Oblivious Sketching for Logistic Regression

A. Preliminaries

Bernstein’s inequality will be used multiple times:

Proposition A.1. [Bernstein’s Inequality [(Maurer, 2003)
Let {X;} be independent random variables with E(X?) <
ooand X; > 0. Set X =3, X; and \ > 0. Then,

PriX <E(X) — )] < exp (227];()(2» :

If X; — E(X;) < A for all i, then with 0?2 = E(X?) —
E(X;)? we have

—)\2
> < —_— .
Pr[X >E(X)+ A] <exp <22i0¢2+/\A>

B. Omitted details from Section 3
For technical reasons we make the following assumptions

on the parameters:

Assumption B.1. We assume that the following inequalities
hold for N, m,b,0:

me? > max {74111(5), 31n (5m log, (%)) ,
21n (log, (%) +1),2d1n (1+ %) ~n(6) }
b > max {m, 6_1}

N =Q(bm*d*e671)

B.1. Contraction bounds

We set Q1 = {q € {1,... . qmax} | WS = Bm A
Wl = g5} and Qo = {g < logy ()} \ Q1. We

Gdmax

set Q@* = Q1 U @2 to be the set of important weight classes.

The following lemma shows that the weight of the remaining
weight classes is negligible:
Lemma B.1. Ir holds that 3
5¢ )G (2).

||Wq+H1 >

qeQ” (1 -

Proof. The total weight W of those classes with ¢ ¢ Q1 U
Q- is at most

w< oy

< qmax,q¢Q*

Wl + > WL

7> Qmax
€ o0
< *5’”2 274 4 9 dmaxp
m
q=0
€
=4e+ —n = 5¢
n

as 8 < 2. Recall that G (z) > % Combining these two
facts gives us

DoIWH =G ) = Y WL

qeQ* q¢Q*

I

> Gt (z) - be
> G (2) = 5GT(2)u'e
= GT(2) - 5'GT(2).

W

O

In the following we show that the important weight classes
have at least the same contribution, up to a small error, after
sketching. First we consider the weight classes with ¢ € Q2,
where the individual entries have a notable contribution
themselves. Then we consider the weight classes with g €
(1 which consist of a large number of entries. In both cases
we will show that for each important weight class I/VqJr there
exists a subset W € W with [[W; ]|y > (1 - 72) e ls

and where each entry z, € W, is much larger than the sum
of all other entries in its bucket.

Heavy-hitters. This section is dedicated to showing that the
large entries of z are well separated among the buckets and
that they contribute about the same value after sketching.
For A € R"*? Jet & € R™ denote the {1-leverage score
vector of A4, i.e.,

max |(Ax)z‘ .
eerd\{0} || Az

U; =

We start by showing that the rows of A with the largest /1 -
leverage scores are well separated and that only coordinates
zp with high ¢ -leverage can be large coordinates of z. To
this end we need two lemmas:

Lemma B.2. (Clarkson & Woodruff, 2015) For N1, No
with Ny > Nj and with N1Ny < kN, for k € (0,1/2),
let Y1 and Y5 denote the sets of indices of the N1 and No
coordinates with the largest leverage scores, so that Y, C
Ys. Then with probability at least 1 — 2k each member of
Y1 is in a bucket containing no other member of Ys.

Lemma B.3. If u,, is the k-th largest coordinate of u, then
for z in the subspace spanned by the columns of A it holds
that | z,| < £G(2).

Proof. By (Dasgupta et al., 2009) there exists a so-called
Auerbach basis () of A with the following properties. It
holds that G(Qx) = ||Qz||1 > ||7||e for all z € R and
>4 |Qij] < d. Note that by a change of basis

|(Az)i] [(Qu)i

ax = ax .
zeri\{0} [|[Az|1  zerd\{o} ||Q|

U; =

Thus [25] = [Qie] < Qi [l2llee < [Qill1]|Qa]ls and it
follows that 3, u; < 37, [|Qill1 = >2;; |Qis] < d. Con-
sequently the k-th largest coordinate of z can be at most
2p| <upG(Qr) < LG(Qz) = LG (). O
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We apply Lemma B.2 and Lemma B.3 as follows: set N} =
dﬂTm and Ny = dfim?, and let Y] (resp. Y>) be the set of
coordinates with the N7 (resp. N2) largest leverage scores.
We denote by &; the event that all coordinates in Y7 are in
a bucket with no other member of Y5. By Lemma B.2 and
Assumption B.1, & holds with probability at least 1 — 4.
Then by Lemma B.3, for any entry z, > vy := 5% we have

p € Y7 and for any entry p € Y5 we have z, < ﬁ = Bim
=3 = ;-3 V1. Itremains to show that the remaining entries
in the buckets containing a heavy hitter only have a small
contribution. To show this we use Bernstein’s inequality.
For a coordinate p € [n] we denote by B,, the bucket that

contains p.

Lemma B.4. Asgume &1 holds. Then with failure probabil-
ity at most e for any p with z, > v and z, € W, for
some q € Qa, we have | B, \ {p}|l1 < 3¢|zp|.

Proof. Let p with 2z, > v;. Then by Lemma B.3 it holds
that p € Y;. For each i € [n] \ {p} we define a random
variable X; by X; = z; if 4 is put in bucket B, and X; = 0
otherwise. By our assumption, X; = 0if ¢ € Y5. Otherwise
we have P(X; # 0) < ﬂ%\, since the probability that any
coordinate is put in any bucket is at most BLN Further we
have E(||B, \ {p}|l1) < gz since G(z) = 1. For the
variance we have

o7 = (z — E(X;))*P(X; = 2) + E(X;)*P(X; = 0)

<22i+ ZZQ <272:i2
~ BN T (BN)? T BN

Since z; < ~=5vy fori ¢ Y5 this implies

202—202<Z2Z?
[ 7 6N

i€[n] i¢Ya i¢Ys

£
< ———==0 Zi
me2BN Z !

i€[n]

€
—
me2BN

52

— [2,3,2
ﬁ M Gmax

since N > ¢~ 1. Thus, applying Bernstein’s inequality with
A=cv;and A = —S50; = 25 we get
155 me

Pr[X>i+2A]<e o
= 3N =P e 2 A

<o —4)\?

X

=P 2X2/(me?) + X2/ (me?)
< ef4m82/3.

Using that BLN + 2\ < 3ez, and using the union bound

for at most Smlog, (2

. . N
) coordinates z, with z, € W,

for some g € @5 concludes the proof, as the total failure
probability P is bounded by

P = fmlog, (g) exp(—4me?/3)

= exp (111 <6m log, (%)) — 4me2/3>

< exp(—me?)

by Assumption B.1. O

Other important weight classes. Let ¢ € Q1. Then we
have [W| > Am. We show that we can find a set of
representatives for W, where each representative z,, is in
a bucket with no other entry larger than ‘;—7’;‘ We set Y, =
{p € [n] | by = h(g) and |z,| > 2},

Lemma B.5. Let g € Q1 and h = h(q). Then with failure
probability at most exp(—me?) there exists a subset Wy C

4
Wt such that [|Wr|[y > (1 — Te) I\V;/’?B\Il and every z, €

W is in a bucket with no other element of Y.

Proof. For z; € W, define X; = 1if h; = h and
X; = 0 otherwise, and set X = ) X,. The expected

+
number of entries from W, at level h is E(X) = \‘;’thl €
[m,bm) by definition of h = h(g). Using Bernstein’s
inequality we get that with failure probability at most

P =exp (%W) < exp(—2€2m), there are at least
(W

Bbh

random subset of size y =
U
W,

(1—2¢) entries of W at level h. We denote a uniform
Wl

Z,h (1 — 2¢) of such entries by

Since ¢ € Q1 we have |[W | > Eé?i,;‘" and thus also
W a-1 .

h = |logy(54)] > log,(52.—) — 1. Since G(z) = 1
there are at most 29~ 'me entries larger or equal to #
The expected number of entries from Y, at level h is thus
bounded by E = QQ_;[L“ < gmaxm?b. To show that the
number is not much larger than that, we define independent
random variables X; = 1 if h; = h and X; = 0 otherwise,
for 7 € Y,. The variance is bounded by

1
ZU?SZW:E'

i€Y, i€Y,

Thus using Bernstein’s inequality we get

_E?
P=P(lY,|>FE+F)<

()

< exp(—2me?).
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Now for z; € Wé consider the random variable X; = 1
if z; is put into a bucket with another entry of Y,, and
X; = 0 otherwise. Set X = Y X;. We have P(X; =
1) < 22 and E(X) < 2Ey The variance is bounded by

~

<0

) <4 Thus up to failure probability

2y
 8Ey/N + ys)
—m(1l — 2¢e)e/2)

we have that at most 2(% + ey) < 4ey entries in W are
in a bucket with another entry of Y;,. (Here the factor of
2 comes from the possibility that z; is placed in a bucket
with another entry of Wé which was put into the bucket
before z;.) We denote by W the subset of W that is in
a bucket with no other entry of Y,, and set y' = [W|.
Note that with with failure probability at most P5, we have

y > Iﬁbh‘(l_Ge)'

Now for z; € W; consider the random variable X; = z; if
zi € W, and X; = 0 otherwise. Again using Bernstein’s
inequality we get

/

|W+|

—(2ey/279)?
< exp < 992 20

= exp (—2y'e?) < exp(—3me?/2).

Py=P(|Wilh < Wgll — 2y'e279)

Wl

Sinceey’271 < e 73 this shows that W' has the desired
properties with failure probability at most P1 + P, + Ps +
Py < dexp(—2me?/2) < exp(—me?). O

Lemma B.6. Let q € Q)1 and assume W from Lemma B.5

exists. Then with failure probability at most e‘m52, for any
zp € Wy we have || B, \ {p} |1 < 3¢lz,.

The proof of Lemma B.6 is similar to the proof of Lemma
B.4.

Contribution of important weight classes. By combining
Lemma B.1, Lemma B.6, and Lemma B.4, we can prove
Theorem 3:

Proof of Theorem 3. By assumption, £ holds. Further, by a
union bound, with failure probability at most
P = dmax eXP(* 52) + (Qmax + ]-) exp(fméﬁ)
< exp(In(2¢max + 1) — me?)
< exp(—me?/2)

for each important weight class there exists W, as in
Lemma B.5, and the events of Lemmas B.4 and B.6 hold.

For ¢ < log, ( ) we set W = W, We have

ﬁmq
RCOEEDS
qEQ* ,zp EW

> Y (1=3e) Wyl

(1 —3e)z,b" 3

qeQ”

> > (1-3)(1-7¢ )th<q>; ph(@) 3
qeQ*

> (1 —10e)(1 — 5¢")GT(2)

> (1 —60)GT(2).

The first inequality follows by Lemma B.6 and Lemma B 4.
The second follows by Lemma B.5 and the third one by
Lemma B.1. O

B.2. Net argument

Next we show that for all z we have G*(Sz) > (1 —
¢’)G*(z) with high probability. We need the following
lemma:

Lemma B.7. Let z,e € R™ with G(e) < 5o G(2).
Then it holds that Gt(z + e) = (1 £ )G (2) and
Gt (S(z+e)) = (1 £&)G1(Sz). Further, if GT(Sz) >
(1 —¢")G(2), then GT(S(z+€)) > (1 — 4 )G (2 + e).

Proof. A simple case distinction shows that for all v, v" € R
it holds that | max{v’,0} — max{v,0}| < |v' — v|: If both
v and v have the same sign then either | max{v’,0} —
max{v,0}| = 0 or | max{v’,0} — max{v,0} = |v' — 9|,
and if v and v’ have different signs then |[v' — v| = |[v| +
|v] > | max{v’,0} — max{v,0}|. Thus we have

G (2 +e) = GT(2)]
< Z | max{z; + e;,0} — max{z;, 0}

i€[n]
< G(e) <eG(z)
/
< %G(z) <eGH(2).
It holds that G(Se) < b'maxG(e) since all entries in S
are bounded by bmax and each entry of e is multiplied by
exactly one non-zero entry of .S. Hence

|IGT(S(z+e)) — GT(S2)| < G(Se)
< bmaxGe)
!
< %G(z) <GH(2).
Finally if G*(Sz) > (1 —&’)G™ (z) then by combining the

previous inequalities we get

GT(S(z+e))
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> GH(S2) — £GH(2)

> (1 -G (2) -G (2)

> (1-€)GT(z+e) —'GT(2) —GT(2)
> (1-€)GT(z+e) —2'GT(2)
>(1-€)GT(z+e)—2GT(z+¢e)/(1-¢)
> (1-4e")GT(z +e).

Now we are ready to prove Theorem 4.

Proof of Theorem 4. With failure probability at most 9, we
can assume that £ holds. Since Gt(az) = a(GT(2))
forall z € R* and a € R>¢, it suffices to show that
G*(Sz) > (1 — €')GT(2) holds for all 2 € R? with
G(z) =1. Weset M = (@] Consider the set N, =

{(n1,...,n4)57 | n1+---+ng = M}. The set N, consists
d
bhnnx o
of at most <(1 + ) ) = (exp (dln (1 + m—s)))
elements as hp.x = Ilng (%) By Theorem 3 and a

union bound we have that GT(S2) > (1 — 60¢’)GT(2)
holds for all z € N. with failure probability at most

exp (dIn (1 + ) exp(—me?/2) < § since dln(1 +

L) —me?/2 < In(6) by Assumption B.1. For each z
with G(z) = 1 there exists 2’ € N, such that G(z' — z) <
7rear - Thus we can apply Lemma B.7 and get G*(Sz) >

(1 — 240¢")G*(z). The total failure probability is at most
24 using the union bound. O

B.3. Dilation bounds

Our first dilation bound is very simple but yields only an
hmax = O(log n) approximation.
Lemma B.8. We have E(GT(52)) < hmaxG(2).

Proof. The expected contribution of z; is less than 0 if z; <
0. If zz >0 then the expected contribution is upper bounded
by Zh“‘%* b3 b Bz = Zh‘“%" 2 = hmaxz; With equality
if and only if all z; are greater or equal to zero. Thus

Z Zihmax = hmaxG+(z)-

27;20

E(GT(8z)) <

O

We can achieve a better constant dilation by considering
only the top buckets at each level. More precisely set K =
Bmlog(™) + Bmblogy(be ') = O(mblogy(be~t)). We

define
= Zﬁbh > G (Ln,)
1€[K]

where L, ; denotes the level h bucket with the i-th largest
sum of entries among all level i buckets. It is important

here to take the buckets with the largest contributions to
preserve the convexity of the objective as pointed out in
(Clarkson & Woodruff, 2015), since the resulting function
is related to the Ky Fan norm and is thus convex. The
proof of the bounded contraction of G} (Sz), Theorem
5, only requires lower bounds on G*(Ly, ;) for those at
most K buckets in level h containing some member of W
there are at most 2™ entries greater or equal to 5. For
other important weight classes, the cardinality of W* is
bounded by bm and the number of important weight classes
W, with h(q) = h is bounded by log,(be~"), as it must
hold that [W,"| € [3mb", ﬂmbh“}, [W;r[27¢ < = and
(W2t = Wl =

dm

ﬁmbh Gmax < 2q < Zﬁmbh'“ Gmax )
e - €

Thus if the estimator for G (z) uses only the largest buckets
with the largest sums, the proven bounds on contraction con-
tinue to hold, and in particular G} (Sz) > (1 —&')GT(z).
To show that the dilation of G} (Sz) is constant we need
the following lemma, which shows that the probability that
an important entry of W, gets placed at a much higher level
than h(q) is low. This way we can bound the contribution
that entries have at higher levels.

Lemma B.9. Ler ¢ = logy(nhimas). With failure prob-
ability at most § the event £' holds that there is no entry

Zp S Wq wzthq < q’ andhp > hq = h( )+10gb (q b’m)

Proof. Let ¢ < ¢'. For any coordinate p and any level

h, the probability that h, > h can be bounded by

Zi‘:; 11 ﬂblh, <3 i since b > 2. Thus the expected num-

ber of coordinates z, € W, with h;, > h, is bounded by
Wyl _ btim s
<

< —
bha — bha - q/

This also gives us an upper bound for the probability that
there is no coordinate in W, with h,, > hy. Using the union
bound for all ¢ < ¢’ completes the proof. O

Proof of Theorem 5. Assume that £ holds. Note that the
expected contribution of any entry z, is at most z,Amax,
and thus the expected contribution of all entries less than
or equal to 1 is at most 1. It remains to show that for
each g < ¢’ the expected contribution of VVJr is bounded by
C||W,Fl1. We consider the expected contribution of Wik
at level h and distinguish three cases:

. _ In(hAmaxN)
Case 1: h = h(q) — k for k > log;, (N ——22x=2)

For z; € W, consider again the random variable X; = 1
if h; = h, and X; = 0 otherwise, and set X = > X,.
The expected number of entries from I/VqJr at level h is
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W,
E(X) = Bbh

> 0; <E(X) as X is a sum of Bernoulli random variables.
Using Bernstein’s inequality we get that |G/(Ly,) N W,| <
2B~'b="|W,F| with failure probability at most

—(E(X))*
3200 ) 5PV

Hence we can assume that the number of entries in each

2w/ Em
T < 25 = In(hmaxN).

> N In(hypaxN). For the variance we have

P; =exp (

bucket at level A is at most

Next for each bucket and each z; € W, we consider the
random variable Z = > Z; where Z; = 1 if entry 4 is in
the corresponding bucket, and Z; = 0 otherwise. Then the
variance is bounded by + - 12 + 1- 5> < Z. Applying
Bernstein’s inequality gives us

bEm —\?
P(Z>2—+4+X) < —_— | .
(Z 2275+ )—eXp(2N~J%+2A/3)
For A = In(hmaxV) this implies P(Z > 2“% +A) =
O((hmaxN)™1). Using the union bound, the probability

. . k .
that there exists a bucket with at least bTm + A coordinates

can be bounded by P = O((hmax)il) Further we have
Wl > [WH279 > 279" .

The expected contribution of W;’ at level h can thus be
bounded by

3w,
BVPN

A=P 2 BWHY S + K ( ) Ze

_ 3K _
< (0tso + 552) 1wy 1 = 0w .

Summing over at most h,.x levels we have that the contri-
bution in this case is bounded by O(1)||[W ;.

Case 2: h = h(q) + k for k > log, (q/%)

By &’ (see Lemma B.9), the set L, N VVqJr is empty, and
thus the expected contribution in this case is 0.

Case 3: h > h(q) — logb(W) and h < h(q) +
log,, (q'%).

Note that log,( W

) + log, (#) is constant
since b > max {m, 5’1} by Assumption B.1, and thus
N = M and the expected contribution of each level is

at most constant. The total expected contribution is thus
oMW . O

Proof of Theorem 2. The result follows by combining The-
orem 4 and Theorem 5 and substituting 240¢’ by €. The
poly(udlogn) bound on the sketch size follows from
7 = Nhmax = Nhmax = O(N logn) and by using As-
sumption B.1 for bounding V. O

C. Omitted details from Section 4

To show Theorem 6 we will first define the notions of sen-
sitivities, VC-dimension, and the range space induced by a
set of functions.

Definition C.1. (Langberg & Schulman, 2010) Consider a
family of functions F = {g1, ..., gn} mapping from R< to
[0, 00) and weighted by w € RZ . The sensitivity of g; for
fw(z) = Z?:1 wzgv(z) is

w;g; ()
fuw()
where sup is over all x € R? with f,,(z) > 0. If this set is
empty then s; = 0. The total sensitivity is S =Y "' | ;.

)

S = Sup

The sensitivity of a point bounds the maximal relative con-
tribution to the target function the point can have. Com-
puting the sensitivities is often intractable and necessitates
approximating the original optimization problem close to
optimality. However, this is the problem that we want to
solve, see (Braverman et al., 2016). Fortunately, for our
applications it suffices to obtain a reasonable upper bound
for the sensitivities.

Definition C.2. A range space is a pair R = (F,ranges)
where F is a set and ranges is a family of subsets of F.
The VC dimension A(R) of R is the size |G| of the largest
subset G C F such that G is shattered by ranges, i.e.,
{GN R | R € ranges}| = 2/¢1.

Definition C.3. Let F be a finite set of functions map-
ping from R? to R>o. For every x ¢ R? and r €
R>o, let rangey(z,r) = {f € F | f(z) > r}, and
ranges(F) = {ranger(z,7) | * € R%r € Rsq}, and
Ry = (F,ranges(F)) be the range space induced by F.

The VC-dimension can be thought of as something similar
to the dimension of our problem. For example the VC-
dimension of the set of hyperplane classifiers in R is d + 1.
The sensitivity scores were combined with a theory on the
VC dimension of range spaces in (Braverman et al., 2016).
We employ a more recent version from (Feldman et al.,
2020).

Proposition C.4. (Feldman et al., 2020) Consider a family
of functions F = {f1, ..., fn} mapping from R% to [0, o)
and a vector of weights w € RZ. Lete,6 € (0,1/2). Let
$; > <. Let S =31 s; > &. Given s; one can compute
in time O(|F|) a set R C F of

oG (amsem(5)))

weighted functions such that with probability 1 — §, we have
for all x € R? simultaneously

S wifi@) - Y whie)| <e 3 wifila),

fi€F fi€R fi€eF
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where each element of R is sampled i.i.d. with probability
pj = 2 from F, u; = % denotes the weight of a function
fi € R that corresponds to f; € F, and where A is an
upper bound on the VC dimension of the range space R r~
induced by F* obtained by defining F* to be the set of

functions f; € F, where each function is scaled by jﬁ%r
J

Now we show how Proposition C.4 can be used to approxi-
mate our loss function on the negative domain. We define
gi(x) = min{g(a;z), In(2)}.

Lemma C.5. The range space induced by F = {g; | i €
[n]} satisfies A(Rx) < d+ 1.

Proof. Note that g is invertible and monotone. Let G C F,
x € R and r € R. For r > In(2) we have range (7, 1) =
(), otherwise (for 7 < In(2)) we have

rangeg(z,7) = {g; € G | gi(z) > r}
={gi € Glax>g " (r)}.

Hence

[{rangeq(x,7) | € R%, 7 € Rso}]

={{gi €Glaw—g7'(r) >0} |z € R r <In(2)}
U {0}

S’{{giEG|aix—720}\m€Rd,TeR}‘.

The last set is the set of points that is shattered by the
affine hyperplane classifier a; — 14,,—r>0. Its VC di-
mension is thus d 4+ 1 (Kearns & Vazirani, 1994), implying
[{rangeq(z,7) | 2 € RY,r € Rsg}| = 2!l can only hold
if |G| < d + 1, and thus the VC dimension of F is at most
d+1. O

We set fin(z) = ﬁ for all z € RY.

Corollary C.6. The range space induced by F = {g; | i €
(0]} U { fmin} satisfies A(RF) < d + 2.

Proof. Assume there exists G C F with |G| > d + 3
and {GN R | R € ranges(F)} = 2. Then we have
for G' = G\ {fuin} |G| 2 d+2and {G'NR | R €
ranges(F)} = 2" contradicting Lemma C.5. O

Now we are ready to prove Theorem 6.

Proof of Theorem 6. We want to apply Proposition C.4 to
F ={gi|i € [n]} U{fmin}.- By Corollary C.6 the VC-
dimension of F is at most d + 2. Note that the sensitivity
of any function, in particular of f,,;,, is at most 1 and for
the sensitivity of any function other than f,;, we have

gi(z) _ In(2)p
S blip fmin(x) S n

gi(z)
penitt (0} J((AZ) ™) + foin (@)

and the total sensitivity is thus bounded by In(2)u + 1.
Hence we can use Proposition C.4 and with failure prob-
ability at most 1, we get a subset 7 of F = {g; | ¢ €
[7]} U { fmin} and a weight vector u such that

Y file) = Y wifi@)| <e . filw).

fie]-' fiER fie]-'
As itholds that }° c » fi(z) = f((Az)™) + %, and since
the weight of fiin is 1, this implies for R = R\ {fin}
that we have an error A of at most

A= > fila)= ) wifi(x)

Fi€F\{fmin} fi€R’
<e Y filw)
fi€eF
<e > fila) + z
fqie}—\{fmin} M
< 3ef(Ax).

The last inequality follows from Lemma 2.2, and using that
J(AZ) = 371 c 7\ { fusny Ji(@). This proves the first part of
the theorem.

Observe that the expected contribution of row a; is P(g; €
R)a;u; = %%g(aix) = g(a;x). Thus the second statement
follows by linearity of expectation. O

D. Omitted details from Section 5

Proof of Corollary 5.2. We need one streaming pass over
the data in O(nnz(A)) time to draw a uniform random
sample T' from Theorem 6 and to compute A’ = SA. Now
compute the z* minimizing the convex objective function
f(Tx*) + G (A'z*). This can be done using the ellipsoid
method on the following convex program: we have one
variable z; for i € [d]. For each row t; of T, construct a
variable v; and a constraint v; > t;z. Similarly for each
row a; of A’ construct a variable v; > 0 and a constraint
v; > ala. The objective is to minimize the convex function

D ogw) + Y 0l

The convex program has poly(udlogn) many variables
and thus the running time is also poly(udlogn). Using
the same analysis as in the previous proof shows that the
solution 2’ we get satisfies

f(Az") < O(1) min f(Az)

with constant probability. O

E. Omitted details from Section 6
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| Dataset | n | d | Source \

Covertype | 581012 | 54 | https://archive.ics.uci.edu/ml/datasets/Covertype

Webspam | 350000 | 128 | https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary. html#webspam
Kddcup 494021 | 33 | https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

Synthetic | 100000 | 2 -

Table 1. Summary of the datasets: d is given without intercept. Datasets are downloaded resp. generated automatically by our open code.
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Figure 3. Comparison of the approximation ratios with added noise.
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Figure 4. Comparison of sketching resp. sampling times vs. accuracy.
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Figure 5. Comparison of total running times including optimization vs. accuracy.
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