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Abstract

Neural controlled differential equations (CDEs)
are the continuous-time analogue of recurrent neu-
ral networks, as Neural ODEs are to residual net-
works, and offer a memory-efficient continuous-
time way to model functions of potentially irregu-
lar time series. Existing methods for computing
the forward pass of a Neural CDE involve embed-
ding the incoming time series into path space, of-
ten via interpolation, and using evaluations of this
path to drive the hidden state. Here, we use rough
path theory to extend this formulation. Instead of
directly embedding into path space, we instead
represent the input signal over small time inter-
vals through its log-signature, which are statistics
describing how the signal drives a CDE. This is
the approach for solving rough differential equa-
tions (RDEs), and correspondingly we describe
our main contribution as the introduction of Neu-
ral RDEs. This extension has a purpose: by gen-
eralising the Neural CDE approach to a broader
class of driving signals, we demonstrate particular
advantages for tackling long time series. In this
regime, we demonstrate efficacy on problems of
length up to 17k observations and observe signifi-
cant training speed-ups, improvements in model
performance, and reduced memory requirements
compared to existing approaches.

1. Introduction

Neural controlled differential equations (CDEs) (Kidger
et al., 2020) are the continuous-time analogue to recurrent
neural networks (RNNs) and provide a natural method for
modelling temporal dynamics with neural networks.

Neural CDE:s are similar to neural ordinary differential equa-
tions (ODEs), as popularised by Chen et al. (2018). A Neu-
ral ODE is determined by its initial condition, without a
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direct way to modify the trajectory given subsequent ob-
servations. In contrast, the vector field of a Neural CDE
depends upon the time-varying data, so that the trajectory
of the system is driven by a sequence of observations.

1.1. Controlled Differential Equations

Leta,b € Rwitha < b, and let v, w € N. Let £ € R™. Let
X: [a,b] — R” be a continuous function of bounded vari-
ation (which is for example implied by it being Lipschitz),
and let f: RY — RY*? be continuous.

Then we may define Z: [a,b] — R™ as the unique solution
to the controlled differential equation

t
Zo =&, Zt:Za+/ f(Zs)dX,s fort e (a,b]. (1)

The notation “ f(Z,)dX,” denotes a matrix-vector product.
“dX,” itself denotes a Riemann—Stieltjes integral: if X is
differentiable then

/a f(Zdx, = / (20 Xds

dX,
dr

with X, = (5). (2
If in equation (1), d X s was replaced with ds, then the equa-
tion would just be an ODE. Using d X ; causes the solution
to depend continuously on the evolution of X. We say that
the solution is “driven by the control X .

Next, we recall the definition of a Neural CDE as introduced
in Kidger et al. (2020).

1.2. Neural Controlled Differential Equations

Consider a time series x as a collection of points x; €
Rv~! with corresponding time-stamps ¢; € R such that
X = ((to,Io), (thl’l), e (tn,l‘n)), and tg < ... < t,.

Let X: [to,t,] — RY be some interpolation of the data
such that Xy, = (¢;, z;). In Kidger et al. (2020) the authors
use natural cubic splines to ensure differentiability of the
co_ntrol X, so as to treat the term “d X" in equation (1) as
“X,ds”.

Let &: R — R™ and fy: RY — R™*" be two neural
networks and let £y : R* — R? be a linear map, for some
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Figure 1. Here we give a high level comparison of the CDE and the RDE formulations. Left: The original CDE formulation where the
data is smoothly interpolated and pointwise derivative information is used to drive the CDE. Right: The corresponding rough approach.
Local interval summarisations of the data are computed and used to drive the response over the interval.

output dimension ¢ € N. Here 0 is used to denote depen-
dence on learnable parameters.

We define Z as the hidden state and Y as the output of a
Neural CDE driven by X if

t
Ly, = &o(to, o), with Z; = Ly, +/ fo(Zs)dXs,
to
and Y; = £9(Z;) for t € (to,tn] (3)

That is — just like an RNN — we have an evolving hidden
state Z, which is fed into a linear map to produce an output
Y. This formulation is a universal approximator (Kidger
et al., 2020, Appendix B). The output may be either the time-
evolving Y; or just the final Y; . This is then fed into a loss
function (L2, cross entropy, ...) and trained via stochastic
gradient descent in the usual way.

To compute the integral of equation (3) in Kidger et al.
(2020), X is assumed differentiable and the CDE is simply
rewritten as an ODE of the form

t
Zi = Zu + / do.x(Zs, ) ds, @)
to
where )
do.x(Z,5) = fo(Z)X,. )

This simple observation allows for incorporating the time-
varying data X driving the CDE into the vector field gg, x
of the equivalent ODE (4). In doing so existing tools for
Neural ODEs can be used to carry out the forward pass and
backpropagate via adjoint methods.

1.3. Contributions

Neural CDEs, as with RNNs, begin to break down for long
time series. Loss/accuracy worsens, and training time be-
comes prohibitive due to the sheer number of forward oper-
ations within each training epoch.

Meanwhile, and at first glance tangentially, it is known in
the field of rough path theory (Lyons, 1998; Lyons et al.,
2004; Friz & Victoir, 2010) that it is possible to numerically
solve CDEs not by pointwise evaluations of the control path
(as in the existing Neural CDE approach), but by using a
specific summarisation — known as the log-signature — of
the control path over short time intervals. See Figure 1.
A CDE treated in this way is termed a rough differential
equation, and the numerical method is termed the log-ODE
method.

The central contribution of this paper is to observe that this
latter technique actually offers a way to solve the former
problem. The log-ODE method offers a way to update the
hidden state of a Neural CDE over large intervals — much
larger than would be expected given the sampling rate or
length of the data. This dramatically reduces the effective
length of the time series. Log-signatures represents a CDE-
specific choice of summarisation, which works because
closely-spaced samples are often strongly correlated. Addi-
tionally, this approach no longer requires differentiability of
the control path.

In line with the usual mathematical terminology, we refer to
our approach as neural rough differential equations (Neural
RDEs). Moreover, Neural RDEs are still able to exploit
memory-efficient continuous-time adjoint backpropagation.
This is of additional benefit as memory pressure becomes
increasingly relevant for long time series — indeed many of
our experiments could not have been ran without it.

With Neural RDEs, we demonstrate improvements experi-
mentally on real-world problems of length up to 17 000. We
report substantial improvements in model performance (by
as much as 17% on some classification tasks, reflecting the
difficulty inherent in long time series), speed (by roughly
a factor of 10), and memory usage (by roughly a factor of
100 compared to models not using the adjoint method).
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Figure 2. Geometric intuition for the first two levels of the log-signature for a 2-dimensional path. The depth 1 terms correspond to the
change in each of the coordinates over the interval. The depth 2 term corresponds to the Lévy area of the path, this being the signed area

between the curve and the chord joining its start and endpoints.

2. Theory

‘We begin with an exposition on the motivating theory. Our
description here will focus on the high-level intuitions. For
a full technical description we refer to the appendices; see
also section 7.1 of (Friz & Victoir, 2010).

Readers primarily interested in practical applications should
feel free to skip to section 3.

2.1. Signatures and Log-signatures

The signature transform is a map from paths to a vector of
real values, specifying a collection of statistics about the
path. It is a central component of the theory of controlled
differential equations since these statistics describe how the
data interacts with dynamical systems. The log-signature
is then formed by representing the same information in a
compressed format.

Signature transform Let X = (X!,...,X%) : [0,7] —
R? be continuous and piecewise differentiable.! Letting?

i, dX”

(X / / H dtj, (6
a<t]<.. <fk<b] 1

then the depth-N signature transform of X is given by
(2 7 'L, d
Slgab = ({S ( } =1 {S y }i,jzl’
11, d
A OOY, ) O

This definition is independent of the choice of 7" and ¢;, by
change of variables in equation (6).

We see that the signature is a collection of integrals, with
each integral defining a real value. It is a graded sequence of

"For our purposes later it will typically be a linear interpolation
of a time series.

“This is a slightly simplified definition, and the signature is
often instead defined using the notation of stochastic calculus; for
completeness see Definition A.2.

statistics that characterise the input time series. In particular,
(Hambly & Lyons, 2010) show that under mild conditions,
Sig®(X) completely determines X up to translation, pro-
vided time is included as a channel in X.

Log-signature transform The signature transform has
some redundancy: a little algebra shows that for example
SYE(X) 482, (X) = S, (X)S2,(X), so that we already
know Sz 4 (X) provided we know the other three quantities.

The log-signature transform is then essentially obtained by
computing the signature transform, and throwing out redun-
dant terms, to obtain some (nonunique) minimal collection.

Starting from the depth-N signature transform and remov-
ing some fixed set of redundancies produces the depth-N
log-signature transform. We fix some set of redundancies
throughout (essentially corresponding to a choice of basis),
and denote this LogSigaN’ - This is a map from Lipschitz
continuous paths [a, b] — R? into R#(*"N) where (v, N)
denotes the dimension of the log-signature (see Appendix
A).

Geometric intuition In figure 2 we provide a geometric
intuition for the first two levels of the log-signature, which
have natural geometric interpretations.

The depth 1 terms correspond to the changes in each channel
over the interval; this is AX;, AX5 in the figure. The
depth 2 term corresponds to the signed area in between
the chord joining the endpoints and the path itself; this
corresponds to A — A_ in the figure. Higher order terms
correspond to higher order integrals and iterated areas in
higher dimensional spaces, and become a little more difficult
to visualise.

(Log-)Signatures and CDEs In Figure 3 we give the
equations for how log-signatures arise in the solution of
CDEs. Begin by letting D denote the Jacobian of a func-
tion f. Now expand equation (1) by linearising the vector
field f and neglecting higher order terms.
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Figure 3. Signature (Taylor) expansion of a CDE. The action of the vector field f on the depth-N signature is a matrix-vector product and

is fully described, for any N, in (Boutaib et al., 2014).

This is simply the Taylor Expansion of the CDE. The Tay-
lor coefficients are precisely these signature terms, thus
demonstrating how signatures are intrinsically linked to the
solutions of CDEs. Higher order Taylor expansions results
in corrections using higher order signature terms.

2.2. The Log-ODE Method

Recall for X : [a,b] — RY that LogSigfl\fb(X) € RAWN),
The log-ODE method states that 2} ~ Z, where

~

,\A Si
Z fZ Og gab( )

—————~dsforu € (a, b,
R (®)
and Z, = Z,. Here Z is the same as in equation (3), and
the relationship between f to f is given in Appendix A.

That is, the solution of the CDE may be approximated by
the solution to an ODE. This is typically applied locally:
pick some points r; suchthata = rg <ry < --- <rp, =b,
split up the CDE of equation (1) into an integral over [rg, 1],
an integral over [r1, 2], and so on, and apply the log-ODE
method to each interval separately. A CDE treated in this
way is, for the purposes of this exposition, termed a rough
differential equation.

See Appendix A for the precise details and Appendix B for
a proof of convergence. For the reader familiar with the
Magnus expansion for linear differential equations (Blanes
et al., 2009), then the log-ODE method is a generalisation.

3. Method

We move on to introducing the neural rough differential
equation.

Recall that we observe some time series x =
((to,xo0), (t1,21), ..., (tn,xn)), and have constructed a
piecewise linear interpolation X : [to,t,] — RY such that
Xti = (tz,l'z)

We now pick points r; such thattg = rg < r; < --- <

rm = t,. In principle these can be variably spaced but in
practice we will typically space them equally far apart. The
total number of points m should be much smaller than n.
The choice and spacing of ; will be a hyperparameter.

We also pick a depth hyperparameter N > 1. In section 2
we introduced the depth-/V log-signature transform. For
X: [to,tn] — RV and to < r; < ripq < t, the log-
signature of X over the interval [r;, ;1] was defined to
be a particular collection of statistics LogSing i (X) €

RAW:N): specifically those statistics that best describe how
X drives the CDE equation (1).

3.1. The Rough Hidden State Update

Recall how the Neural CDE formulation of equation (3) was
solved via equations (4), (5). For the rough approach we
begin by replacing (5) with the piecewise

—~ LogSigi\f 7

/g\97x(Z, S) = fg(Z 'TH—l( for s € [Ti7Ti+1)a

~ ©)
where fp: R — R¥*A(:N) i5 an arbitrary neural network,
and the right hand side denotes a matrix-vector product be-
tween fy and the log-signature. Equation (4) then becomes

Tipl — T4

t
&:%+/%M&@m (10)

to

This may now be solved as a (neural) ODE using standard
ODE solvers.

We give an overview of this process in figure 4. The left
hand side represents a single step method, as in the existing
approach to Neural CDEs. The right hand side depicts a
rough approach that takes steps larger than the discretisation
of the data in exchange for additional terms of the log-
signature.
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Figure 4. An overview of the 1og-ODE method applied to Neural RDEs. Left: A single step (CDE or RDE) model. The path X is quickly
varying, meaning a lot of integration steps are needed to resolve it. Right: The Neural RDE utilising the log-ODE method with integration
steps larger than the discretisation of the data. The path of log-signatures is more slowly varying (in a higher dimensional space), and

needs fewer integration steps to resolve.

3.2. Neural RDEs Generalise Neural CDEs

Suppose we happened to choose r; = t; and r;4+1 = ;4.
Then the log-signature term is

LogSigy, .., (X)
tiy1 —t;
Recall that the depth 1 log-signature is just the increment of
the path over the interval. So this becomes
AX[tutiJrl] dxlincar
it @
+1 — Ug

for s € [ti, ti+1)7

that is to say the same as obtained via the original method
if using linear interpolation. In this way the Neural RDE
approach generalises the existing Neural CDE approach.

3.3. Discussion

Length/Channel Trade-Off The sequence of log-
signatures is now of length m, which was chosen to be
much smaller than n. As such, it is much more slowly vary-
ing over the interval [to, ¢, than the original data, which
was of length n. The differential equation it drives is better
behaved, and so larger integration steps may be used in the
numerical solver. This is the source of the speed-ups of this
method; we observe typical speed-ups by a factor of about
10.

Memory Efficiency Long sequences need large amounts
of memory to perform backpropagation-through-time
(BPTT). As with the original Neural CDEs, the log-ODE
approach supports memory-efficient backpropagation via
the adjoint equations. If the vector field fy requires O(H)
memory, and the time series is of total length 7', then back-
propagating through the solver requires O(HT) memory
whilst the adjoint method requires only O(H + T'); see
Kidger et al. (2020).

The Log-signature as a Preprocessing Step When train-
ing a model in practice, the log-signatures need only be
computed once and thus the computation can be performed
as part of data preprocessing. Log-signatures can also be
easily computed in an online fashion, making the model
suitable for such problems.

Structure of f The description here aligns with the log-
ODE scheme described in equation (8). There is one dis-
crepancy: we do not attempt to model the specific structure
of f This is in principle possible, but is computationally
expensive. Instead, we model fas a neural network directly.
This need not necessarily exhibit the requisite structure,
but as neural networks are universal approximators (Pinkus,
1999; Kidger & Lyons, 2020a) then this approach is at least
as general from a modelling perspective.

Ease of Implementation This method is straightforward
to implement using pre-existing tools.

There are standard libraries available for computing the log-
signature transform: we use Signatory (Kidger & Lyons,
2020b). As equation (10) is an ODE, it may be solved
directly using tools such as torchdiffeq (Chen, 2018).

As an alternative, we note that the form of equation (9)
is that of equation (5), with the driving path taken to be
piecewise linear in log-signature space. Computation of the
log-signatures can therefore be considered as a preprocess-
ing step, producing a sequence of log-signatures. From this
we may construct a path in log-signature space, and apply
existing tools for neural CDEs. (Rather than tools for neural
ODE:s.) This idea is summarised in figure 4. We make this
approach available in the [redacted] open source project.

Applications In principle, a Neural RDE may be applied
to solve any Neural CDE problem. However, we typically
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observe limited benefit on relatively short time series: the
original Neural CDE formulation works well enough, and
there is little room to see either speed or loss/accuracy im-
provements via this approach.

The situation changes for long time series. Here, the existing
approach struggles as the length of the time series grows.
Performance worsens, and speed drops due to the sheer
number of forward evaluations. This is the same behaviour
as for RNNs.

Now, the reduction in length (from n to m < n) is highly
beneficial. Moreover, the compression performed by the
log-signature is also of benefit: closely-sampled points will
be typically be strongly correlated, and there is little to be
gained by treating them all individually.

In addition, there are two advantages shared by both Neu-
ral CDEs and Neural RDEs, that make them suitable for
long time series. The first is the sharply reduced memory
requirements of the adjoint method. For example (chosen
arbitrarily without cherry-picking) in one experiment we
see a reduction in memory usage from 3.6GB to just 47MB.

The second is that as both operate in continuous time, the
steps in the numerical solver may be decoupled from the
sampling rate of the data: steps are taken with respect to
the complexity of the data, not just its sampling rate. In
particular a slowly-varying but densely-sampled path would
still be fast without requiring many integration steps.

The Depth and Step Hyperparameters To solve a Neu-
ral RDE accurately via the log-ODE method, we should be
prepared to take the depth [V suitably large, or the intervals
ri+1 — 7; suitably small. Accomplishing this would often re-
quire that they are taken relatively large or relatively small,
respectively. Instead, we treat these as hyperparameters.
This makes use of the log-ODE method a modelling choice
rather than an implementation detail.

Increasing step size will lead to faster (but less informative)
training by reducing the number of operations in the for-
ward pass. Increasing depth will lead to slower (but more
informative) training, as more information about each local
interval is used in each update.

4. Experiments

We run experiments applying Neural RDEs to four real-
world datasets. Every problem was chosen for its long
length. The lengths are sufficiently long that adjoint-based
backpropagation (Chen et al., 2018) was often needed sim-
ply to avoid running out of memory at any reasonable batch
size. Every problem is regularly sampled, so we take ¢; = .

Recall that the Neural RDE approach features two hyper-
parameters, corresponding to log-signature depth and step

size. Good choices will turn out to have a dramatic positive
effect on performance. Accordingly for every experiment
we run Neural RDEs for all depths in N = 2, 3 and all step
sizes in 2,4, 8,16, 32, 64, 128, 256, 512, 1024. Depth 1 and
step 1 are not considered as both reduce onto the Neural
CDE model, as discussed in section 3.2. In practice, when
choosing a final model, one would choose that with depth
and step values that minimise the validation loss, as in any
hyperparamter value selection.

We compare against two baseline models. The first is a Neu-
ral CDE; as the model we are extending then comparisons to
this are our primary concern. For context we also addition-
ally include a baseline against the ODE-RNN introduced in
Rubanova et al. (2019). For both of these models, we also
run experiments on the full range of step sizes described
above.

For the Neural CDE model, increased step sizes correspond
to naive subsampling of the data (in accordance with section
3.2). For the ODE-RNN model, we instead fold the time
dimension into the feature dimension, so that at each step the
ODE-RNN model sees several adjacent time points. This
represents an alternate technique for dealing with long time
series, so as to provide a reasonable benchmark.

For each model, and each hyperparameter combination, we
run the experiment three times and report the mean and
standard deviation of the test metrics. We additionally report
mean training times and memory usages.

Precise details of hyperparameter selection, optimisers, nor-
malisation, and so on can be found in Appendix C. For
brevity, we provide results for only some of the step sizes
here. The full results are described in Appendix D.

4.1. Classifying EigenWorms

Our first example uses the EigenWorms dataset from the
UEA archive from Bagnall et al. (2017). This consists of
time series of length 17984 and 6 channels (including time),
corresponding to the movement of a roundworm. The goal
is to classify each worm as either wild-type or one of four
mutant-type classes.

Results are shown in Table 1. We begin by seeing that
the step-1 Neural CDE model takes roughly a day to train.
Switching to Neural RDEs speeds this up by an order of
magnitude, to roughly two hours. Moreover doing so dra-
matically improves accuracy, by up to 17%, reflecting the
classical difficulty of learning from long time series.

Meanwhile naive subsampling approaches for the Neural
CDE method only achieve speed-ups without performance
improvements. The folded ODE-RNN model performs
poorly, attaining the worst score for any step size whilst
imposing a significantly higher memory burden.
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Model Step Accuracy (%) Time (Hrs) Mem (Mb)
1 _ _ _
ODE-RNN 4 3504 1.5 0.8 3629.3
(folded) 32  325+15 0.1 5322
o 128 479+53 00 2008
1 6244121 220 176.5
4 667+ 11.8 5.5 46.6
NCDE 3 41+ 143 0.5 8.0
128 487+ 2.6 0.1 3.9
4 8384 3.0 2.4 180.0
(é\IREEz) 32 675+ 121 0.7 28.1
e 128 76159 02 78
4 76.9+9.2 2.8 856.8
(é‘IRE]g) 32 752430 0.6 134.7
cp 128  684+82 0.1 53.3

Table 1. EigenWorms dataset: mean =+ standard deviation of test
set accuracy measured over three repeats. Also reported are the
mean memory usage and training time. For all models a variety
of step sizes are considered. For the Neural RDE we additionally
investigate varying depths. (Recalling that the NCDE is a depth-1
NRDE.) ‘-’ denotes that the model could not be run within GPU
memory. Bold denotes the best model score for a given step size,
and * denotes that the score was the best achieved over all models
and step sizes.

Results across all step sizes may be found in Appendix D.

4.2. Estimating Vitals Signs from PPG and ECG data

Next we consider three separate problems, using data from
the TSR archive (Tan et al., 2020), coming originally from
the Beth Israel Deaconess Medical Centre (BIDMC).

We aim to predict a person’s respiratory rate (RR), their
heart rate (HR), or their oxygen saturation (SpO2) at the
end of the sample, having observed PPG and ECG data over
the length of the sample. The data is sampled at 125Hz and
each series has length 4 000. There are 3 channels (including
time). We evaluate performance with the L2 loss.

The results are shown in table 2.

We find that the depth 3 Neural RDE is the top performer for
every task at every step size, reducing test loss by 30-59%
versus the Neural CDE. Moreover, it does so with roughly
an order of magnitude less training time.

We attribute the improved test loss to the Neural RDE model
being better able to learn long-term dependencies due to the
reduced sequence length. Note that the performance of the
rough models actually improves as the step size is increased.
This is in contrast to Neural CDE, which sees a degradation
in performance.

The ODE-RNN model, besides using significantly more
memory, struggles to train effectively when the sequence

length is long. Training improves as the sequence size is
shortened, but still produces results substantially worse than
those achieved by the Neural RDE.

As a visual summary of these results, including the full
range of step sizes, we also provide heatmaps in Figure 5.

The full results across the full range of step sizes may be
found in Appendix D.

5. Limitations

Number of hyperparameters Two new hyperparameters
— truncation depth and step size — with substantial effects on
training time and memory usage must now also be tuned.

Number of input channels The log-ODE method is most
feasible with few input channels, as the number of log-
signature channels 5(v, N) grows exponentially in v. For
larger v then the available parallelism may become satu-
rated.

6. Related Work

CNNs and Transformers have been shown to offer improve-
ments over RNNs for modelling long-term dependencies
(Bai et al., 2018; Li et al., 2019), although the latter in par-
ticular have typically focused on language modelling. On a
more practical note, Transformers are famously O(L?) in
the length of the time series L. Several approaches have
been introduced to reduce this, for example Li et al. (2019)
reduce this to O(L(log L)?). Extensions specifically to long
sequences do exist (Sourkov, 2018), but again these typi-
cally focus on language modelling rather than multivariate
time series data.

There has also been some work on long time series for
classic RNN (GRU/LSTM) models.

Wisdom et al. (2016); Jing et al. (2019) show that unitary
or orthogonal RNNs can mitigate the vanishing/exploding
gradients problem. However, they are expensive to train due
to the need to compute a matrix inversion at each training
step. Chang et al. (2017) introduce dilated RNNs with skip
connections between RNN states, which help improve train-
ing speed and learning of long-term dependencies. Campos
et al. (2017) introduce the ‘Skip-RNN’ model, which extend
the RNN by adding an additional learnt component that
skips state updates. Li et al. (2018) introduce the ‘IndRNN’
model, with particular structure tailored to learning long
time series.

One meaningful comparison is to hierarchical subsampling
as in Graves (2012); De Mulder et al. (2015). There the
data is split into windows, an RNN is run over each window,
and then an additional RNN is run over the first RNN’s
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L2 Time (Hrs)

Model Step Memory (Mb)
RR HR SpO, RR HR SpO,
1 - 13.06 0.0 - - 10.5 - 3653.0
ODE-RNN (folded) 8 247 +0.35 13.06 £ 0.00 3.3 4+ 0.00 1.5 1.2 0.9 917.2
128 1.62 £ 0.07 13.06 £ 0.00 3.3+ 0.00 0.2 0.1 0.1 81.9
e _____512 166+006 _ 675+£09  198£031 00 01 _ OI 404
1 2.79 £ 0.04 9.82 £0.34 2.83 +£0.27 23.8 221 28.1 56.5
NCDE 8 2.80 £+ 0.06 10.72 +0.24 343 +0.17 3.0 2.6 4.8 14.3
128 2.64 £0.18 11.98 £ 0.37 2.86 £+ 0.04 0.2 0.2 0.3 8.7
512 2.53 +0.03 12.22 £0.11 2.98 + 0.04 0.1 0.0 0.1 8.4
8 2.63 £0.12 8.63 £0.24 2.88 £0.15 2.1 34 33 21.8
NRDE (depth 2) 128 1.86 £ 0.03 6.77 £ 0.42 1.95+0.18 0.3 0.4 0.7 10.9
e _______.S12 181£002 505£023 217018 01 02 04 103
8 2.42 +0.19 7.67 £+ 0.40 2.55 +0.13 2.9 32 3.1 433
NRDE (depth 3) 128 1.51 + 0.08 2.97 £+ 0.45 1.37 £ 0.22 0.5 1.7 1.7 17.3
512 1.49 + 0.08* 3.46 +0.13 1.29 +0.15¢ 03 0.4 0.4 15.4

Table 2. The three experiments on BIDMC datasets: mean = standard deviation of test set L? loss, measured over three repeats, over each
of three different vital signs prediction tasks (RR, HR, SpO2). Also reported are the memory usage and training time. Only mean times
are shown for space. For all models a variety of step sizes are considered. For the Neural RDE we additionally investigate varying depths.
(Recalling that the NCDE is a depth-1 NRDE.) ‘-’ denotes that the model could not be run within GPU memory. Bold denotes the best
model score for a given step size, and * denotes that the score was the best achieved over all models and step sizes.
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Figure 5. Heatmap depicting normalised losses on the three BIDMC datasets for differing step sizes and depths. We can see that the point
of lowest MSE (deepest red) has step > 1 and depth > 1, and that performance worsens for very long steps. This represents the depth/step
tradeoff for long length time series.

outputs; we may describe this as an RNN/RNN pair. Liao
et al. (2019) then perform the equivalent operation with a
log-signature/RNN pair. In this context, our use of log-ODE
method is analogous to an log-signature/NCDE pair.

In comparison to Liao et al. (2019), this means moving from
an inspired choice of pre-processing to an actual implemen-
tation of the log-ODE method. In doing so the differential
equation structure is preserved. Moreover this takes advan-
tage of the synergy between log-signatures (which extract
statistics on how data drives differential equations), and
the controlled differential equation it then drives. Broadly
speaking these connections are natural: at least within the
signature/CDE/rough path community, it is a well-known
but poorly-published fact that RNNs, (log-)signatures, and
(Neural) CDE:s are all related; see for example Kidger et al.
(2020) for a little exposition on this.

De Brouwer et al. (2019); Lechner & Hasani (2020) amongst
others consider continuous time modifications to GRUs and
LSTMs, improving the learning of long-term dependencies.

Voelker et al. (2019); Gu et al. (2020) consider links with
ODE:s and approximation theory, with the goal of improv-
ing the long-term memory capacity of RNNs. Given the
differential equation structure both they and we consider,
a hybridisation of these techniques seems like a promising
line of future inquiry.

7. Conclusion

We have introduced neural rough differential equations as an
approach to continuous-time time series modelling. These
extend Neural CDE:s, driving the hidden state not by point
evaluations but by interval summarisations of the underly-
ing time series or control path. Neural RDEs may still be
solved via ODE methods, and thus retain both adjoint back-
propagation and continuous dynamics. As they additionally
reduce the effective length of the control path, we observe
substantial practical benefits in applying Neural RDEs to
long time series. In this regime we report significant training
speed-ups, model performance improvements, and reduced
memory requirements, on problems of length up to 17 000.
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