceedings of Machine Learning
Research, pp. 627–635, Fort Lauderdale, FL, USA, 2011.
PMLR. URL http://proceedings.mlr.press/
v15/ross11a.html.

Schenck, C. and Fox, D. Guided policy search with delayed
sensor measurements. arXiv preprint arXiv:1609.03076,
2016.

https://arxiv.org/abs/1810.06339
http://arxiv.org/abs/1810.06339
http://arxiv.org/abs/1810.06339
https://proceedings.neurips.cc/paper/2019/hash/28f0b864598a1291557bed248a998d4e-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/28f0b864598a1291557bed248a998d4e-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/28f0b864598a1291557bed248a998d4e-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/28f0b864598a1291557bed248a998d4e-Abstract.html
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1509.02971
https://openreview.net/forum?id=SJMGPrcle
https://openreview.net/forum?id=SJMGPrcle
http://proceedings.mlr.press/v48/mniha16.html
http://proceedings.mlr.press/v48/mniha16.html
http://proceedings.mlr.press/v48/mniha16.html
http://proceedings.mlr.press/v48/mniha16.html
https://proceedings.neurips.cc/paper/2016/hash/a00e5eb0973d24649a4a920fc53d9564-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/a00e5eb0973d24649a4a920fc53d9564-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/a00e5eb0973d24649a4a920fc53d9564-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/a00e5eb0973d24649a4a920fc53d9564-Abstract.html
http://arxiv.org/abs/1708.02596
http://arxiv.org/abs/1708.02596
http://arxiv.org/abs/1708.02596
http://arxiv.org/abs/1708.02596
https://sites.google.com/view/pddm/
https://sites.google.com/view/pddm/
http://arxiv.org/abs/1808.00177
http://arxiv.org/abs/1808.00177
http://arxiv.org/abs/1808.00177
http://arxiv.org/abs/1808.00177
https://proceedings.neurips.cc/paper/2018/hash/0d59701b3474225fca5563e015965886-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/0d59701b3474225fca5563e015965886-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/0d59701b3474225fca5563e015965886-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/0d59701b3474225fca5563e015965886-Abstract.html
http://proceedings.mlr.press/v15/ross11a.html
http://proceedings.mlr.press/v15/ross11a.html
http://proceedings.mlr.press/v15/ross11a.html
http://proceedings.mlr.press/v15/ross11a.html
http://proceedings.mlr.press/v15/ross11a.html
https://OpenReview.net

PODS: Policy Optimization via Differentiable Simulation

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and
Moritz, P. Trust Region Policy Optimization. In
Bach, F. and Blei, D. (eds.), Proceedings of the
32nd International Conference on Machine Learn-
ing, volume 37 of Proceedings of Machine Learn-
ing Research, pp. 1889–1897, Lille, France, 2015.
PMLR. URL http://proceedings.mlr.press/
v37/schulman15.html.

Schulman, J., Moritz, P., Levine, S., Jordan, M. I., and
Abbeel, P. High-Dimensional Continuous Control Using
Generalized Advantage Estimation. In 4th International
Conference on Learning Representations, ICLR 2016,
San Juan, Puerto Rico, May 2-4, 2016, Conference Track
Proceedings, 2016. URL http://arxiv.org/abs/
1506.02438.

Tan, J., Zhang, T., Coumans, E., Iscen, A., Bai, Y., Hafner,
D., Bohez, S., and Vanhoucke, V. Sim-to-real: Learning
agile locomotion for quadruped robots. arXiv preprint
arXiv:1804.10332, 2018.

Tassa, Y., Doron, Y., Muldal, A., Erez, T., Li, Y.,
de Las Casas, D., Budden, D., Abdolmaleki, A., Merel, J.,
Lefrancq, A., Lillicrap, T., and Riedmiller, M. DeepMind
Control Suite. Technical report, DeepMind, 2018. URL
https://arxiv.org/abs/1801.00690.

Wang, Y., He, H., Tan, X., and Gan, Y. Trust region-
guided proximal policy optimization. In Wallach,
H. M., Larochelle, H., Beygelzimer, A., d’Alché-Buc,
F., Fox, E. B., and Garnett, R. (eds.), Advances
in Neural Information Processing Systems 32: An-
nual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, December 8-14,
2019, Vancouver, BC, Canada, pp. 624–634, 2019.
URL https://proceedings.neurips.cc/
paper/2019/hash/
a666587afda6e89aec274a3657558a27-
Abstract.html.

Zhong, Y. D., Dey, B., and Chakraborty, A. Symplec-
tic ode-net: Learning hamiltonian dynamics with con-
trol. In 8th International Conference on Learning Repre-
sentations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020. OpenReview.net, 2020. URL https:
//openreview.net/forum?id=ryxmb1rKDS.

Zhu, H., Gupta, A., Rajeswaran, A., Levine, S., and Ku-
mar, V. Dexterous Manipulation with Deep Reinforce-
ment Learning: Effcient, General, and Low-Cost. In
2019 International Conference on Robotics and Automa-
tion (ICRA), pp. 3651–3657, May 2019. doi: 10.1109/
ICRA.2019.8794102.

Zimmermann, S., Poranne, R., and Coros, S. Optimal
control via second order sensitivity analysis. CoRR,

abs/1905.08534, 2018. URL http://arxiv.org/
abs/1905.08534.

Zimmermann, S., Poranne, R., Bern, J. M., and Coros,
S. PuppetMaster: Robotic animation of marionettes.
ACM Trans. Graph., 38(4), 2019. ISSN 0730-0301. doi:
10.1145/3306346.3323003. URL https://doi.org/
10.1145/3306346.3323003.

http://proceedings.mlr.press/v37/schulman15
http://proceedings.mlr.press/v37/schulman15.html
http://proceedings.mlr.press/v37/schulman15.html
http://arxiv.org/abs/1506.02438
http://arxiv.org/abs/1506.02438
http://arxiv.org/abs/1506.02438
http://arxiv.org/abs/1506.02438
https://arxiv.org/abs/1801.00690
https://arxiv.org/abs/1801.00690
https://arxiv.org/abs/1801.00690
https://proceedings.neurips.cc/paper/2019/hash/a666587afda6e89aec274a3657558a27-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/a666587afda6e89aec274a3657558a27-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/a666587afda6e89aec274a3657558a27-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/a666587afda6e89aec274a3657558a27-Abstract.html
https://openreview.net/forum?id=ryxmb1rKDS
https://openreview.net/forum?id=ryxmb1rKDS
https://ieeexplore.ieee.org/document/8794102
https://ieeexplore.ieee.org/document/8794102
http://arxiv.org/abs/1905.08534
http://arxiv.org/abs/1905.08534
https://doi.org/10.1145/3306346.3323003
https://doi.org/10.1145/3306346.3323003
https://OpenReview.net

