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A. Proof of Theorem 3.1
In the proofs, a ∧ b denotes min{a, b} for any a, b ∈ R.

A.1. Proof of discrete version

Proof. Define a matrix Π as:

Π(i, j) =

{
0, if C(i, j) > 2λ

Π∗2(i, j), otherwise

Also define s ∈ Rn and t ∈ Rm as:

s∗1(i) = −
m∑
j=1

Π∗2(i, j)1C(i,j)>2λ

and similarly define:

t∗1(j) =

n∑
i=1

Π∗2(i, j)1C(i,j)>2λ

These vectors corresponds to the row sums and the col-
umn sums of the elements of the optimal transport plan of
Formulation 2, where the cost function exceeds 2λ. Note
that, these co-ordinates of the optimal transport plan cor-
responding to those co-ordinates of cost matrix, where the
cost is greater than 2λ and contribute to the objective value
via their sum only, hence any different arrangement of these
transition probabilities with same sum gives the same ob-
jective value.

Now based on this Π obtained we construct a feasible so-
lution of Formulation 1 following Algorithm 1:

Π∗1 =

[
0 Π
0 diag(t∗1)

]
The row sums of Π∗1 is:

Π∗11 =

[
µn + s∗1
t∗1

]
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and it is immediate from the construction that the column
sums of Π∗1 is νm. Also as:

n∑
i=1

s∗1(i) =

m∑
j=1

t∗1(j) =
∑

(i,j):Ci,j>2λ

Π∗2(i, j)

and s∗1 � 0, t∗1 � 0, we have:

1>(µn + s∗1 + t∗1) = 1>p = 1 .

Therefore, we have (Π∗1, s
∗
1, t
∗
1) is a feasible solution of

Formulation 1. Now suppose this is not an optimal solu-
tion. Pick an optimal solution Π̃, s̃, t̃ of Formulation 1 so
that:

〈Caug, Π̃〉+λ
[
‖s̃‖1 + ‖t̃‖1

]
< 〈Caug,Π∗1〉+λ [‖s∗1‖1 + ‖t∗1‖1]

The following two lemmas provide some structural proper-
ties of any optimal solution of Formulation 1:

Lemma A.1. Suppose Π∗1, s
∗
1, t
∗
1 are optimal solution for

Formulation 1. Divide Π∗1 into four parts corresponding to
augmentation as in algorithm 1:

Π∗1 =

[
Π∗1,11 Π∗1,12

Π∗1,21 Π∗1,22

]
Then we have Π∗1,11 = Π∗1,21 = 0 and Π∗1,22 is a diagonal
matrix.

Lemma A.2. If Π∗1, s
∗
1, t
∗
1 is an optimal solution of Formu-

lation 1 then:

1. If Ci,j > 2λ then Π∗1(i, j) = 0.
2. If Ci,j < 2λ for some i and for all 1 ≤ j ≤ n, then
s∗1(i) = 0.

3. If Ci,j < 2λ for some j and for all 1 ≤ i ≤ m, then
t∗1(j) = 0.

4. If Ci,j < 2λ then s∗1(i)t∗1(j) = 0.

We provide the proofs in the next subsection. By Lemma
A.1 we can assume without loss of generality:

Π̃ =

[
0 Π̃12

0 diag(t̃)

]
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Now based on
(

Π̃, s̃, t̃
)

we create a feasible solution
namely Π∗2,new of Formulation 2 as follows: Define the set
of indices {i1, · · · , ik} and {j1, . . . , jl} as:

s̃i1 , s̃i2 , . . . , s̃ik > 0 and t̃j1 , t̃j2 , . . . , t̃jl > 0 .

Then by part (4) of Lemma A.2 we have Ciα,jβ > 2λ for
α ∈ {1, . . . , k} and β ∈ {1, . . . , l}. Also by part (2) of
Lemma A.2 the value of transport plan at these co-ordinates
is 0. Now distribute the mass of slack variables in these
co-ordinates such that the marginals of new transport plan
becomes exactly µn and νm. This new transport plan is
our Π∗2,new. Recall that, ‖s̃‖1 = ‖t̃‖1. Hence, here the
regularizer value decreases by 2λ‖s̃‖1 and the cost value
increased by exactly 2λ‖s̃‖1 as we are truncating the cost.
Hence we have:

〈Cλ,Π∗2,new〉 = 〈Caug, Π̃〉+ λ
[
‖s̃‖1 + ‖t̃‖1

]
< 〈Caug,Π∗1〉+ λ [‖s∗1‖1 + ‖t∗1‖1]

= 〈Cλ,Π∗2〉

which is contradiction as Π∗2 is the optimal solution of For-
mulation 2. This completes the proof for the discrete part.

A.2. Proof of equivalence for two sided formulation

Here we prove that our two sided formulation, i.e. Formula-
tion 3 (equation 2.8) is equivalent to Formulation 1 (equa-
tion 2.6) for the discrete case. Towards that end, we in-
troduce another auxiliary formulation and show that both
Formulation 1 and Formulation 3 are equivalent to the fol-
lowing auxiliary formulation of the problem.

Formulation 4:

minΠ∈Rm×n,s1∈Rm,s2∈Rn 〈C,Π〉+ λ [‖s1‖1 + ‖s2‖1]

subject to Π1n = p+ s1

ΠT 1m = q + s2

Π � 0

.

(A.1)
First we show that Formulation 1 and Formulation 4 are
equivalent in a sense that they have the same optimal ob-
jective value.

Theorem A.3. Suppose C is a cost function such that
C(x, x) = 0. Then Formulation 1 and Formulation 4 has
same optimal objective value.

Proof. Towards that end, we show that given one optimal
variables of one formulation we can get optimal variables
of other formulation with the same objective value. Be-
fore going into details we need the following lemma whose
proof is provided in Appendix B:

Lemma A.4. Suppose Π∗4, s
∗
4,1, s

∗
4,2 are the optimal vari-

ables of Formulation 4. Then s∗4,1 � 0 and s∗4,2 � 0.

Now we prove that optimal value of Formulation 1 and For-
mulation 4 are same. Let (Π∗1, s

∗
1,1, t

∗
1,1) is an optimal solu-

tion of Formulation 1. Then we claim that (Π∗1, s
∗
1,1, t

∗
1,1) is

also an optimal solution of Formulation 4. Clearly it is fea-
sible solution of Formulation 4. Suppose it is not optimal,
i.e. there exists another optimal solution (Π̃4, s̃4,1, s̃4,2)
such that:

〈C, Π̃4〉+λ(‖s̃4,1‖1+‖s̃4,2‖2) < 〈C,Π∗1,12〉+λ(‖s∗1,1‖1+‖t∗1,1‖1)

Now based on (Π̃4, s̃4,1, s̃4,2) we construct a feasible solu-
tion of Formulation 1 as follows:

Π̃1 =

[
0 Π̃4

0 −diag(s̃4,2)

]
Note that we proved in Lemma A.4 s̃4,2 � 0, hence we
have Π̃1 � 0. Now as the column sums of Π̃4 is q + s̃4,2,
we have column sums of Π̃1 = [0 q>]> and the row sums
are [(p + s̃4,1)> s̃>4,2]>. Hence we take s̃1,1 = s̃4,1 and
s̃1,2 = s̃4,2. Then it follows:

〈Caug, Π̃1〉+ λ [‖s̃1,1‖1 + ‖s̃1,2‖1]

= 〈C, Π̃4〉+ λ [‖s̃4,1‖1 + ‖s̃4,2‖1]

< 〈C,Π∗1,12〉+ λ
[
‖s∗1,1‖1 + ‖t∗1,1‖1

]
= 〈Caug,Π∗1〉+ λ

[
‖s∗1,1‖1 + ‖t∗1,1‖1

]
This is contradiction as we assumed (Π∗1, s

∗
1,1, t

∗
1,2) is an

optimal solution of Formulation 1. Therefore we conclude
(Π∗1, s

∗
1,1, t

∗
1,1) is also an optimal solution of Formulation 4

which further concludes Formulation 1 and Formulation 4
have same optimal values. This completes the proof of the
theorem.

Theorem A.5. The optimal objective value of Formulation
3 and Formulation 4 are same.

Proof. Like in the proof of Theorem A.3 we also prove
couple of lemmas.

Lemma A.6. Any optimal transport plan Π∗3 of Formula-
tion 3 has the following structure: If we write,

Π∗3 =

[
Π∗3,11 Π∗3,12

Π∗3,21 Π∗3,22

]
then Π∗3,11 and Π∗3,22 are diagonal matrices and Π∗3,21 = 0.

Lemma A.7. If s∗3,1, t
∗
3,1, s

∗
3,2, t

∗
3,2 are four optimal slack

variables in Formulation 3, then s∗3,1, t
∗
3,1 � 0 and

s∗3,2, t
∗
3,2 � 0.

Proof. The line of argument is same as in proof of Lemma
A.4.
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Next we establish equivalence. Suppose
(Π∗3, s

∗
3,1, t

∗
3,1, s

∗
3,2, t

∗
3,2) are optimal values of For-

mulation 3. We claim that (Π∗3,12, s
∗
3,1 − s∗3,2, t∗3,1 − t∗3,2)

forms an optimal solution of Formulation 4. The objective
value will then also be same as s∗3,1 � 0, s∗3,2 � 0 (Lemma
A.7) implies ‖s∗3,1 − s∗3,2‖1 = ‖s∗3,1‖1 + ‖s∗3,2‖1 and
similarly t∗3,1 � 0, t∗3,2 � 0 implies ‖t∗3,1 − t∗3,2‖1 =
‖t∗3,1‖1 + ‖t∗3,2‖1. Feasibility is immediate. Now for
optimality, we again prove by contradiction. Suppose
they are not optimal. Then lets say Π̃4, s̃4,1, s̃4,2 are
an optimal triplet of Formulation 4. Now construct
another feasible solution of Formulation 3 as follows: Set
s̃3,2 = t̃3,2 = 0, s̃3,1 = s̃4,1 and t̃3,1 = s̃4,2. Set the matrix
as:

Π̃3 =

[
0 Π̃4

0 −diag(s̃4,2)

]
Then it follows that

(
Π̃3, s̃3,1, s̃3,2, t̃3,1, t̃3,2

)
is a feasible

solution of Formulation 3. Finally we have:

〈Caug, Π̃3〉+ λ
[
‖s̃3,1‖1 + ‖s̃3,2‖1 + ‖t̃3,1‖1 + ‖t̃3,2‖1

]
= 〈Caug, Π̃3〉+ λ [‖s̃4,1‖1 + ‖s̃4,2‖1]

= 〈C, Π̃4〉+ λ [‖s̃4,1‖1 + ‖s̃4,2‖1]

< 〈C,Π∗3,12〉+ λ
[
‖s∗3,1 − s∗3,2‖1 + ‖t∗3,1 − t∗3,2‖1

]
= 〈Caug,Π∗3〉+ λ

[
‖s∗3,1‖1 + ‖s∗3,2‖1 + ‖t∗3,1‖1 + ‖t∗3,2‖1

]
This contradicts the optimality of (Π∗3, s

∗
3,1, s

∗
3,2, t

∗
3,1, t

∗
3,2).

This completes the proof.

A.3. Proof of continuous version

Proof. In this proof we denote by F1 the optimization
problem of equation 2.3 and by F2 the optimization prob-
lem equation 2.5. Let µ, ν be two absolutely continu-
ous measures on Rd. Moreover, we assume c(x, y) =
‖x − y‖ for some norm ‖ · ‖ on Rd. We assume that∫
‖x‖ν(dx),

∫
‖x‖µ(dx) <∞.

Step 1: Let Kε be a compact set such that∫
Kε
‖x‖µ(dx),

∫
Kε
‖x‖ν(dx) > 1− ε.

Also, let K̃ε = {x1, . . . , xnε} be a maximal ε-packing
set of Kε. Starting from K̃ε, define {S1, . . . , Snε} as
a mutually disjoint covering of Kε with internal points
x1, . . . , xnε respectively, so that Diam(Si) ≤ 2ε. With
pi =

∫
Si
µ(dx), qi =

∫
Si
ν(dx) for i = 1, . . . , nε,

p0 =
∫
KC
ε
µ(dx), q0 =

∫
KC
ε
ν(dx) and x0 = 0 ∈ Rd,

define

µε =

nε∑
0

piδxi

νε =

nε∑
0

qiδxi

A coupling Q between two probability distributions is a
joint distribution with marginals as the given two distribu-
tions. The Wasserstein distance between two distributions
P1 and P2 is defined as:

W1(P1, P2) = inf
Q∈Q(P1,P2)

∫
Q(x, y)‖x− y‖dxdy, (A.2)

where Q(P1, P2) is the collection of all couplings of P1

and P2.

Define Q(x, y) = (1x=x0,y∈KC
ε

+∑nε
i=1 1x=xi,y∈Si)µ(dy). Then Q is a coupling be-

tween µ and µε. Therefore, clearly,

W1(µ, µε) ≤
∫
KC
ε

‖x‖µ(dx) + 2ε

(
nε∑
i=1

pi

)
≤ 3ε (A.3)

Similarly, W1(ν, νε) ≤ 3ε. Therefore limε→0W1(ν, νε) =
0.

Moreover, W1(µ, ν) = limε→0W1(µε, νε), as
W1(µε, νε) − 6ε ≤ W1(µ, ν) ≤ W1(µε, νε) + 6ε by
triangle inequality.

Step 2: Let S be an arbitrary measure with ‖S‖TV = 2γ,
so that µ + S is a probability measure with

∫
‖x‖(µ +

S)(dx) <∞. Also, let us define εn = 2−(n+1).

Let S = S+−S−, where S+ and S− are positive measures
on Rd. Then, ‖S−‖TV = ‖S+‖TV = γ.

Clearly (µ−S−)/(1− γ), µ, ν, S+/γ are tight probability
measures. So we can construct compact sets K(1)

εn , similar
to Step 1 to approximate all the four measures. Without loss
of generality we assume that 0 ∈ K(1)

εn for all n. Moreover,
we can also construct approximate measures (µ− S−)n =
((µ− S−)/(1− γ))εn and (S+)n = (S+/γ)εn defined as
in Step 1. µn = µεn , νn = νεn are defined similarly. All
four of the measures have support points in K(1)

εn .

Next, we define (µ + S)n = γ(S+)n + (1 −
γ)(µ − S−)n. Then by the construction, from (Villani,
2009), limn→∞W1((µ + S)n, µ + S) → 0 and thus
limn→∞W1((µ + S)n, νn) → W1(µ + S, ν). Therefore
we can define a signed measure Sn = (µ + S)n − µn.
Moreover,

‖Sn‖TV ≤ γ‖(S+)n‖TV + ‖(1− γ)(µ− S−)n − µn‖TV

(A.4)

= 2γ = ‖S‖TV (A.5)

Note that µn, νn, (µ + S)n put masses (sometimes zero
masses) on a common set of support points given by
K̃

(1)
εn ⊂ K

(1)
εn .
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The K̃(1)
εn is sequentially defined so that K̃(1)

εn+1 is a refine-
ment of K̃(1)

εn . This can easily be achieved by the choice of
εn defined.

Consider s̃n,Πn such that

F1(µn, νn) =

∫
‖x− y‖Πn(dxdy) + λ‖s̃n‖TV (A.6)

By the discrete nature of µn, νn, using the proof of the dis-
crete part F1(µn, νn) = F2(µn, νn).

Since, min{‖x − y‖, 2λ} is a metric, whenever ‖x −
y‖ is, therefore, it is easy to check that F2(µ, ν) =
limn F2(µn, νn) = limn F1(µn, νn).

Moreover, by construction, F1(µn, νn) ≤
∫
‖x −

y‖Π(dxdy) + λ‖Sn‖TV for any arbitrary coupling Π of µ
and µ+S. Also limnW1(µn, µ),W1(µ+S, (µ+S)n)→
0.

Thus, combining the above result with equation A.4, we get

lim
n
F1(µn, νn) ≤

∫
‖x− y‖Π̃(dxdy) + λ‖S‖TV

for any coupling Π̃ of µ and µ+ S.

Therefore, F2(µ, ν) ≤ F1(µ, ν).

Step 3: Consider s̃n defined in equation A.6. As s̃n has
support in the compact sets K(1)

εn defined in Step 2, there-
fore, {µn + s̃n}n≥1 are tight measures.

Therefore, by Prokhorov’s Theorem for equivalence of
sequential compactness and tightness for a collection
of measures, there exists a probability measure µ ⊕ s
and a subsequence {nk}k≥1 such that µnk + s̃nk con-
verges weakly to µ ⊕ s. Moreover, by construction

limR→∞ lim supn→∞

∫
‖x‖>R

‖x‖(µn+νn)(dx) = 0 and

so limR→∞ lim supn→∞

∫
‖x‖>R

‖x‖(µn + s̃n)(dx) = 0.

Thus, by Definition 6.8 part (iii) and Theorem 6.9 of (Vil-
lani, 2009), W1(µnk + s̃nk , µ ⊕ s) → 0. Moreover,
W1(µnk , µ)→ 0. Therefore ‖s̃nk‖TV → ‖µ⊕ s− µ‖TV.
Thus,W1(µnk + s̃nk , νnk)+λ‖s̃nk‖TV →W1(µ⊕s, ν)+
λ‖µ ⊕ s − µ‖TV. But by the proof of the discrete part,
W1(µnk + s̃nk , νnk) + λ‖s̃nk‖TV = F1(µnk , νnk) =
F2(µnk , νnk)→ F2(µ, ν). Therefore, with s = µ⊕ s− µ,
W1(µ+ s, ν) + λ‖s‖TV = F2(µ, ν).

Therefore, F2(µ, ν) = lim supn→∞ F1(µn, νn) ≥
F1(µ, ν). Thus the equality holds.

B. Proof of Theorem 2.1
Proof. The proof is immediate from the Formulation 1.
Recall that the Formulation 1 can restructured as:

ROBOT(µ̃, ν) = inf
P
{OT(P, ν) + λ‖P − µ̃‖TV} .

where the infimum is taking over all measure dominated by
some common measure σ (with respect to which µ, µc, ν
are dominated). Hence,

ROBOT(µ̃, ν) ≤ OT(P, ν) + λ‖P − µ̃‖TV

for any particular choice of P . Taking P = µ we get that

ROBOT(µ̃, ν) ≤ OT(µ, ν) + λ‖µ− µ̃‖TV

= OT(µ, ν) + λε‖µ− µc‖TV

Taking P = ν we get ROBOT(µ̃, ν) ≤ λ‖ν − µ̃‖TV and
finally taking P = µ̃ we get ROBOT(µ̃, ν) ≤ OT(µ̃, ν).
This completes the proof.

C. Proof of Lemma 3.2
As defined in the main text, let Π∗2 be the optimal solution
of equation 2.7 and Π∗2,α be the optimal solution of equa-
tion 3.1. Then by Proposition 4.1 from Peyré & Cuturi
(2018) we conclude:

Π∗2,α
α→0−→ Π∗2 . (C.1)

Now we have defined
(
Π∗1,α, s

∗
1,α

)
as the approximate so-

lution of equation 2.6 obtained via Algorithm 1 from Π∗2,α.
Note that we can think of Algorithm 1 as a map from Rm×n
to R(m+n)×(m+n) × Rm. Define this map as F .

F (Π2) 7→ (Π1, s1)

Hence, by our notation,
(
Π∗1,α, s

∗
1,α

)
= F (Π∗2,α) and

(Π∗1, s
∗
1) = F (Π∗2). Now if we show that F is a contin-

uous map, then by continuous mapping theorem, it is also
immediate from equation C.1 that:

F (Π∗2,α)
α→0−→ F (Π∗2) .

which implies:

Π∗1,α
α→0−→ Π∗1

s∗1,α
α→0−→ s∗1 .

which will complete the proof. Therefore all we need to
show is that F is a continuous map. Towards that direc-
tion, first fix a sequence of matrices {Π̄2,i}i∈N → Π̄2. De-
fine F (Π̄2,i) =

(
Π̄1,i, s̄1,i

)
and F (Π̄2) =

(
Π̄1, s̄1

)
. By

Step 3 - Step 5 of Algorithm 1, we obtain Π̄1,i by first set-
ting Π̄1,i,12 = Π̄2,i and for each of the columns of Π̄1,i,12,
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dumping the sum of its entries for which the cost is > 2λ
to the diagonals of Π̄1,i,22. Also, we have all the entries of
the first n columns of Π̄1,i to be 0. In step 6 of Algorithm
1, we obtain s1,i by taking the negative of the sum of the
elements of each rows of Π̄1,i,12 for which the cost is> 2λ.
Note that these operations (Step 3 - Step 6 of Algorithm 1)
are continuous. Therefore we conclude:

1. 0 = Π̄1,i,11 → Π̄1,11 = 0 .
2. 0 = Π̄1,i,21 → Π̄1,21 = 0 .
3. Π̄1,i,12 = Π̄2,i � 1Ic → Π̄2 � 1Ic = Π̄1,12 .
4.

Π̄1,i,22 = diag
(
1>
(
Π̄2,i � 1I

))
→ diag

(
1>
(
Π̄2 � 1I

))
= Π̄1,22 .

5.

s1,i = −
(
Π̄i,n � 1I

)
1

→ −
(
Π̄2 � 1I

)
1 = s1 .

whereA�B denotes the Hadamard product (element-wise
multiplication) between two matrices. Hence we have es-
tablished:

F (Π̄2,i) =
(
Π̄1,i, s̄1,i

)
n→∞−→

(
Π̄1, s̄1

)
= F (Π̄2) .

This completes the proof of continuity of F .

D. Proof of auxiliary lemmas
D.1. Proof of Lemma A.1

Proof. The fact that Π∗1,11 = Π∗1,21 = 0 follows from the
fact that Π∗1 � 0 and Π∗11 = Q. To prove that Π∗1,22 is
diagonal, we use the fact that the any diagonal entry the
cost matrix is 0. Now suppose Π∗1,22 is not diagonal. Then
define a matrix Π̂ as following: set Π̂11 = Π̂21 = 0, Π̂12 =
Π∗1,12 and:

Π̂22(i, j) =

{∑m
k=1 Π∗1,22(k, i), if j = i

0, if j 6= i

Also define ŝ = s∗1 and t̂ as t̂(i) = Π̂22(i, i). Then clearly
(Π̂, ŝ, t̂) is a feasible solution of Formulation 1. Note that:

‖t̂‖1 = 1>Π̂221 = 1>Π∗1,221 = ‖t∗1‖1

and by our construction 〈Caug, Π̂〉 < 〈Caug,Π∗1〉. Hence
(Π̂, ŝ, t̂) reduces the value of the objective function of For-
mulation 1 which is a contradiction. This completes the
proof.

D.2. Proof of Lemma A.2

Proof. 1. Suppose Π∗1(i, j) > 0. Then dump this mass to
s∗1(j) and make it 0. In this way 〈Caug,Π∗1〉 will de-
crease by > 2λΠ∗1(i, j) and the regularizer value will
increase by atmost 2λΠ∗1(i, j), resulting in overall re-
duction in the objective value, which leads to a contra-
diction.

2. Suppose each entry of ith row of C is < 2λ. Then if
s∗1(i) > 0, we can distribute this mass in the ith row
such that, s∗1(i) = a1 +a2 + · · ·+am with the condition
that t∗1(j) ≥ aj . Now we reduce t∗1 as:

t∗1(j)← t∗1(j)− aj

Hence the value 〈Caug,Π∗1(i, j)〉 will increase by a
value < 2λs∗1(i) but the value of regularizer will de-
crease by the value of 2λs∗1(i), resulting in overall de-
crease in the value of objective function.

3. Same as proof of part (2) by interchanging row and col-
umn in the argument.

4. Suppose not. Then choose ε < s∗1(i) ∧ t∗1(j), Add ε
to Π∗1(i, j). Hence the cost function value 〈Caug,Π∗1〉
will increase by < 2λε but the regularizer value will
decrease by 2λε, resulting in overall decrease in the ob-
jective function.

D.3. Proof of Lemma A.4

Proof. For the notational simplicity, we drop the subscript
4 now as we will only deal with the solution of Formulation
4 and there will be no ambiguity. We prove the Lemma by
contradiction. Suppose s∗1,i > 0. Then we show one can
come up with another solution (Π̃, s̃1, s̃2) of Formulation
4 such that it has lower objective value. To construct this
new solution, make:

s̃1,j =

{
s∗1,j , if j 6= i

0, if j = i

Now to change the optimal transport plan, we will only
change ith row of Π∗. We subtract a1, a2, . . . , an ≥ 0
from ith column of Π∗ in such a way, such that none of
the elements are negative. Hence the column sum will be
change, i.e. the value of s̃2 will be:

s̃2,j = s∗2,j − aj ∀1 ≤ j ≤ n .

Now clearly from our construction:

〈C, Π̃〉 ≤ 〈C,Π∗〉

For the regularization part, note that, as we only reduced
ith element of s∗1, we have ‖s̃1‖1 = ‖s∗1‖1 − s∗1,i. And by
simple triangle inequality,

‖s̃2‖1 ≤ ‖s∗2‖1 + ‖a1‖1 = ‖s∗2‖1 + s∗1,i
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by construction ai’s, as ai ≥ 0 and
∑
i ai = s∗1,i. Hence

we have:

‖s̃1‖1+‖s̃2‖1 ≤ ‖s∗1‖1−s∗1,i+‖s∗2‖1+s∗1,i = ‖s∗1‖1+‖s∗2‖1 .

Hence the value corresponding to regularizer will also de-
crease. This completes the proof.

D.4. Proof of Lemma A.6

Proof. We prove this lemma by contradiction. Suppose Π∗3
does not have the structure mentioned in the statement of
Lemma. Construct another transport plan for Formulation
3 Π̃3 as follows: Keep Π̃3,12 = Π∗3,12 and set Π̃3,12 = 0.
Construct the other parts as:

Π̃3,11(i, j) ={∑m
k=1 Π∗3,11(i, k) +

∑n
k=1 Π∗3,21(k, i), if i = j

0, if i 6= j

and

Π̃3,22(i, j) =

{∑n
k=1 Π∗3,22(k, i), if i = j

0, if i 6= j

It is immediate from the construction that:

〈Caug, Π̃3〉 ≤ 〈Caug,Π∗3〉

As for the regularization term: Note the by our construction
s̃4 will be same as s∗4 as column sum of Π̃3,22 is same as
Π∗3,22. For the other three:

s̃3(i) = Π̃3,11(i, i) =

m∑
k=1

Π∗3,11(i, k) +

n∑
k=1

Π∗3,21(k, i)

s̃2(i) = Π̃3,22(i, i) =

n∑
k=1

Π∗3,22(k, i)

and hence by construction:

‖s̃2‖1 = 1>Π∗3,221 = ‖s∗2‖1 − 1>Π∗3,211 .

‖s̃3‖1 = 1>Π∗3,111 + 1>Π∗3,211 = ‖s∗3‖1
And also by our construction, s̃1 = s∗1 + c where c =
(Π∗3,21)>1. As a consequence we have ‖c‖1 = 1>Π∗3,211.
Then it follows:

4∑
i=1

‖s̃i‖1 = ‖s∗1 + c‖+ ‖s∗2‖1 − 1>Π∗3,211 + ‖s∗3‖1 + ‖s∗4‖1

≤
4∑
i=1

‖s∗i ‖1 + ‖c‖1 − 1>Π∗3,211

=

4∑
i=1

‖s∗i ‖1

So the objective value is overall reduced. This contradicts
the optimality of Π∗3 which completes the proof.

E. Change of support of outliers with respect
to λ

For any λ, define the set Iλ = {(i, j) : Ci,j > 2λ}, i.e.
Iλ denotes the costs which exceeds the threshold 2λ. As
before we define byCλ to be truncated costC∧2λ. Denote
by πλ to be the optimal transport plan with respect to Cλ
and the marginal measures µ, ν. Borrowing our notations
from previous theorems, we define a ”slack vector” sλ as:

sλ(i) =

n∑
j=1

πλ(i, j)1C(i,j)>2λ =
∑

j:(i,j)∈Iλ

πλ(i, j) .

And we define the observation i0 to be an outlier if
sλ(i0) > 0. It is immediate that for any λ1 < λ2,
Iλ1 ⊇ Iλ2 . We goal is to establish the following theorem:

Theorem E.1. For any λ1 < λ2, if sλ2
(i0) > 0, then

sλ1
(i0) > 0, i.e. if a point is selected as outlier for larger

λ, then it is also selected as outlier for smaller λ.

Proof. Fix λ1 < λ2. Note that for any π ∈ Π(µ, ν) we
have:

〈Cλ2
− Cλ1

, π〉 =
∑

(i,j)∈Iλ1∩I
c
λ2

(C(i, j)− 2λ1)π(i, j)

+ 2(λ2 − λ1)
∑

(i,j)∈Iλ2

π(i, j)

:= T1(π) + T2(π) .

Now as πλ2 is optimal with respect to Cλ2 and πλ1 is opti-
mal with respect to Cλ1

we have:

〈Cλ1 , πλ2〉+ T1(πλ2) + T2(πλ2)

= 〈Cλ2 , πλ2〉
≤ 〈Cλ2 , πλ1〉
= 〈Cλ1 , πλ1〉+ T1(πλ1) + T2(πλ1)

≤ 〈Cλ1 , πλ2〉+ T1(πλ1) + T2(πλ1)

Therefore we have:

T1(πλ2
) + T2(πλ2

) ≤ T1(πλ1
) + T2(πλ1

) . (E.1)

But this is not enough. Note that we can further decom-
pose T1 (and similarly T2) as:

T1,i(π) =
∑

j:(i,j)∈Iλ1∩I
c
λ2

(Ci,j − 2λ1)π(i, j)

T2,i(π) = 2(λ2 − λ1)
∑

j:(i,j)∈Iλ2

π(i, j) .

Hence we have:

T1(π) =

n∑
i=1

T1,i(π), T2(π) =

n∑
i=1

T2,i(π) .
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In equation E.1 we have established that T1(πλ2
) +

T2(πλ2) ≤ T1(πλ1) +T2(πλ1) . In addition if we can show
that:

T1,i0(πλ1
)+T2,i0(πλ1

) = 0 =⇒ T2,i0(πλ1
) = 0 . (E.2)

holds for all 1 ≤ i ≤ n then we are done. This is because,
suppose sλ1

(i0) = 0, Then

T1,i0(πλ1
) + T2,i0(πλ1

) = 0 .

This in turn by equation E.2 implies

T2,i0(πλ2
) = 0 ,

i.e. sλ2(i0) = 0.

Lemma E.2. Suppose C is a 2 × 2 cost matrix with all
unequal cost:

C =

[
C11 C12

C21 C22

]
If C22 > 2λ2 and C21 < 2λ1, then the following two in-
equalities won’t occur simultaneously:

Cλ2
11 + Cλ2

22 ≤ C
λ2
12 + Cλ2

21 ,

Cλ1
12 + Cλ1

21 ≤ C
λ1
11 + Cλ1

22 .

Now suppose i2 is an outlier with respect to λ2 but not with
respect to λ1. Then there exists j1 and j2 (j1 6= j2) such
that:

Ci2,j1 < 2λ1, Ci2,j2 > 2λ2

such that πλ2
i2,j2

> 0 and πλ1
i2,j1

> 0.

Case 1: Now assume that we can find i1 6= i2 such that
πλ2
i1,j1

> 0 and πλ1
i1,j2

> 0.

Then (i1, j2), (i2, j1) ∈ supp(πλ1) and (i1, j1), (i2, j2) ∈
supp(πλ2). Hence from c-cyclical monotonicity properties
of the support of the optimal transport plan we have for
πλ1 :

Cλ1
i1,j2

+ Cλ1
i2,j1
≤ Cλ1

i1,j1
+ Cλ1

i2,j2
,

and for πλ2 :

Cλ2
i1,j1

+ Cλ2
i2,j2
≤ Cλ2

i1,j2
+ Cλ2

i2,j1
.

which is a contradiction from Lemma E.2. This completes
the proof.

Case 2: Need to be proved Now we need to consider
the other case, there does not exist any row i1 6= i2 such
that both πλ2

i1,j1
> 0 and πλ1

i1,j2
> 0 occur simultane-

ously. This means that the columns j1, j2 are orthogonal,
i.e. 〈πλ2

:,j1
, πλ1

:,j2
〉 = 0.

E.1. Proof of Lemma E.2

As C21 < 2λ1 and C22 > 2λ2 we can modify the inequal-
ities in Lemma E.2 as:

Cλ2
11 + 2λ2 ≤ Cλ2

12 + C21 , (E.3)

Cλ1
12 + C21 ≤ Cλ1

11 + 2λ1 . (E.4)

Now as we have assume C21 < 2λ1, from equation E.3 we
obtain:

2λ1 > Cλ2
11 − C

λ2
12 + 2λ2

⇐⇒ 2(λ2 − λ1) < Cλ2
12 − C

λ2
11 . (E.5)

Hence Cλ2
12 − C

λ2
11 > 0, which implies C11 < C12, C11 <

2λ2 and also both C11 and C12 can not lie within
(2λ1, 2λ2). We divide the rest of the proofs into four small
cases:

Case 1: Assume 2λ1 < C11 < 2λ2, C12 > 2λ2. In this
case from equation E.3 we have:

C11 + 2λ2 ≤ 2λ2 + C21

i.e. C21 ≥ C11 which is not possible as C11 > 2λ1 and
C21 < 2λ1.

Case 2: Assume C11 < 2λ1, C12 > 2λ2. Then from
equation E.4 we have C21 ≤ C11 and from equation E.3
we have: C11 ≤ C21 which cannot occur simultaneously.

Case 3: Assume C11 < 2λ1 and 2λ1 < C12 < 2λ2.
Then from equation E.3 and equation E.4 we have respec-
tively:

C11 + 2λ2 ≤ C12 + C21 ,

2λ1 + C21 ≤ C11 + 2λ1

From the second inequality we have C21 ≤ C11, which
putting back in the first inequality yields:

C11 + 2λ2 ≤ C12 + C11 =⇒ C12 ≥ 2λ2

which is a contradiction.

Case 4: Assume C11 < 2λ1 and C12 < 2λ1. This form
equation E.3 yields:

C11 + 2λ2 ≤ C12 + C21

=⇒ C21 ≥ C11 − C12 + 2λ2 . (E.6)

Also from equation E.4 we have:

C12 + C21 ≤ C11 + 2λ1

=⇒ C21 ≤ C11 − C12 + 2λ1 . (E.7)

From equation E.6 and equation E.7 we have:

C11 − C12 + 2λ2 ≤ C11 − C12 + 2λ1

i.e. λ2 ≤ λ1 which is a contradiction. This completes the
proof.
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Table 1. Robust mean estimation with GANs using different distribution divergences. True mean is η0 = 05; sample size n = 1000;
contamination proportion ε = 0.2. We report results over 30 experiment restarts.

Contamination JS Loss SH Loss ROBOT

Cauchy(0.1 · 15, I5) 0.2 ± 0.06 0.17 ± 0.04 0.17 ± 0.05
Cauchy(0.5 · 15, I5) 0.3 ± 0.07 0.26 ± 0.05 0.25 ± 0.05
Cauchy(1 · 15, I5) 0.45 ± 0.14 0.37 ± 0.06 0.36 ± 0.07
Cauchy(2 · 15, I5) 0.39 ± 0.3 0.26 ± 0.06 0.2 ± 0.07

F. Robust mean experiment with Cauchy
distribution

In this section we present our results corresponding to
the robust mean estimation with the generative distribution
gθ(x) = x + θ where x ∼ Cauchy(0, 1). As in Subsec-
tion 4.1, we assume that we have observation {x1, . . . , xn}
from a contaminated distribution (1 − ε) Cauchy(η0, 1) +
ε Cauchy(η1, 1). For our experiments we take η0 = 05

and vary η1 ∈ {0.1 · 15, 0.5 · 15, 1 · 15, 2 · 15} along wth
ε = 0.2. We compare our method with Wu et al. (2020)
and results are presented in Table 1.
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