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Abstract
Recent research has recognized interpretability
and robustness as essential properties of trust-
worthy classification. Curiously, a connection
between robustness and interpretability was em-
pirically observed, but the theoretical reasoning
behind it remained elusive. In this paper, we
rigorously investigate this connection. Specifi-
cally, we focus on interpretation using decision
trees and robustness to l1-perturbation. Pre-
vious works defined the notion of r-separation
as a sufficient condition for robustness. We
prove upper and lower bounds on the tree size
in case the data is r-separated. We then show
that a tighter bound on the size is possible when
the data is linearly separated. We provide the
first algorithm with provable guarantees both
on robustness, interpretability, and accuracy in
the context of decision trees. Experiments con-
firm that our algorithm yields classifiers that are
both interpretable and robust and have high accu-
racy. The code for the experiments is available
at https://github.com/yangarbiter/
interpretable-robust-trees.

1. Introduction
Deploying machine learning (ML) models in high-stakes
fields like healthcare, transportation, and law, requires the
ML models to be trustworthy. Essential ingredients of trust-
worthy models are explainability and robustness: if we do
not understand the reasons for the model’s prediction, we
cannot trust the model; if small changes in the input modifies
the model’s prediction, we cannot trust the model. Previ-
ous works hypothesized that there is a strong connection
between robustness and explainability. They empirically ob-
served that robust models lead to better explanations (Chen
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et al., 2019; Ross & Doshi-Velez, 2017). In this work, we
take a rigorous approach towards understanding the connec-
tion between robustness and interpretability.

We focus on binary predictions, where each example has d
features and the label of each example is in {�1,+1}, so an
ML model is a hypothesis f : Rd ! {�1, 1}. We want our
model to be (i) robust to adversarial `1 perturbations, i.e.,
for a small distortion, k�k1, the model’s response is similar,
f(x) = f(x + �), for most examples x, (ii) interpretable,
i.e., the model itself is simple and so self-explanatory, and
(iii) have high-accuracy. A common type of interpretable
models are decision trees (Molnar, 2019), which we call
tree-based explanation and focus on in this paper.

Prior literature (Yang et al., 2020b) showed that data sep-
aration is a sufficient condition for a robust and accurate
classifier. A dataset is r-separated if the distance between
the two closest examples with different labels is at least 2r.
Intuitively, if r is large, then the data is well-separated. A
separated data guarantees that points with opposite labels
are far from each other, which is essential to construct a
robust model.

In this paper, we examine whether separation implies tree-
based explanation. We first show that for a decision tree to
have accuracy strictly above 1/2 (i.e., better than random),
the data must be bounded. Henceforth, we assume that the
data is in [�1, 1]d. We start with a trivial algorithm that
constructs a tree-based explanation with complexity (i.e.,
tree size) 2O(d/r). For constant r, we show a matching lower
bound of 2⌦(d). Thus, we have a matching lower and upper
bound on the explanation size of 2⇥(d). Thus, separation
implies robustness and interpretability. Unfortunately, for a
large number of features, d, the explanation size is too high
to be useful in practice.

In this paper, we show that designing a simpler explana-
tion is possible with a stronger separability assumption —
linear separability with a �-margin. This assumption was
recently used to gain a better understanding of neural net-
works (Soudry et al., 2018; Nacson et al., 2019; Shamir,
2020). More formally, this assumption means that there is a
vector w with kwk = 1 such that yw ·x � � for each labeled
example (x, y) 2 Rd⇥{�1, 1} in the data (Shalev-Shwartz
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& Ben-David, 2014).

One can hope that standard methods for learning linear mod-
els will suffice, but this may not be the case. Standard linear
models such as `

2

-regularized logistic regressions or support
vector machines (Shalev-Shwartz & Ben-David, 2014) may
produce models that use too many features (in other words,
the weights are not sparse), and this can make the model not
interpretable. Many other approaches (Rudin, 2019; Bertsi-
mas et al., 2019) try to solve this issue by enforcing sparsity
on the weight vector. However, these models may not be ad-
versarially robust. In this paper, our goal is to find a model
that is interpretable, robust, and have a high-accuracy.

Utilizing ideas from (Shalev-Shwartz & Singer, 2008), we
show that under the linearity assumption, there is always
at least one feature that provides non-trivial information
for the prediction. To formalize this, we use the known
notion of weak learners (Kearns, 1988), which guarantees
the existence of hypothesis with accuracy bounded below
by more than 1/2.

The weak-learnability theorem, together with Kearns &
Mansour (1999), implies that a popular CART-type algo-
rithm (Breiman et al., 1984) provides a decision tree with
size 1/✏O(1/�2

) and accuracy 1 � ✏. Therefore, under the
linearity assumption, we can design a tree with complexity
independent of the number of features. Thus, even if the
number of features, d, is large, the interpretation complexity
is not affected. This achieves our first goal of constructing
an interpretable model with provable guarantees.

Recently, several research papers give a theoretical justifi-
cation for CART’s empirical success (Brutzkus et al., 2020;
2019; Blanc et al., 2019; 2020; Fiat & Pechyony, 2004).
Those papers assume that the underlying distribution is uni-
form or features chosen independently. For many cases, this
assumption does not hold. For example, in medical data,
there is a strong correlation between age and different dis-
eases. On the other hand, we give a theoretical justification
for CART without resorting to the feature-independence
assumption. We use, instead, the linear separability assump-
tion. We believe that this method will allow, in the future,
proofs with less restrictive assumptions.

So far, we have shown how to construct an interpretable
model, but we want a model that is not just interpretable but
also robust. Decision trees are not robust by-default (Chen
et al., 2019). For example, a slight change in the feature
at the root of the decision tree leads to an entirely different
model (and thus to entirely different predictions): the model
defined by the left subtree and the model defined by the
right subtree. We are left with the question, are we able
to constrct a tree that is both robust and interpretable. To
design such model, we focus on a specific kind of decision
tree — risk score (Ustun & Rudin, 2017). A risk score is

composed of several conditions (e.g., age � 75) and each
matched with a weight, i.e., a small integer. A score s(x)
of an example x is the weighted sum of all the satisfied
conditions. The label is then a function of the score s(x).
A risk score is a specific case of decision trees, wherein
at each level in the tree, the same feature is queried. The
number of parameters required to represent a risk score is
much smaller than their corresponding decision trees, hence
they might be considered more interpretable than decision
trees (Ustun & Rudin, 2017).

We design a new learning algorithm, BBM-RS, for learn-
ing risk scores that rely on the Boost-by-Majority (BBM)
algorithm (Freund, 1995) and our weak learner theorem. It
yields a risk score of size O(��2

log(1/✏)) and accuracy
1� ✏. Thus, we found an algorithm that creates a risk score
with provable guarantees on size and accuracy. As a side
effect, note that BBM allows to control the interpretation
complexity easily. Importantly, we show that risk scores are
also guaranteed to be robust to `1 perturbations, by delib-
erately adding a small noise to dataset (but not too much
noise to make sure that the noisy dataset is still linearly
separable). Therefore, we design a model that is guaranteed
to have high accuracy and be both interpretable and robust,
achieving our final goal.

Finally, in Section 6, we test the validity of the separa-
bility assumption and the quality of the new algorithm
on real-world datasets that were used previously in tree-
based explanation research. On most of the datasets, less
than 12% points were removed to achieve an r-separation
with r � 0.05. For comparison, for binary feature-values
{�1, 1}, and `1 distance, the best value for r is r = 1. The
added percentage of points required to be removed for the
dataset to be linearly separable is less than 7% on average.
Thus, we observe that real datasets are close to being sep-
arable and even linearly separable. Then, we explored the
quality of our new algorithm, BBM-RS. Even though it has
provable guarantees only if the data is linearly separable, we
run it on real datasets that do not satisfy this property. We
compare BBM-RS to different algorithms learning: decision
trees (Quinlan, 1986), small risk scores (Ustun & Rudin,
2017), and robust decision trees (Chen et al., 2019). All al-
gorithms try to maximize accuracy, but different algorithms
try to, additionally, minimize interpretation complexity or
maximize robustness. None of the algorithms aimed to op-
timize both interpretability and robustness. We compared
the (i) interpretation complexity, (ii) robustness, and (iii)
accuracy of all four algorithms. We find that our algorithm
provides a model with better interpretation complexity and
robustness while having comparable accuracy.

To summarize, our main contributions are:

Interpretability under separability: optimal bounds.
We show lower and upper bounds on decision tree size for
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r-separable data with r = ⇥(1), of 2⇥(d). Namely, our up-
per bound proves that for any separable data, there is a tree
of size 2

O(d), and the lower bound proves that separability
cannot guarantee an explanation smaller than 2

⌦(d).

Algorithm with provable guarantees on interpretability
and robustness. Designing algorithms that have provable
guarantees both on interpretability, robustness, and accuracy
in the context of decision trees is highly sought-after, yet
there was no such algorithm before our work. We design
the first learning algorithm that has provable guarantees
both on interpretability, robustness, and accuracy of the re-
turned model, under the assumption that the data is linearly
separable with a margin.

While the CART algorithm is empirically highly effective,
its theoretical analysis has been elusive for a long time. As
a side effect, we provide an analysis of CART under the
assumption of linear separability. To the best of our knowl-
edge, this is the first proof with a distributional assumption
that does not include feature independence.

Experiments. We verify the validity of our assumptions
empirically and show that for real datasets, if a small per-
centage of points is removed then we get a linear separable
dataset. We also compare our new algorithm to other al-
gorithms that return interpretable models (Quinlan, 1986;
Ustun & Rudin, 2017; Chen et al., 2019) and show that if
the goal is to design a model that is both interpretable and
robust, then our method is preferable.

2. Related Work
Post-hoc explanations. There are two main types of expla-
nations: post hoc explanations (Ribeiro et al., 2016a) and in-
trinsic explanations (Rudin, 2019). Algorithms for post hoc
explanation take as an input a black-box model and return
some form of explanation. Intrinsic explanations are simple
models, so the models are self-explanatory. The main advan-
tage of algorithms for post hoc explanations (Lundberg &
Lee, 2017; Lundberg et al., 2018; Ribeiro et al., 2016b; Koh
& Liang, 2017; Ribeiro et al., 2018; Deutch & Frost, 2019;
Li et al., 2020; Boer et al., 2020) is that they can be used on
any model. However, they host a variety of problems: they
introduce a new source of error stemming from the explana-
tion method (Rudin, 2019); they can be fooled (Lakkaraju
& Bastani, 2020; Slack et al., 2020); some explanations
methods are not robust to common pre-processing steps
(Kindermans et al., 2019), and can be independent both of
the model and the data generating process (Adebayo et al.,
2018). Because of the critics against post hoc explanations,
in this paper, we focus on intrinsic explanations.

Explainability and robustness. Prior studies research the
intersection of explanation and robustness of black-box mod-
els (Lakkaraju et al., 2020), decision trees (Chen et al., 2019;

Andriushchenko & Hein, 2019), and deep neural networks
(Szegedy et al., 2013; Goodfellow et al., 2014; Madry et al.,
2017; Ross & Doshi-Velez, 2017). Unfortunately, the qual-
ity of these methods are only verified empirically. On the
theoretical side, most works analyzed explainability and
robustness separately. Explainability was researched for
supervised learning (Garreau & von Luxburg, 2020b;a; Mar-
daoui & Garreau, 2020; Hu et al., 2019) and unsupervised
learning (Moshkovitz et al., 2020; Frost et al., 2020; Laber
& Murtinho, 2021). For robustness, Cohen et al. (2019)
showed that the technique of randomized smoothing has
robustness guarantees. Ignatiev et al. (2019) connected ad-
versarial examples and a different type of explainability
from the point of view of formal logic.

Risk scores. Ustun and Rudin (Ustun & Rudin, 2017) de-
signed a new algorithm for learning risk scores by solving
an appropriate optimization problem. They focused on con-
structing an interpretable model with high accuracy and did
not consider robustness, as we do in this work.

3. Preliminaries
We investigate models that are (i) with high-accuracy, (ii)
robust, and (iii) interpretable, as formalized next.

High accuracy. We consider the task of binary clas-
sification over a domain X ✓ Rd. Let µ be an un-
derlying probability distribution1 over labeled examples
X ⇥ {�1,+1}. The input to a learning algorithm A con-
sists of a labeled sample S ⇠ µm, and its output is a hy-
pothesis h : X ! {�1,+1}. The accuracy of h is equal
to Pr

(x,y)⇠µ(h(x) = y). The sample complexity of A un-
der the distribution µ, denoted m(✏, �) : (0, 1)2 ! N, is
a function mapping desired accuracy ✏ and confidence �
to the minimal positive integer m(✏, �) such that for any
m � m(✏, �), with probability at least 1� � over the drawn
of an i.i.d. sample S ⇠ µm, the output A(S) has accuracy
of at least 1� ✏.

Robustness. We focus on the `1 ball, B, and denote the
r-radius ball around a point x 2 X as B(x, r). A hypothesis
h : X ! {�1,+1} is robust at x with radius r if for all
x0 2 B(x, r) we have that h(x) = h(x0

). In (Wang et al.,
2018), the notion of astuteness was introduced to measure
the robustness of a hypothesis h. The astuteness of h at
radius r > 0 under a distribution µ is

Pr

(x,y)⇠µ
[8x0 2 B(x, r). h(x0

) = y].

For a hypothesis to have high astuteness the positive and
negative examples need to be separated. A binary la-
beled data is r-separated if for every two labeled examples
(x1,+1),(x2,�1), it holds that kx1 � x2k1 � 2r.

1In the paper, we will assume that µ has additional properties,
like separation or linear separation.
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Interpretability. We focus on intrinsic explanations, also
called interpretable models (Rudin, 2019), where the model
itself is the explanation. There are several types of inter-
pretable models, e.g., logistic regression, decision rules,
and anchors (Molnar, 2019). One of the most fundamental
interpretable models, which we focus on in this paper, is
decision trees (Quinlan, 1986). In a decision tree, each leaf
corresponds to a label, and each inner node corresponds to
a threshold and a feature. The label of an example is the
leaf’s label of the corresponding path.

In this paper we focus on a specific type of decision trees,
risk score (Ustun & Rudin, 2019); see Table 1. Risk score
is defined by a series of m conditions and a weight for
each condition. Each condition compares one feature to
a threshold, and the weights should be small integers. A
score, s(x), of an example x is the number of satisfied
conditions out of the m conditions, each multiplied by the
corresponding weight. The prediction of the risk model f
is the sign of the score, f(x) = sign(s(x)). A risk score
can be viewed as a decision tree where at each level there is
the same feature-threshold pair. Since the risk-score model
has fewer parameters than the corresponding decision tree,
it may be considered more interpretable.

feature weights
LCPA BBM-RS

Bias term -6 -7 + ...
Age � 75 - 2 + ...
Called in Q1 1 2 + ...
Called in Q2 -1 - + ...
Called before 1 4 + ...
Previous call was Successful 1 2 + ...
Employment variation rate < �1 5 4 + ...
Consumer price index � 93.5 1 - + ...
3 month euribor rate � 200 -2 - + ...
3 month euribor rate � 400 5 - + ...
3 month euribor rate � 500 2 - + ...

total score =

Table 1. Two risk score models: LCPA (Ustun & Rudin, 2019)
and our new BBM-RS algorithm on the bank dataset (Moro et al.,
2014). Each satisfied condition is multiplied by its weight and
summed. Bias term is always satisfied. If the total score > 0, the
risk model predicts “1” (i.e., the client will open a bank account
after a marketing call). All features are binary (either 0 or 1).

4. Separation and Interpretability
We want to understand whether separation implies the exis-
tence of a small tree-based explanation. Our first observa-
tion is that the data has to be bounded for a tree-based ex-
planation to exist. If the data is unbounded, then to achieve
a training error slightly better than random, the tree size
must depend on the size of the training data, see Section 4.1,
Theorem 1.

In Section 4.2 we investigate lower and upper bounds for
decision tree’s size, assuming separation. Specifically, in
Theorem 2, we show that if the data is bounded, in [�1, 1]d,
then r-separability implies a tree based-explanation with
tree depth O(

d/r). Importantly, the depth of the tree is
independent of the training size, so a tree-based explanation
exists. Nevertheless, even for a constant r, the size of the
tree is exponential in d. In Theorem 3, we show that this
bound is tight as there is a 1-separable dataset that requires
an exponential size to achieve accuracy even negligibly
better than random. To conclude, if all we know is that
the data is r-separability for constant r, the interpretation
complexity is 2⇥(d). Unfortunately, this explanation has size
exponential in d. In Section 5, we improve the interpretation
complexity by assuming a stronger separability assumption.
We will assume linear separability with a margin. All proofs
are in Section A.1.

4.1. Bounded

In Theorem 1, we show that the data has to be bounded
for a small decision tree to exist. In fact, boundedness
is necessary, even if the data is constrained to be linearly
separable. For any tree size s and a given accuracy, we can
construct a linearly-separable dataset such that any tree of
size s cannot have the desired accuracy.

Theorem 1. For any tree size s and � > 0, there is a dataset
in R2 that is linearly separable, and any decision tree with
size s has accuracy less than 1

2

+ �.

4.2. Upper and lower bounds

Assuming the data in [�1, 1]d is r-separated, Theorem 2
tells us that one can construct a decision tree with depth
6d/r and training error 0 (and from standard VC-arguments
also accuracy 1 � ✏, with enough examples). Importantly,
the depth of the tree is independent of the training size n.
Nevertheless, it means the size of the trees is exponential
in d. The idea of the proof is to fine-grain the data to bins
of size about r, in each coordinate. From this construction,
it is clear that the returned model is robust at any training
data.

Theorem 2. For any labeled data in [�1, 1]d ⇥ {�1, 1}
that is r-separated, there is a decision tree of depth at most
6d
r which has a training error 0.

Theorem 3 proves a matching lower bound by constructing
a dataset such that any tree that achieves error better than
random, the tree size must be exponential in d. The dataset
proving this lower bound is parity. More specifically, it
contains the points {�1,+1}d and the label of each point x
is the xor of all of its coordinates.

Theorem 3. There is a labeled dataset in [�1, 1]d which is
1-separated and has the following property. For any � > 0
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and any decision tree T that achieves accuracy 0.5 + �, the
size of T is at least �2d.

5. Linear Separability
In the previous section, we showed that ⇥(1)-separability
implies a decision tree with size exponential in d, and we
showed a matching lower bound. This section explores a
stronger assumption than separability that will guarantee a
smaller tree, i.e., a simpler explanation. This assumption
is that the data is linearly separable with a margin. More
formally, data is �-linearly separable if there is w 2 Rd,
kwk

1

= 1, such that for each positive example x it holds
that w · x � � and for each negative example x it holds that
w · x  ��. Note that without loss of generality wi � 0

(if the inequality does not hold, multiply the i-th feature
in each example by �1). Thus, we can interpret w as a
distribution over all the features. Linear separability might
seem at first like a strong assumption, but besides being a
widespread assumption (Soudry et al., 2018; Nacson et al.,
2019; Shamir, 2020), in Section 6 we show that this assump-
tion is reasonable for real datasets.

As a first attempt, one might hope that w is a good explana-
tion, but this explanation might use all the features, and the
corresponding tree-based explanation might be of exponen-
tial size. As a second attempt, one might take the highest
wi’s, since one might interpret the highest wi as the most
important feature. However, this can be misleading. For
example, if all data has the same value at the i-th feature,
this feature is meaningless. In this section, we explore a
different approach for constructing an interpretable model.

One of our key ideas is to use boosting method (Schapire
& Freund, 2013) to construct a model which is both in-
terpretable, robust, and accurate. This will allow us to
gradually add features to the model until we achieve a high-
accuracy model. To implement this idea, we show that one
feature can provide a nontrivial prediction. In particular, in
Section 5.1 we show that the hypotheses class, Ht = {hi,✓},
is a weak learner, where

hi,✓(x) =

(
+1 if xi � ✓

�1 o.w.

This class is similar to the known decision stumps class,
but it does not contain hypotheses of the form “if xi  ✓
then +1 else �1”. The reason will become apparent in
Section 5.3, but for now, we will hint that it helps achieve
robustness.

In Section 5.2, we observe that weak learnability immedi-
ately implies that the known CART algorithm constructs a
tree of size independent of d (Kearns & Mansour, 1999).
Unfortunately, decision trees are not necessarily robust. To
overcome this difficulty, we focus on one type of decision

trees, risk scores, which are interpretable models on their
own. In Section 5.3 we show how to use (Freund, 1995)
together with our weak learnability theorem to construct a
risk score model. We also show that this model is robust.
This concludes our quest of finding a model that is guar-
anteed to be robust, interpretable, and have high-accuracy
under the linearity separable assumption. In Section 6 we
will evaluate the model on several real datasets.

5.1. Weak learner

This section shows that under the linearity assumption, we
can always find a feature that gives nontrivial information,
which is formally defined using the concept of a weak
learner class. We say that a class H is a weak learner
if for every distribution µ over the examples and a function
f that are �-linearly separable, there is hypothesis h 2 H
such that Prx⇠µ(h(x) = f(x)) is strictly larger than 1/2,
preferably at least 1/2 + ⌦(�). Finding the best hypothesis
in Ht can be done efficiently using dynamic programming
(Shalev-Shwartz & Ben-David, 2014). The question is how
to prove that there must be a weak learner in Ht.

One might suspect that if the data is linearly separable by
the vector w (i.e., for each labeled example (x, y) it holds
that ywx � �), then hi which corresponds to the highest wi

is a weak learner. Conversely, if wi is small, then the cor-
responding hypotheses hi will have a low accuracy. These
claims are not true. To illustrate this, think about the ex-
treme example where w

1

= 0 but x
1

completely predicts
the output of any example x. From the viewpoint of w, the
first feature is irrelevant, as it does not contribute to the term
w · x, but the first feature is a perfect predictor.

One can prove that there is always a hypothesis in Ht with
accuracy 0.5 + ⌦(�) by binarizing the input and applying
(Shalev-Shwartz & Singer, 2008). More specifically, they
formed a different connection between linear separability
and weak learning. They view each example in the hypothe-
ses basis, and on this basis, the famous minimax theorem
implies that linearity is equivalent to weak learnability. In
this paper, we focus on the case that the data, in its original
form, is linearly separable. Nonetheless, when the features
are binary, the two views, the original and hypotheses bases,
coincide.

For completeness, in the appendix, Section A.2, we provide
a different proof of Theorem 4, by viewing Ht as a graph.
Namely, define a bipartite graph where the vertices are the
examples and the hypotheses and there is an edge between
a hypothesis h and example x if h correctly predicts x. The
edges of the graph are defined so that (i) the degree of the
hypotheses vertices corresponds to its accuracy and (ii) the
linearity assumption ensures that the degree of the example
vertices is high. These two properties of the graph proves
the theorem.
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Theorem 4. Fix ↵ > 0. For any data in [�1, 1]d⇥{�1, 1}
that is labeled by a �-linearly separable hypothesis f and
for any distribution µ on the examples, there is a hypothesis
h 2 Ht such that

Pr

x⇠µ
(h(x) = f(x)) � 1

2

+

�

2

� ↵.

So far, we showed the existence of hypothesis in Ht with
accuracy 0.5+⌦(�). Standard arguments in learning theory
imply that the hypothesis that maximizes the accuracy on a
sample also has accuracy 0.5 + ⌦(�). Specifically, for any
sample S, denote by hS the best hypothesis in Ht on the
sample S. Basic arguments in learning theory shows that
for a sample of size m = O (

d+log

1
�/�2

), the hypothesis hS

has a good accuracy, as the following theorem proves.

Theorem 5 (weak-learner). Fix ↵ > 0. For any distri-
bution µ over [�1,+1]

d ⇥ {�1,+1} that satisfies linear
separability with a �-margin, and for any � 2 (0, 1) there is
m = O

⇣
d+log

1
�

�2

⌘
, such that with probability at least 1� �

over the sample S of size m, it holds that

Pr

(x,y)⇠µ
(hS(x) = y) � 1

2

+

�

4

� ↵.

5.2. Decision tree using CART

CART is a popular algorithm for learning decision trees. In
(Kearns & Mansour, 1999) it was shown that if the internal
nodes define a �-weak learner and number of samples is
some polynomial of t log(1/�)d, then a CART-type algo-
rithm returns a tree with size t = 1/✏O(1/�2

) and accuracy
at least 1 � ✏, with probability at least 1 � �. Under the
linearity assumption, we know that the internal nodes in-
deed define a �-weak learner by Theorem 5. Thus, we get a
model with a tree size independent of the training size and
the dimension. But the model is not necessarily robust.

The above results can be interrupted as a proof for the
CART’s algorithm success. This proof does not use the
strong assumption of feature independence, which is as-
sumed in recent works (Brutzkus et al., 2020; 2019; Blanc
et al., 2019; 2020; Fiat & Pechyony, 2004).

Designing robust decision trees is inherently a difficult task.
The reason is that, generally, the model defined by the right
and left subtrees can be completely different. The feature
i in the root determines if the model uses the right or left
subtrees. Thus, a small change in the i-th feature completely
changes the model. To overcome this difficulty we focus on
a specific type of decision tree, risk scores (Ustun & Rudin,
2019), see Table 1 for an example. In the decision tree that
corresponds to the risk score, the right and left subtrees are
the same. In the next section, we design risk scores that
have guarantees on the robustness and the accuracy.

5.3. Risk score

This section designs an algorithm that returns a risk score
model with provable guarantees on its accuracy and robust-
ness, assuming that the data is linearly separable. In the
previous section, we used (Kearns & Mansour, 1999) that
viewed CART as a boosting method. This section uses a
more traditional boosting method — the Boost-by-Majority
algorithm (BBM) (Freund, 1995). This boosting algorithm
gets as an input training data and an integer T , and at each
step t  T it reweigh the examples and apply a �-weak
learner that returns a hypothesis ht : Rd ! {�1,+1}. At
the end, after T steps, BBM returns sign

⇣PT
t=1

ht

⌘
. In

(Freund, 1995; Schapire & Freund, 2013) it was shown that
BBM returns hypothesis with accuracy at least 1� ✏ after
at most T = O(��2

log(1/✏)) rounds.

The translation from BBM, which uses Ht as a weak learner,
to a risk score model, is straightforward. The hypotheses
in Ht exactly correspond to the conditions in the risk score.
Each condition has weight of 1. If the number of conditions
that hold is at least T/2 then our risk model returns +1, else
it returns �1. Together with Theorem 4 and (Freund, 1995)
we get that BBM returns a risk score with accuracy at least
1� ✏ and with T = O(��2

log(1/✏)) conditions.

We remark that other boosting methods, e.g., (Freund &
Schapire, 1997; Kanade & Kalai, 2009), cannot replace
BBM in the suggested scheme, since the final combination
has to be a simple sum of the weak learners and not arbi-
trary linear combination. The letter corresponds to a risk
score where the weights are in R and not a small integer, as
desired.

Our next and final goal is to prove that our risk score model
is also robust. For that, we use the concept of monotonicity.
For x, y 2 Rd, we say that x  y if and only if for all i 2 [d]
it holds that xi  yi. A model f : Rd ! {0, 1} is monotone
if for all x  y it holds that f(x)  f(y). We will show
that BBM with weak learners from Ht yields a monotone
model. The reasons being (i) all conditions are of the form
“xi � ✓”, (ii) all weights are non-negative, except the bias
term, and (iii) classification of a risk score is detriment by
the score’s sign. All proofs appear in Section A.3.

Claim 6. If every condition in a risk-score model R is of
the form “xi � ✓” and all weights are positive, except the
bias term, then R is a monotone model.

In Claim 7 we show that, by carefully adding a small noise
to each feature, we can transform any algorithm that returns
a monotone model to one that returns a robust model.

Claim 7. Assume a learning algorithm A gets as an input
a sample from a �-linearly separable data and returns a
monotone model with accuracy 1 � ✏(�). Then, there is
an algorithm that returns a model with astuteness at least
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1� ✏
�
�
2

�
at radius �/2.

To summarize, in Algorithm 1 we show the pseudocode
of our new algorithm, BBM-RS. In the first step we add
noise to each example by replacing each example (x, y) by
(x � ⌧y1, y), where ⌧ 2 (0, 1) is a parameter that defines
the noise level and 1 is the all-one vector. In other words,
we add noise y⌧ to each feature. In the second step, the
algorithm iteratively adds conditions to the risk score. At
each iteration, we first find the distribution µ defined by
BBM (Freund, 1995). Then, we find the best hypothesis hi,✓

in Ht, according to µ. We add to the risk score a condition
“xi � ✓”. Finally, we add a bias term of �T/2, to check if
at least half of the conditions are satisfied.

Algorithm 1 BBM-RS (BBM-Risk Score)
input: D: linearly separable training data by w;
WLOG 8i.wi � 0

T : bound on interpretation complexity
⌧ : noise level

output: risk score
# Add noise:
for (x, y) 2 D do

replace (x, y) with (x� ⌧y1, y)
end for
for i = 1 . . . T do
µ BBM distrbution on D
i, ✓  argmaxi,✓

P
(x,y)2D µ(x)I

(xi�✓)y>0

Add condition “xi � ✓” to RS
end for
Add a bias term of �T/2 to RS
return RS

6. Experiments
In previous sections, we designed new algorithms and gave
provable guarantees for separated data. We next investi-
gate these results on real datasets. Concretely, we ask the
following questions:

• How separated are real datasets?

• How well does BBM-RS perform compared with other
interpretable methods?

• How do interpretability, robustness, and accuracy trade-
off with one another in BBM-RS?

Datasets. To maintain compatibility with prior work on
interpretable and robust decision trees (Ustun & Rudin,
2019; Lin et al., 2020), we use the following pre-processed
datasets from their repositories – adult, bank, breastcancer,
mammo, mushroom, spambase, careval, ficobin, and cam-
pasbin. We also use some datasets from other sources
such as LIBSVM (Chang & Lin, 2011) datasets and Moro

et al. (2014). These include diabetes, heart, ionosphere, and
bank2. All features are normalized to [0, 1]. More details
can be found in Appendix B. The dataset statistics are shown
in Table 2.

dataset statistics r-separation �-linear
separation

#
samples

#
features

#
binary

features

portion of
positive

label
sep. 2r sep. �

adult 32561 36 36 0.24 0.88 1.00 0.84 0.001
bank 41188 57 57 0.11 0.97 1.00 0.90 0.33
bank2 41188 63 53 0.11 1.00 0.0004 0.91 0.00002
breastcancer 683 9 0 0.35 1.00 0.11 0.97 0.0003
careval 1728 15 15 0.30 1.00 1.00 0.96 0.003
compasbin 6907 12 12 0.46 0.68 1.00 0.65 0.20
diabetes 768 8 0 0.65 1.00 0.11 0.77 0.0008
ficobin 10459 17 17 0.48 0.79 1.00 0.70 0.33
heart 270 20 13 0.44 1.00 0.13 0.89 0.0003
ionosphere 351 34 1 0.64 1.00 0.80 0.95 0.0007
mammo 961 14 13 0.46 0.83 0.33 0.79 0.14
mushroom 8124 113 113 0.48 1.00 1.00 1.00 0.02
spambase 4601 57 0 0.39 1.00 0.000063 0.94 0.000002

Table 2. Dataset statistics. Columns “sep.” records the separate-
ness of each dataset. Columns “2r” and “�” are calculated after
dataset is separated by removing 1� sep points.

6.1. Separation of real datasets

To understand how separated they are, we measure the close-
ness of each dataset to being r- or linearly separated. The
separateness of a dataset is one minus the fraction of ex-
amples needed to be removed for it to be r- or linearly
separated.

For r-separation, we use the algorithm designed by Yang
et al. (2020a) that calculates the minimum number of exam-
ples needed to be removed for a dataset to be r-separated
with r � 10

�5. This ensures that after removal, there will
be no pair of examples that are very similar but with dif-
ferent labels. Finding the optimal separateness for linear
separation is NP-hard (Ben-David et al., 2003), thus we
run a `

1

regularized linear SVM with regularization terms
C = {10�10, 10�8, . . . , 1010} and record the lowest train-
ing error as an approximation to one minus the optimal
separateness.

The separation results are shown in Table 2. Eight datasets
are already r-separated (separateness = 100%). In the five
datasets with separateness < 100%, there are examples with
very similar features but different labels. This occurs mostly
in binarized datasets; see Appendix C for an example. Three
datasets are almost separated with separateness equal to
97%, 88%, and 83%, and two have separateness 68% and
79%. To summarize, 84% of the datasets are r-separated
with r � 10

�5, after removing at most 17% of the points.

Linear separation is a stricter property than r-separation,
so the separateness for linear separation is smaller or equal
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to the separateness for r-separation. Seven datasets have
separateness � 90%, three separateness between 79% and
89%, and the remaining three have separateness < 79%.
After removing the points, all datasets are �-linearly sepa-
rable and nine datasets have � � 0.001. To summarize, (i)
77% of the datasets are close to being linearly separated (ii)
requiring linear-separability reduces the separateness of the
r-separated dataset by only an average of 6.77%. From this
we conclude that for these datasets at least, the assumption
of r� or linear-separability is approximately correct.

6.2. Performance of BBM-RS

Next, we want to understand how our proposed BBM-RS
performs on real datasets. We compare the performance of
BBM-RS with three different baselines on three evaluation
criteria: interpretability, accuracy, and robustness.

Baselines. We compare BBM-RS with three baselines: (i)
LCPA (Ustun & Rudin, 2019), an algorithm for learning
risk scores, (ii) DT (Breiman et al., 1984), standard algo-
rithm for learning decision trees, and (iii) Robust decision
tree (RobDT) (Chen et al., 2019), an algorithm for learning
robust decision trees.

We use a 5-fold cross-validation based on accuracy for hy-
perparameters selection. For DT and RobDT, we search
through 5, 10, . . . 30 for the maximum depth of the tree. For
BBM-RS, we search through 5, 10, . . . 30 for the maximum
number of weak learners (T ). The algorithm stops when
it reaches T iterations or if no weak learner can produce a
weighted accuracy > 0.51. For LCPA, we search through
5, 10, . . . 30 for the maximum `

0

norm of the weight vector.
We set the robust radius for RobDT and the noise level ⌧
for BBM-RS to 0.05. More details about the setup of the
algorithms can be found in Appendix B.

6.2.1. EVALUATION

We evaluate interpretability, accuracy, and robustness of
each baseline. The data is randomly split into training and
testing sets by 2:1. The experiment is repeated 10 times with
different training and testing splits. The mean and standard
error of the evaluation criteria are recorded.

Interpretability. We measure a model’s interpretability by
evaluating its Interpretation Complexity (IC), which is the
number of feature-thresholds pairs in the model (one can
think of this as the number of tests the model performs).
For decision trees (DT and RobDT), the IC is the number
of internal nodes in the tree, and for risk scores (LCPA
and BBM-RS), the number of non-zero terms in the weight
vector. The lower the IC is, the more interpretable the model
is. This is a global measure of the models’ complexity as
we constructed a model which is self-explainable. One can
also measure the local complexity of the model, measured

by depth.

Robustness. We measure model’s robustness by evalu-
ating its Empirical robustness (ER) (Yang et al., 2020a).
ER on a classifier f at an input x is ER(f, x) :=

minf(x0
) 6=f(x) kx0 � xk1. We evaluate ER on 100 ran-

domly chosen correctly predicted examples in the test set.
The larger ER is, the more robust the classifier is.

6.2.2. RESULTS

The results are shown in Table 3 (only the means are shown,
the standard errors can be found in Appendix C). We see
that BBM-RS performs well in terms of interpretability and
robustness. BBM-RS performs the best on nine and eleven
out of thirteen datasets in terms of interpretation complexity
and robustness, respectively. In terms of accuracy, in nine
out of the thirteen datasets, BBM-RS is the best or within
3% to the best. These results show that on most datasets,
BBM-RS is better than other algorithms in IC and ER while
being comparable in accuracy.

In addition to using the number of feature-thresholds pairs
as a (global) measure for IC, we also present in Table 4 the
results in terms of the local measure for IC, i.e., the depth.
This local measure considerably favors decision trees (DT
and RobDT), since in the same depth, DT and RobDT can
use exponentially more feature-threshold pairs than LCPA
and BBM-RS, which can be much less interpretable. From
the table, we see that even in this case, BBM-RS can still
have a comparable results with DT and RobDT. In Ap-
pendix C.4, the standard error of Table 4 is recorded.

6.3. Tradeoffs in BBM-RS

The parameter ⌧ gives us the opportunity to explore the
tradeoff between interpretability, robustness, and accuracy
within BBM-RS. Figure 1 shows that for small ⌧ , BBM-
RS’s IC is high, and its ER is low, and when ⌧ is high, IC is
low, and ER is high. This empirical observation strengthens
the claim that interpretability and robustness are correlated.
See Appendix C for experiments on other datasets and ex-
periments on the tradeoffs between IC and accuracy.

Figure 1. Interaction of interpretability, accuracy, and robustness
with different noise level ⌧ on the spambase dataset. The size of
each ball represents the accuracy. For ⌧ = 0: IC = 22.5, ER =
0.006 and for higher noise ⌧ = 0.25: IC = 2.3, ER = 0.33
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IC (lower=better) test accuracy (higher=better) ER (higher=better)
DT RobDT LCPA BBM-RS DT RobDT LCPA BBM-RS DT RobDT LCPA BBM-RS

adult 414.20 287.90 14.90 6.00 0.83 0.83 0.82 0.81 0.50 0.50 0.12 0.50
bank 30.70 26.80 8.90 8.00 0.90 0.90 0.90 0.90 0.50 0.50 0.20 0.50
bank2 30.00 30.70 13.80 4.50 0.91 0.90 0.90 0.90 0.12 0.18 0.10 0.50
breastcancer 15.20 7.40 6.00 11.00 0.94 0.94 0.96 0.96 0.23 0.29 0.28 0.27
careval 59.30 28.20 10.10 8.70 0.97 0.96 0.91 0.77 0.50 0.50 0.19 0.50
compasbin 67.80 33.70 5.40 7.60 0.67 0.67 0.65 0.66 0.50 0.50 0.15 0.33
diabetes 31.20 27.90 6.00 2.10 0.74 0.73 0.76 0.65 0.08 0.08 0.09 0.15
ficobin 30.60 59.60 6.40 11.80 0.71 0.71 0.71 0.72 0.50 0.50 0.22 0.50
heart 20.30 13.60 11.90 9.50 0.76 0.79 0.82 0.82 0.23 0.31 0.14 0.32
ionosphere 11.30 8.60 17.90 6.80 0.89 0.92 0.88 0.86 0.15 0.25 0.07 0.28
mammo 27.40 12.40 7.20 1.90 0.79 0.79 0.79 0.77 0.47 0.50 0.21 0.50
mushroom 10.80 9.10 23.80 9.90 1.00 1.00 1.00 0.97 0.50 0.50 0.10 0.50
spambase 153.90 72.30 29.50 5.60 0.92 0.87 0.88 0.79 0.00 0.04 0.02 0.05

Table 3. Comparison of BBM-RS with other interpretable models. In bold: the best algorithm for each dataset and criterion. Note
that several datasets (adult, bank, careval, compasbin, ficobin, and mushroom) have ER = 0.5 for tree-based models (DT, RobDT, and
BBM-RS), because these datasets have all binary features and tree-based models set the threshold in the middle of 0 and 1.

7. Conclusion
We found that linear separability is a hidden property of
the data that guarantees both interpretability and robustness.
We designed an efficient algorithm, BBM-RS, that returns a
model, risk-score, which we prove is interpretable, robust,
and have high-accuracy. An interesting open question is
whether a weaker notion than linear separability can give
similar guarantees.
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DT RobDT LCPA BBM-RS

adult 10.00 12.50 14.90 6.00
bank 5.00 6.00 8.90 8.00
bank2 5.00 6.00 13.80 4.50
breastcancer 6.00 5.20 6.00 11.00
careval 12.30 11.40 10.10 8.70
compasbin 7.40 7.90 5.40 7.60
diabetes 6.00 7.50 6.00 2.10
ficobin 5.00 7.00 6.40 11.80
heart 6.00 6.10 11.90 9.50
ionosphere 6.00 7.90 17.90 6.80
mammo 5.60 6.20 7.20 1.90
mushroom 5.80 6.00 23.80 9.90
spambase 17.40 17.60 29.50 5.60

Table 4. The IC of four different methods across all datasets. Here,
we use the depth of the tree as the interpretable complexity measure
for DT and RobDT.
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