
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Neural Rough Differential Equations for Long Time Series

Supplementary material
In sections A and B, we give a more thorough introduction to solving CDEs via the log-ODE method.

In section C we discuss the experimental details such as the choice of network structure, computing infrastructure and
hyperparameter selection approach.

In section D we give a full breakdown of every experimental result.

A. An introduction to the log-ODE method for controlled differential equations
The log-ODE method is an effective method for approximating the controlled differential equation:

dYt = f(Yt) dXt, (11)

Y0 = ⇠,

where X : [0, T ] ! Rd has finite length, ⇠ 2 Rn and f : Rn
! L(Rd

,Rn
) is a function with certain smoothness

assumptions so that the CDE (11) is well posed. Throughout these appendices, L(U, V ) denotes the space of linear maps
between the vector spaces U and V . In rough path theory, the function f is referred to as the “vector field” of (11) and
usually assumed to have Lip(�) regularity (see definition 10.2 in Friz & Victoir (2010)). In this section, we assume one of
the below conditions on the vector field:

1. f is bounded and has N bounded derivatives.

2. f is linear.

In order to define the log-ODE method, we will first consider the tensor algebra and path signature.

Definition A.1 We say that T
�
Rd
�
:= R � Rd

� (Rd
)
⌦2

� · · · is the tensor algebra of Rd and T
��
Rd
��

:=
�
a =

�
a0, a1, · · ·

�
: ak 2

�
Rd
�⌦k

8k � 0
 

is the set of formal series of tensors of Rd. Moreover, T
�
Rd
�

and T
��
Rd
��

can be
endowed with the operations of addition and multiplication. Given a = (a0, a1, · · · ) and b = (b0, b1, · · · ), we have

a+ b =
�
a0 + b0, a1 + b1, · · ·

�
, (12)

a⌦ b =
�
c0, c1, c2, · · ·

�
, (13)

where for n � 0, the n-th term cn 2
�
Rd
�⌦n can be written as

cn :=

nX

k=0

ak ⌦ bn�k. (14)

The use of ⌦ in equation (14) denotes the usual tensor product. The use of ⌦ in equation (13) is also referred to as the
“tensor product”: when precisely one ai and precisely one bi are nonzero then it reduces to the usual tensor product; equation
(13) is a generalisation.

Definition A.2 The signature of a finite length path X : [0, T ] ! Rd over the interval [s, t] is defined as the following
collection of iterated (Riemann–Stieltjes) integrals:

Ss,t

�
X
�
:=

⇣
1 , X

(1)
s,t , X

(2)
s,t , X

(3)
s,t , . . .

⌘
2 T

��
Rd
��
, (15)

where for n � 1,

X
(n)
s,t :=

Z
· · ·

Z

s<u1<···<un<t

dXu1 ⌦ · · ·⌦ dXun 2
�
Rd
�⌦n

.



605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Neural Rough Differential Equations for Long Time Series

Similarly, we can define the depth-N (or truncated) signature of the path X on [s, t] as

S
N
s,t

�
X
�
:=

 
1 , X

(1)
s,t , X

(2)
s,t , . . . , X

(N)
s,t

!
2 T

N
�
Rd
�
, (16)

where T
N
�
Rd
�
:= R� Rd

� (Rd
)
⌦2

� · · ·� (Rd
)
⌦N denotes the truncated tensor algebra.

The (truncated) signature provides a natural feature set that describes the effects a path X has on systems that can be
modelled by (11). That said, defining the log-ODE method actually requires the so-called “log-signature” which efficiently
encodes the same integral information as the signature. The log-signature is obtained from the path’s signature by removing
certain algebraic redundancies, such as

Z t

0

Z s

0
dX

i
udX

j
s +

Z t

0

Z s

0
dX

j
udX

i
s = X

i
tX

j
t ,

for i, j 2 {1, · · · , d}, which follows by the integration-by-parts formula. To this end, we will define the logarithm map on
the depth-N truncated tensor algebra T

N
�
Rd
�
:= R� Rd

� · · ·� (Rd
)
⌦N .

Definition A.3 (The logarithm of a formal series) For a = (a0, a1, · · · ) 2 T
��
Rd
��

with a0 > 0, define log(a) to be
the element of T

��
Rd
��

given by the following series:

log(a) := log(a0) +

1X

n=1

(�1)
n

n

✓
1�

a

a0

◆⌦n

, (17)

where 1 = (1, 0, · · · ) is the unit element of T
��
Rd
��

and log(a0) is viewed as log(a0)1.

Definition A.4 (The logarithm of a truncated series) For a = (a0, a1, · · · , aN ) 2 T
��
Rd
��

with a0 > 0, define
log

N
(a) to be the element of TN

�
Rd
�

defined from the logarithm map (17) as

log
N
(a) := PN

�
log(ea)

�
, (18)

where ea := (a0, a1, · · · , aN , 0, · · · ) 2 T
��
Rd
��

and PN denotes the standard projection map from T
��
Rd
��

onto
T

N
�
Rd
�
.

Definition A.5 The log-signature of a finite length path X : [0, T ] ! Rd over the interval [s, t] is defined as
LogSigs,t(X) := log(Ss,t(X)), where Ss,t(X) denotes the path signature of X given by Definition A.2. Likewise,
the depth-N (or truncated) log-signature of X is defined for each N � 1 as LogSigNs,t(X) := log

N
(S

N
s,t(X)).

In this section, we view each LogSig
N
s,t(X) as an element of TN

�
Rd
�

to simplify the definition of the log-ODE method.
That said, this is equivalent to the definition used in the main body of the paper, which defines the log-signature as a map
from X : [0, T ] ! Rd to R�(d,N). This corresponds to the interpretation of a log-signature as an element of a certain free
Lie algebra (see, for example, Lyons et al. (2007); Reizenstein (2017) for details). The exact form of �(d,N) is given by

�(d,N) =

NX

k=1

1

k

X

i|k

µ

✓
k

i

◆
d
i

with µ the Möbius function. The precise order of this remains an open question.

The final ingredient we use to define the log-ODE method are the derivatives of the vector field f . It is worth noting that
these derivatives also naturally appear in the Taylor expansion of (11).

Definition A.6 (Vector field derivatives) We define f
�k

: Rn
! L((Rd

)
⌦k

,Rn
) recursively by

f
�(0)

(y) := y,

f
�(1)

(y) := f(y),

f
�(k+1)

(y) := D
�
f
�k�

(y)f(y),

for y 2 Rn, where D
�
f
�k� denotes the Fréchet derivative of f�k.



660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Neural Rough Differential Equations for Long Time Series

Ys, X : [s, t] ! Rd Y Taylor
t := Ys + f̂(Ys)S

N
s,t(X)

z0 = f̂(z)LogSigN
s,t(X)

z(0) = Ys
Y Log
t := z(1)

Log-ODE method

⇡

Action of f on
signature of X

Action of f on
log-signature of X

Solve ODE on [0, 1]

Figure 6. Illustration of the log-ODE and Taylor methods for controlled differential equations.

Using these definitions, we can describe two closely related numerical methods for the CDE (11).

Definition A.7 (The Taylor method) Given the CDE (11), we can use the path signature of X to approximate the solution
Y on an interval [s, t] via its truncated Taylor expansion. That is, we use

Taylor(Ys, f, S
N
s,t(X)) :=

NX

k=0

f
�k
(Ys)⇡k

�
S
N
s,t(X)

�
, (19)

as an approximation for Yt where each ⇡k : T
N
(Rd

) ! (Rd
)
⌦k is the projection map onto

�
Rd
�⌦k.

Definition A.8 (The Log-ODE method) Using the Taylor method (19), we can define the function bf : Rn
!

L(T
N
(Rd

),Rn
) by bf(z) := Taylor(z, f, ·). By applying bf to the truncated log-signature of the path X over an in-

terval [s, t], we can define the following ODE on [0, 1]

dz

du
= bf(z)LogSigNs,t(X), (20)

z(0) = Ys.

Then the log-ODE approximation of Yt (given Ys and LogSig
N
s,t(X)) is defined as

LogODE(Ys, f,LogSig
N
s,t(X)) := z(1). (21)

Remark A.9 Our assumptions of f ensure that z 7! bf(z)LogSigNs,t(X) is either globally bounded and Lipschitz continuous
or linear. Hence both the Taylor and log-ODE methods are well defined.

Remark A.10 It is well known that the log-signature of a path X lies in a certain free Lie algebra (this is detailed in
section 2.2.4 of Lyons et al. (2007)). Furthermore, it is also a theorem that the Lie bracket of two vector fields is itself a
vector field which doesn’t depend on choices of basis. By expressing LogSig

N
s,t(X) using a basis of the free Lie algebra, it

can be shown that only the vector field f and its (iterated) Lie brackets are required to construct the log-ODE vector field
bf(z)LogSigNs,t(X). In particular, this leads to our construction of the log-ODE (8) using the Lyndon basis of the free Lie
algebra (see (Reizenstein, 2017) for a precise description of the Lyndon basis). We direct the reader to Lyons (2014) and
Boutaib et al. (2014) for further details on this Lie theory.

To illustrate the log-ODE method, we give two examples:



715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Neural Rough Differential Equations for Long Time Series

Example A.11 (The “increment-only” log-ODE method) When N = 1, the ODE (20) becomes

dz

du
= f(z)Xs,t,

z(0) = Ys.

Therefore we see that this “increment-only” log-ODE method is equivalent to driving the original CDE (11) by a piecewise
linear approximation of the control path X . This is a classical approach for stochastic differential equations (i.e. when
Xt = (t,Wt) with W denoting a Brownian motion) and is an example of a Wong-Zakai approximation (see Wong & Zakai
(1965) for further details).

Example A.12 (An application for SDE simulation) Consider the following affine SDE,

dYt = a(b� yt) dt+ �yt � dWt, (22)

y(0) = y0 2 R�0 ,

where a, b � 0 are the mean reversion parameters, � � 0 is the volatility and W denotes a standard real-valued Brownian
motion. The � means that this SDE is understood in the Stratonovich sense. The SDE (22) is known in the literature as
Inhomogeneous Geometric Brownian Motion (or IGBM). Using the control path X = {(t,Wt)}t�0 and setting N = 3, the
log-ODE (20) becomes

dz

du
= a(b� zu)h+ �zuWs,t � ab�As,t + ab�

2
L
(1)
s,t + a

2
b�L

(2)
s,t ,

z(0) = Ys.

where h := t� s denotes the step size and the random variables As,t, L
(1)
s,t , L

(2)
s,t are given by

As,t :=

Z t

s
Ws,r dr �

1

2
hWs,t,

L
(1)
s,t :=

Z t

s

Z r

s
Ws,v � dWv dr �

1

2
Ws,tAs,t �

1

6
hW

2
s,t,

L
(2)
s,t :=

Z t

s

Z r

s
Ws,v dv dr �

1

2
hAs,t �

1

6
h
2
Ws,t.

In Foster et al. (2020), the depth-3 log-signature of X = {(t,Wt)}t�0 was approximated so that the above log-ODE method
became practical and this numerical scheme exhibited state-of-the-art convergence rates. For example, the approximation
error produced by 25 steps of the high order log-ODE method was similar to the error of the “increment only” log-ODE
method with 1000 steps.

B. Convergence of the log-ODE method for rough differential equations
In this section, we shall present “rough path” error estimates for the log-ODE method. In addition, we will discuss the case
when the vector fields governing the rough differential equation are linear. We begin by stating the main result of Boutaib
et al. (2014) which quantifies the approximation error of the log-ODE method in terms of the regularity of the systems
vector field f and control path X . Since this section uses a number of technical definitions from rough path theory, we
recommend Lyons et al. (2007) as an introduction to the subject.

For T > 0, we will use the notation 4T := {(s, t) 2 [0, T ]
2
: s < t} to denote a rescaled 2-simplex.

Theorem B.1 (Lemma 15 in Boutaib et al. (2014)) Consider the rough differential equation

dYt = f(Yt) dXt, (23)
Y0 = ⇠,

where we make the following assumptions:



770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Neural Rough Differential Equations for Long Time Series

• X is a geometric p-rough path in Rd, that is X : 4T ! T
bpc

(Rd
) is a continuous path in the tensor algebra

T
bpc

(Rd
) := R� Rd

�
�
Rd
�⌦2

� · · ·�
�
Rd
�⌦bpc with increments

Xs,t =

⇣
1, X

(1)
s,t , X

(2)
s,t , · · · , X

(bpc)
s,t

⌘
, (24)

X
(k)
s,t := ⇡k

�
Xs,t

�
,

where ⇡k : T
bpc�Rd

�
!
�
Rd
�⌦k is the projection map onto

�
Rd
�⌦k, such that there exists a sequence of continuous

finite variation paths xn : [0, T ] ! Rd whose truncated signatures converge to X in the p-variation metric:

dp

⇣
S
bpc

(xn), X

⌘
! 0, (25)

as n ! 1, where the p-variation between two continuous paths Z1 and Z
2 in T

bpc
(Rd

) is

dp

�
Z

1
, Z

2
�
:= max

1kbpc
sup
D

✓ X

ti2D

���⇡k

�
Z

1
ti,ti+1

�
� ⇡k

�
Z

2
ti,ti+1

����
p
k

◆ k
p

, (26)

where the supremum is taken over all partitions D of [0, T ] and the norms k · k must satisfy (up to some constant)

ka⌦ bk  kakkbk,

for a 2 (Rd
)
⌦n and b 2 (Rd

)
⌦m. For example, we can take k · k to be the projective or injective tensor norms (see

Propositions 2.1 and 3.1 in Ryan (2002)).

• The solution Y and its initial value ⇠ both take their values in Rn.

• The collection of vector fields {f1, · · · , fd} on Rn are denoted by f : Rn
! L(Rn

,Rd
), where L(Rn

,Rd
) is the space

of linear maps from Rn to Rd. We will assume that f has Lip(�) regularity with � > p. That is, f it is bounded with
b�c bounded derivatives, the last being Hölder continuous with exponent (� �b�c). Hence the following norm is finite:

kfkLip(�) := max
0kb�c

��Dk
f
��
1 _

��Db�c
f
��
(��b�c)�Höl , (27)

where D
k
f is the k-th (Fréchet) derivative of f and k · k↵-Höl is the standard ↵-Hölder norm with ↵ 2 (0, 1).

• The RDE (23) is defined in the Lyon’s sense. Therefore by the Universal Limit Theorem (see Theorem 5.3 in Lyons et al.
(2007)), there exists a unique solution Y : [0, T ] ! Rn.

We define the log-ODE for approximating the solution Y over an interval [s, t] ⇢ [0, T ] as follows:

1. Compute the depth-b�c log-signature of the control path X over [s, t]. That is, we obtain LogSig
b�c
s,t (X) :=

logb�c
�
S
b�c
s,t (X)

�
2 T

b�c
(Rd

), where logb�c(·) is defined by projecting the standard tensor logarithm map onto
{a 2 T

b�c
(Rd

) : ⇡0(a) > 0}.

2. Construct the following (well-posed) ODE on the interval [0, 1],

dz
s,t

du
= F

�
z
s,t
�
, (28)

z
s,t
0 = Ys,

where the vector field F : Rn
! Rn is defined from the log-signature as

F (z) :=

b�cX

k=1

f
�k
(z)⇡k

⇣
LogSig

b�c
s,t (X)

⌘
. (29)

Recall that f�k
: Rn

! L((Rd
)
⌦k

,Rn
) was defined previously in Definition A.6.



825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Neural Rough Differential Equations for Long Time Series

Then we can approximate Yt using the u = 1 solution of (28). Moreover, there exists a universal constant Cp,� depending
only on p and � such that ��Yt � z

s,t
1

��  Cp,�kfk
�
Lip(�)kXk

�
p-var;[s,t], (30)

where k · kp-var;[s,t] is the p-variation norm defined for paths in T
bpc

(Rd
) by

kXkp-var;[s,t] := max
1kbpc

sup
D

✓ X

ti2D

��Xk
ti,ti+1

�� p
k

◆ k
p

, (31)

with the supremum taken over all partitions D of [s, t].

Remark B.2 If the vector fields {f1, · · · , fd} are linear, then it immediately follows that F is linear.

Although the above theorem requires some sophisticated theory, it has a simple conclusion - namely that log-ODEs can
approximate controlled differential equations. That said, the estimate (30) does not directly apply when the vector fields
{fi} are linear as they would be unbounded. Fortunately, it is well known that linear RDEs are well posed and the growth of
their solutions can be estimated.

Theorem B.3 (Theorem 10.57 in Friz & Victoir (2010)) Consider the linear RDE on [0, T ]

dYt = f(Yt) dXt,

Y0 = ⇠,

where X is a geometric p-rough path in Rd, ⇠ 2 Rn and the vector fields {fi}1id take the form fi(y) = Aiy + B

where {Ai} and {Bi} are n⇥ n matrices. Let K denote an upper bound on maxi(kAik+ kBik). Then a unique solution
Y : [0, T ] ! Rn exists. Moreover, it is bounded and there exists a constant Cp depending only on p such that

kYt � Ysk  Cp

�
1 + k⇠k

�
KkXkp-var;[s,t] exp

⇣
CpK

p
kXk

p
p-var;[s,t]

⌘
, (32)

for all 0  s  t  T .

When the vector fields of the RDE (23) are linear, then the log-ODE (28) also becomes linear. Therefore, the log-ODE
solution exists and is explicitly given as the exponential of the matrix F .

Theorem B.4 Consider the same linear RDE on [0, T ] as in Theorem B.3,

dYt = f(Yt) dXt,

Y0 = ⇠.

Then the log-ODE vector field F given by (29) is linear and the solution of the associated ODE (28) exists and satisfies

kz
s,t
u k  kYsk exp

✓ b�cX

m=1

K
m
���⇡m

⇣
LogSig

b�c
s,t (X)

⌘���
◆
, (33)

for u 2 [0, 1] and all 0  s  t  T .

Proof B.5 Since F is a linear vector field on Rn, we can view it as an n⇥ n matrix and so for u 2 [0, 1],

z
s,t
u = exp(uF )z

s,t
0 ,

where exp denotes the matrix exponential. The result now follows by the standard estimate k exp(F )k  exp(kFk).

Remark B.6 Due to the boundedness of linear RDEs (32) and log-ODEs (33), the arguments that established Theorem B.1
will hold in the linear setting as kfkLip(�) would be finite when defined on the domains that the solutions Y and z lie in.

Given the local error estimate (30) for the log-ODE method, we can now consider the approximation error that is exhibited
by a log-ODE numerical solution to the RDE (23). Thankfully, the analysis required to derive such global error estimates
was developed by Greg Gyurkó in his PhD thesis. Thus the following result is a straightforward application of Theorem
3.2.1 from Gyurkó (2008).



880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Neural Rough Differential Equations for Long Time Series

Theorem B.7 Let X , f and Y satisfy the assumptions given by Theorem B.1 and suppose that {0 = t0 < t1 < · · · <

tN = T} is a partition of [0, T ] with max k kXkp-var;[tk,tk+1] sufficiently small. We can construct a numerical solution
{Y

log
k }0kN of (23) by setting Y

log
0 := Y0 and for each k 2 {0, 1, · · · , N � 1}, defining Y

log
k+1 to be the solution at u = 1

of the following ODE:

dz
tk,tk+1

du
:= F

�
z
tk,tk+1

�
, (34)

z
tk,tk+1

0 := Y
log
k ,

where the vector field F is constructed from the log-signature of X over the interval [tk, tk+1] according to (29). Then there
exists a constant C depending only on p, � and kfkLip(�) such that

��Ytk � Y
log
k

��  C

k�1X

i=0

kXk
�
p-var;[ti,ti+1]

, (35)

for 0  k  N .

Remark B.8 The above error estimate also holds when the vector field f is linear (by Remark B.6)).

Since b�c is the truncation depth of the log-signatures used to construct each log-ODE vector field, we see that high
convergence rates can be achieved through using more terms in each log-signature. It is also unsurprising that the error
estimate (35) increases with the “roughness” of the control path. So just as in our experiments, we see that the performance
of the log-ODE method can be improved by choosing an appropriate step size and depth of log-signature.

C. Experimental details
Code The code to reproduce the experiments is available at [redacted; see supplementary material]

Data splits Each dataset was split into a training, validation, and testing dataset with relative sizes 70%/15%/15%.

Normalisation The training splits of each dataset were normalised to zero mean and unit variance. The statistics from the
training set were then used to normalise the validation and testing datasets.

Architecture We give a graphical description of the architecture used for updating the Neural CDE hidden state in figure
7. The input is first run through a multilayer perceptron with n layers of size h, with with n, h being hyperparameters. ReLU
nonlinearities are used at each layer except the final one, where we instead use a tanh nonlinearity. The goal of this is to help
prevent term blow-up over the long sequences.

Note that this is a small inconsistency between this work and the original model proposed in Kidger et al. (2020). Here, we
applied the tanh function as the final hidden layer nonlinearity, whilst in the original paper the tanh nonlinearity is applied
after the final linear map. Both methods are used to constrain the rate of change of the hidden state; we do not know of a
reason to prefer one over the other.

Note that the final linear layer in the multilayer perceptron is reshaped to produce a matrix-valued output, of shape v ⇥ p.
(As bf✓ is matrix-valued.) A matrix-vector multiplication with the log-signature then produces the vector field for the ODE
solver.

ODE Solver All problems used the ‘rk4’ solver as implemented by torchdiffeq (Chen, 2018) version 0.0.1.

Computing infrastructure All EigenWorms experiments were run on a computer equipped with three GeForce RTX
2080 Ti’s. All BIDMC experiments were run on a computed with two GeForce RTX 2080 Ti’s and two Quadro GP100’s.

Optimiser All experiments used the Adam optimiser. The learning rate was initialised at 0.032 divided by batch size. The
batch size used was 1024 for EigenWorms and 512 for the BIDMC problems. If the validation loss failed to decrease after
15 epochs the learning rate was reduced by a factor of 10. If the validation loss did not decrease after 60 epochs, training
was terminated and the model was rolled back to the point at which it achieved the lowest loss on the validation set.



935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

Neural Rough Differential Equations for Long Time Series

In
pu

t,
Z
r i

H
id

de
n

la
ye

r1

H
id

de
n

la
ye

rn

f̂✓(Zri)

L
o
g
S
ig

r i
,r

i
+

1

O
ut

pu
t,
Z
r i

+
1v
⇥

1

h
⇥

1

h
⇥

1

v ⇥ p

p
⇥

1

v
⇥

1

. . .

Lo
gs

ig

fa
ct

or

ReLU ReLU Tanh Linear
+ reshape

ODE Solve

Matrix multiplication

n layers

f̂✓

Figure 7. Overview of the hidden state update network structure. We give the dimensions at each layer in the top right hand corner of each
box.

Hyperparameter selection Hyperparameters were selected to optimise the score of the NCDE1 model on the validation
set. For each dataset the search was performed with a step size that meant the total number of hidden state updates was equal
to 500, as this represented a good balance between length and speed that allowed us to complete the search in a reasonable
time-frame. In particular, this was short enough that we could train using the non-adjoint training method which helped to
speed this section up. The hyperparameters that were considered were:

• Hidden dimension: [16, 32, 64] - The dimension of the hidden state Zt.

• Number of layers: [2, 3, 4] - The number of hidden state layers.

• Hidden hidden multiplier: [1, 2, 3] - Multiplication factor for the hidden hidden state, this being the ‘Hidden layer k’ in
figure 7. The dimension of each of these ‘hidden hidden’ layers with be this value multiplied by ‘Hidden dimension’.

We ran each of these 27 total combinations for every dataset and the parameters that corresponded were used as the
parameters when training over the full depth and step grid. The full results from the hyperparameter search are listed in
tables (3, 5) with bolded values to show which values were eventually selected.

D. Experimental Results
Here we include the full breakdown of all experimental results. Tables 7 and 8 include all results from the EigenWorms and
BIDMC datasets respectively.



990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

Neural Rough Differential Equations for Long Time Series

Validation accuracy Hidden dim Num layers Hidden hidden multiplier Total params

33.3 16 2 3 5509
43.6 16 2 2 5509
56.4 16 2 1 4453
64.1 16 3 2 8869
38.5 16 3 3 8869
51.3 16 3 1 6517
82.1 16 4 2 12741
35.9 16 4 3 12741
53.8 16 4 1 8581
35.9 32 2 3 21253
74.4 32 2 2 21253
43.6 32 2 1 17093
53.8 32 3 3 34629
87.2 32 3 2 34629
64.1 32 3 1 25317
35.9 32 4 3 50053
71.8 32 4 1 33541
79.5 32 4 2 50053
41.0 64 2 3 83461
64.1 64 2 2 83461
48.7 64 3 3 136837
59.0 64 3 2 136837
51.3 64 2 1 66949
56.4 64 4 2 198405
64.1 64 4 3 198405
64.1 64 3 1 99781
51.3 64 4 1 132613

Table 3. Hyperparamter selection results for the EigenWorms dataset. The blue values denote the selected hyperparameters.

Validation accuracy Hidden dim Total params

61.5 32 11299
53.8 64 24611
64.1 128 57379
59.0 192 98339
61.5 256 147491
59.0 320 204835
64.1 388 274739

Table 4. Hyperparamter selection results for the ODE-RNN model on the EigenWorms dataset



1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

Neural Rough Differential Equations for Long Time Series

Validation loss Hidden dim Num layers Hidden hidden multiplier Total params
RR HR SpO2

1.72 6.10 2.07 16 2 1 2209
1.57 5.58 1.97 16 2 2 3265
1.55 6.10 1.33 16 2 3 3265
1.80 5.16 2.05 16 3 1 3249
1.61 5.22 1.62 16 3 2 5601
1.56 3.34 1.18 16 3 3 5601
1.57 3.86 1.97 16 4 1 4289
1.45 3.54 1.25 16 4 2 8449
1.54 3.93 1.09 16 4 3 8449
1.56 6.81 1.87 32 2 1 8513
1.42 3.11 1.43 32 2 2 12673
1.54 3.60 1.11 32 2 3 12673
1.54 3.52 1.57 32 3 1 12641
1.39 2.96 1.03 32 3 2 21953
1.47 2.95 1.05 32 3 3 21953
1.55 3.00 2.00 32 4 1 16769
1.38 3.20 1.07 32 4 2 33281
1.43 2.58 1.01 32 4 3 33281
1.51 3.21 1.10 64 2 1 33409
1.43 2.22 1.00 64 2 2 49921
1.51 3.34 0.94 64 2 3 49921
1.55 3.24 2.09 64 3 1 49857
1.32 2.53 0.88 64 3 2 86913
1.25 2.57 0.73 64 3 3 86913
1.43 5.78 1.43 64 4 1 66305
1.28 2.26 0.93 64 4 2 132097
1.32 2.46 1.15 64 4 3 132097

Table 5. Hyperparameter selection results for each problem of the BIDMC dataset. The bold values denote the selected hyperparameters
for each vitals sign problem. Note that RR and SpO2 had the same parameters selected, hence why only two lines are given in bold.

Validation loss Hidden dim Total params
RR HR SpO2

3.00 12.82 3.37 32 3871
3.00 12.82 3.37 64 9759
2.82 12.82 3.37 128 27679
2.49 12.82 3.37 192 53791
2.52 12.82 3.37 256 88095
2.50 12.82 3.37 320 130591
2.83 12.82 3.37 388 184719

Table 6. Hyperparameter selection results for the folded ODE-RNN model on the BIDMC problem. Bold values indicate selected
hyperparamter values. The ODE-RNN model failed to train effectively for the HR and SpO2 problems which is why the validation losses
are the same (to 2dp).



1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

Neural Rough Differential Equations for Long Time Series

Model Step Test Accuracy Time (Hrs) Memory (Mb)
1 Memory Error Memory Error Memory Error
2 36.8 ± 1.5 1.6 7170.1
4 35.0 ± 1.5 0.8 3629.3
6 36.8 ± 1.5 0.5 2448.6
8 36.8 ± 1.5 0.4 1858.8
16 32.5 ± 3.0 0.2 973.5

ODE-RNN 32 32.5 ± 1.5 0.1 532.2
(folded) 64 41.0 ± 4.4 0.1 311.2

128 47.9 ± 5.3 0.0 200.8
256 46.2 ± 0.0 0.0 147.0
512 47.9 ± 10.4 0.0 124.5
1024 44.4 ± 7.4 0.0 122.4
2048 48.7 ± 6.8 0.0 137.2

1 62.4 ± 12.1 22.0 176.5
2 69.2 ± 4.4 14.6 90.6
4 66.7 ± 11.8 5.5 46.6
6 65.8 ± 12.9 2.6 31.5
8 64.1 ± 13.3 3.1 24.3
16 64.1 ± 16.8 1.5 13.4

NCDE 32 64.1 ± 14.3 0.5 8.0
64 56.4 ± 6.8 0.4 5.2

128 48.7 ± 2.6 0.1 3.9
256 42.7 ± 3.0 0.1 3.2
512 44.4 ± 5.3 0.0 2.9
1024 41.9 ± 14.6 0.0 2.7
2048 38.5 ± 5.1 0.0 2.6

2 76.1 ± 13.2 9.8 354.3
4 83.8 ± 3.0 2.4 180.0
6 76.9 ± 6.8 2.0 82.2
8 77.8 ± 5.9 2.1 94.2
16 78.6 ± 3.9 1.3 50.2

NRDE2 32 67.5 ± 12.1 0.7 28.1
64 73.5 ± 7.8 0.4 17.2

128 76.1 ± 5.9 0.2 7.8
256 72.6 ± 12.1 0.1 8.9
512 69.2 ± 11.8 0.0 7.6

1024 65.0 ± 7.4 0.0 6.9
2048 67.5 ± 3.9 0.0 6.5

2 66.7 ± 4.4 7.4 1766.2
4 76.9 ± 9.2 2.8 856.8
6 70.9 ± 1.5 1.4 606.1
8 70.1 ± 6.5 1.3 460.7
16 73.5 ± 3.0 1.4 243.7

NRDE3 32 75.2 ± 3.0 0.6 134.7
64 74.4 ± 11.8 0.3 81.0

128 68.4 ± 8.2 0.1 53.3
256 60.7 ± 8.2 0.1 40.2
512 62.4 ± 10.4 0.0 33.1
1024 59.8 ± 3.9 0.0 29.6
2048 61.5 ± 4.4 0.0 27.7

Table 7. Mean and standard deviation of test set accuracy (in %) over three repeats, as well as memory usage and training time, on the
EigenWorms dataset for depths 1–3 and a small selection of step sizes. The bold values denote that the model was the top performer for
that step size.



1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209

Neural Rough Differential Equations for Long Time Series

Depth Step L2 Time (H) Memory (Mb)
RR HR SpO2 RR HR SpO2

1 Error 13.06 ± 0.0 Error Error 10.4 Error 3654.0
2 Error 13.06 ± 0.0 Error Error 5.5 Error 1840.4
4 2.76 ± 0.14 13.06 ± 0.0 3.3 ± 0.0 3.0 2.7 2.1 1809.0
8 2.47 ± 0.35 13.06 ± 0.0 3.3 ± 0.0 1.5 1.2 0.9 917.2

16 2.21 ± 0.75 13.06 ± 0.0 3.3 ± 0.0 2.2 0.7 0.4 471.9
ODE-RNN 32 1.82 ± 0.64 13.06 ± 0.0 3.3 ± 0.0 0.7 0.3 0.2 249.4

(folded) 64 1.6 ± 0.22 13.06 ± 0.0 3.3 ± 0.0 0.5 0.1 0.1 137.0
128 1.62 ± 0.07 13.06 ± 0.0 3.3 ± 0.0 0.2 0.1 0.1 81.9
256 1.57 ± 0.04 7.04 ± 1.04 1.43 ± 0.11 0.1 0.1 0.1 53.8
512 1.66 ± 0.06 6.75 ± 0.9 1.98 ± 0.31 0.0 0.1 0.1 40.4

1024 1.69 ± 0.02 8.4 ± 0.28 2.05 ± 0.14 0.0 0.0 0.0 36.2
2048 1.75 ± 0.03 9.2 ± 0.27 2.24 ± 0.11 0.0 0.0 0.0 39.6

1 2.79 ± 0.04 9.82 ± 0.34 2.83 ± 0.27 23.8 22.1 28.1 56.5
2 2.87 ± 0.03 11.69 ± 0.38 3.36 ± 0.2 19.3 9.6 8.8 32.6
4 2.92 ± 0.08 11.15 ± 0.49 3.69 ± 0.06 5.3 5.7 3.2 20.2
8 2.8 ± 0.06 10.72 ± 0.24 3.43 ± 0.17 3.0 2.6 4.8 14.3

16 2.22 ± 0.07 7.98 ± 0.61 2.9 ± 0.11 1.7 1.4 1.8 11.8

NCDE 32 2.53 ± 0.23 12.23 ± 0.43 2.68 ± 0.12 1.9 0.9 2.2 9.8
64 2.63 ± 0.11 12.02 ± 0.09 2.88 ± 0.06 0.2 0.3 0.4 9.1
128 2.64 ± 0.18 11.98 ± 0.37 2.86 ± 0.04 0.2 0.2 0.3 8.7
256 2.53 ± 0.04 12.29 ± 0.1 3.08 ± 0.1 0.1 0.1 0.1 8.3
512 2.53 ± 0.03 12.22 ± 0.11 2.98 ± 0.04 0.1 0.0 0.1 8.4

1024 2.67 ± 0.12 11.55 ± 0.03 2.91 ± 0.12 0.1 0.1 0.1 8.4
2048 2.48 ± 0.03 12.03 ± 0.2 3.25 ± 0.01 0.0 0.1 0.0 8.2

2 2.91 ± 0.1 11.11 ± 0.23 3.89 ± 0.44 12.7 9.3 8.2 58.3
4 2.92 ± 0.04 11.14 ± 0.2 4.23 ± 0.57 18.1 5.0 3.4 34.0
8 2.63 ± 0.12 8.63 ± 0.24 2.88 ± 0.15 2.1 3.4 3.3 21.8

16 1.8 ± 0.07 5.73 ± 0.45 1.98 ± 0.21 2.2 1.4 2.5 16.0
32 1.9 ± 0.02 7.9 ± 1.0 1.69 ± 0.2 1.2 1.1 2.0 13.1

NRDE2 64 1.89 ± 0.04 5.54 ± 0.45 2.04 ± 0.07 0.3 0.3 1.7 11.6
128 1.86 ± 0.03 6.77 ± 0.42 1.95 ± 0.18 0.3 0.4 0.7 10.9
256 1.86 ± 0.09 5.64 ± 0.19 2.1 ± 0.19 0.1 0.1 0.5 10.5
512 1.81 ± 0.02 5.05 ± 0.23 2.17 ± 0.18 0.1 0.2 0.4 10.3

1024 1.93 ± 0.11 6.0 ± 0.19 2.41 ± 0.07 0.1 0.1 0.2 10.2
2048 2.03 ± 0.03 7.7 ± 1.46 2.55 ± 0.03 0.1 0.1 0.1 10.2

2 2.82 ± 0.08 11.01 ± 0.28 4.1 ± 0.72 8.8 9.4 6.9 125.2
4 2.97 ± 0.23 10.13 ± 0.62 3.56 ± 0.44 3.2 4.1 2.6 71.6
8 2.42 ± 0.19 7.67 ± 0.4 2.55 ± 0.13 2.9 3.2 3.1 43.3

16 1.74 ± 0.05 4.11 ± 0.61 1.4 ± 0.06 1.4 1.4 6.5 29.1
32 1.67 ± 0.01 4.5 ± 0.7 1.61 ± 0.05 1.3 1.8 7.3 20.5

NRDE3 64 1.53 ± 0.08 3.05 ± 0.36 1.48 ± 0.14 0.4 1.9 3.3 17.9
128 1.51 ± 0.08 2.97 ± 0.45⇤ 1.37 ± 0.22 0.5 1.7 1.7 17.3
256 1.51 ± 0.06 3.4 ± 0.74 1.47 ± 0.07 0.3 0.7 0.6 16.6
512 1.49 ± 0.08⇤ 3.46 ± 0.13 1.29 ± 0.15⇤ 0.3 0.4 0.4 15.4

1024 1.83 ± 0.33 5.58 ± 2.5 1.72 ± 0.31 0.2 0.1 0.1 15.7
2048 2.31 ± 0.27 9.77 ± 1.53 2.45 ± 0.18 0.1 0.1 0.1 15.6

Table 8. Mean and standard deviation of the L2 losses on the test set for each of the vitals signs prediction tasks (RR, HR, SpO2) on the
BIDMC dataset, across three repeats. Only mean times are shown for space. The memory usage is given as the mean over all three of the
tasks as it was approximately the same for any task for a given depth and step. Error denotes that the model could not be run within GPU
memory. The bold values denote the algorithm with the lowest test set loss for a fixed step size for each task.


