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In this appendix, we provide all proofs as well as additional results which did not fit to the main body of the paper. You can
find details of numerical experiments.

A. Additional Results
A.1. Incompatibility of Log-Linear model
To demonstrate that the RKHS assumption and log-linear model are difficult to reconcile, suppose that λ belongs to a finite
dimensional RKHS. Then E[N(A)] =

∫
A
λ(x)dx =

∫
A
φ(x)>θdx = ϕ(A)>θ. With this linear structure, we obey that

E[N(A ∪B)] = E[N(A)] + E[N(B)] = (ϕ(A) + ϕ(B))>θ.

Now imposing a log-linear model we say that there exists a ψ(A) s.t. ϕ(A)>θ
!
= exp(η>ψ(A)), where ψ(A) represent the

set A. The Poisson process structure stipulates that again that

exp(η>ψ(A)) + exp(η>ψ(B)) = exp(η>ψ(A ∪B))

for all A,B disjoint, where feature representation ψ(A∪B) cannot be linear as is the representation ϕ. Given this constraint,
it is unclear how to incorporate similarity between different sensing regions with RKHS assumption.

If we were to ignore this modeling issue, and sacrifice statistical efficiency by choosing a rich representation for ψ, then
indeed one could model the response with a generalized linear model. In that case, one can either regress on the log of
the counts or use likelihood principle. The log-Poisson noise is sub-Gaussian and hence standard results apply directly.
Another option is to use generalized linear bandits Filippi et al. (2010); Jun et al. (2017) with likelihood. Unfortunately
Poisson responses are not covered by the theory of the previous works since they assume bounded rewards. Apart from
logarithmic transformation, another standard approach to count data, would warrant variance stabilization transformation
such as Anscombe transformation, however while such transformation leads to better behavior in regression, the non-linear
link function would break again the same linear structure associated with the Poisson process.

A.2. Information Directed Sampling (IDS)
As we saw in the main text, CAPTURE-UCB does not change its decision rule depending on the feedback mode. This seems
unsatisfactory as one might expect that the semi-bandit feedback introduces a more complex trade-off in terms of reward
versus the gained information. When one views the semi-bandit feedback of count-record as observing a collections of
actions {ϕ>Bθ}B⊂A, but suffering the instantaneous regret on a different action, ϕ>Aθ, we can see that this fits the so called
partial monitoring framework.

Recently, Kirschner et al. (2020) proposed to use Information Directed Sampling (IDS) to solve linear partial monitoring
problems including semi-bandit feedback. For semi-bandit feedback IDS has the same asymptotic regret as UCB, but
the algorithm is more appealing due to its different treatment of histogram and count-record feedback. IDS optimizes a
distribution P over actions A that minimizes the expected ratio of regret gap and information gain:

PIDS = arg min
p∈[0,1]|A|,

∑
A pA=1

EA∼p
[
gapt(A)2

]
EA∼p [w(A)2It(A)]

, (12)

where by regret gap we mean the worst case instantenous regret which can be estimated as a convex program:

gapt(A) = max
θ

max
Ā∈A

θ>(ϕĀ − ϕA)

subject to (10).
(13)

The information gain can be chosen from multiple sound choices, perhaps the most natural candidate is:

It(A) = log det(I + ΥAV−1
t Υ>A), (14)
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where ΥA is the feature decomposition of A in terms of partition B as (ΥA)B := ϕB for all B ∈ B and B ⊂ A. However,
different efficient information gains are often better performing such as information gain on optimistic action. Let ϕUCB be
the current optimistic action, then

IUCB
t (A) = log det(1 + ϕ>UCBV−1

t ϕUCB)− log det(1 + ϕ>UCB(Vt + ΥAΥ>A)−1ϕUCB).

It is known that the optimal distribution p is supported only on two actions (Russo and Van Roy, 2014), and can be calculated
efficiently. We show it in the experiments with the hope that it might perform better on count-record feedback, which we
observe in San Francisco benchmark.

A.3. Generalized Representer Theorem
If we were to maintain the general form of the estimator (3), we could use representer theorem once the positivity constraint
could be enforced only on finite number of points or over finite number of sets. Agrell (2019) and Aubin-Frankowski and
Szabó (2020) show that one can enforce positivity in this manner heuristically, or even provably by tightening the finite
number constraints as λ(xi) ≥ ‖λ‖k ζi, where ζi is the tightening parameter associated to point xi. In such provable case,
one needs to create and ε-net of the whole domain and enforce it on each xi forming ε-net. Such approach is similar in spirit
to positive triangle basis but thorough evaluation of this is out of scope of this paper.

Having the above conditions fulfilled, one can show a simple corollary of the classical representer theorem (Schölkopf et al.,
2001) that similar result still applies.

Corollary 1 (Generalized Representer Theorem). Let {(Ai, ni)}ni=1 be data in form of Borel sets Ai and counts ni. Let k
be a real valued kernel. The optimization problem

arg min
f∈Hk

c(f, {Ai, yi, }ni=1, {xj}Nj=1) + g(‖f‖k) (15)

where c is a cost function where dependence on Ai enters via
∫
Ai
f(x)dx and where g : R→ R+ is monotone increasing,

then any minimizer admins a representation s.t. f(x) =
∑n
i=1 αi

∫
Ai
k(z, x)dz +

∑N
j=1 βjk(xj , x).

Proof. An element of Hk can be written in span of ϕ(Ai) =
∫
Ai
k(z, ·)dz for i ∈ [n] and k(xj , ·) for j ∈ [N ], and its

complement v, f =
∑n
i=1 αi

∫
Ai
k(z, ·)dz +

∑N
j=1 βjk(xj , ·) + v. Then, for any j ∈ [n],

∫
Aj

f(x)dx =

∫
Aj

〈
n∑
i=1

αi

∫
Ai

k(z, ·)dz +

N∑
k=1

βkk(xk, ·) + v, k(·, x)〉 dx

= 〈
n∑
i=1

αi

∫
Ai

k(z, ·)dz +

N∑
k=1

βkk(xk, ·) + v,

∫
Aj

k(·, x)dx〉

= 〈
n∑
i=1

αi

∫
Ai

k(z, ·)dz +

N∑
k=1

βkk(xk, ·),
∫
Aj

k(·, x)dx〉

where due to orthogonality the expression does not depends on v. Likewise,

f(x)dx = 〈
n∑
i=1

αi

∫
Ai

k(z, ·)dz +

N∑
k=1

βkk(xk, ·) + v, k(·, x)〉

= 〈
n∑
i=1

αi

∫
Ai

k(z, ·)dz +

N∑
k=1

βkk(xk, ·), k(·, x)〉 .

Secondly, due to orthogonality

‖f‖k =

∥∥∥∥∥
n∑
i=1

αi

∫
Ai

k(z, ·)dz +

N∑
k=1

βkk(xk, ·) + v

∥∥∥∥∥
k
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=

√√√√∥∥∥∥∥
n∑
i=1

αi

∫
Ai

k(z, ·)dz

∥∥∥∥∥
2

k

+

∥∥∥∥∥
N∑
k=1

βkk(xk, ·)

∥∥∥∥∥
2

k

+ ‖v‖2k ≥

∥∥∥∥∥
n∑
i=1

αi

∫
Ai

k(z, ·)dz +

N∑
k=1

βkk(xk, ·)

∥∥∥∥∥
k

.

where v can be chosen to be zero.

A.4. Optimality conditions: Linear Regression
For linear regression formulated in (3) with triangle basis, the KKT conditions for θ̂ can be written as there exists ξ ∈ R2m

s.t. ξ ≥ 0, and

(ΦΣ−1Φ> + Iγ)θ − Φ>Σ−1n+ ξ>Λ = 0 (16)

ξ>Λθ = 0 (17)

The equations can be rewritten as follows using the model assumption n = Φ>θ∗ + ε.

(ΦΣ−1Φ> + Iγ)θ − Φ>Σ−1(Φθ∗ + ε) + ξ>Λ = (ΦΣ−1Φ> + Iγ)(θ − θ∗) + γθ∗ + Φ>Σ−1ε+ ξ>Λ = 0

and further,
(ΦΣ−1Φ> + Iγ)1/2(θ − θ∗) = −(ΦΣ−1Φ> + Iγ)−1/2(γθ∗ + Φ>Σ−1ε+ ξ>Λ)

‖θ − θ∗‖2Vt
≤ γ2

∥∥(Vt)
−1θ∗

∥∥2
+
∥∥ξ>Λ

∥∥2

(Vt)−1 +
∥∥Φ>Σ−1ε

∥∥2

(Vt)−1 (18)

≤ γ ‖θ∗‖22 +
∥∥ξ>Λ

∥∥2

(Vt)−1 +
∥∥Φ>Σ−1ε

∥∥2

(Vt)−1 (19)

This is the way to derive ellipsoidal sets from the optimality conditions. Notice that if θ is in the interior of the constraint set,
ξ = 0 and the solution boils down to standard ridge regularized least-squares error.

A.5. Optimality conditions: Trace Regression
The trace-regression formulation is a conic optimization problem where the solution lies in the intersection of second order
as well as PSD cone. To give a KKT characterization we rather appeal to the semi-infinite quadratic formulation of the
problem. After vectorization the problem becomes:

min
vec Θ∈Rm2

t∑
i=1

1

σ2
i

(vec Θ> vec Ψi − ni)2 + γ ‖vec Θ‖22

subject to vec(xx>)> vec Θ ≥ 0 ∀ x ∈ Rm
2

Notice that, if Θ was known to us the two follwoing constraint conditions were equivalent:

x>Θx ≥ 0 ∀ x ∈ Rm
2

⇔ v>i Θvi ≥ 0 ∀ vi s.t. Θvi = ηivi and ‖vi‖22 = 1.

This means that the feasibility of the solution can be checked by verifying only finite number of constraint. Hence the
optimality for Θ can be written in the same form as above (16)

(ΦΣ−1Φ> + Iγ) vec Θ− Φ>Σ−1n+ ξ>Λ = 0 (20)

ξ>Λ vec Θ = 0 (21)

with the difference that Φi: = vec(Ψi) and Λi: = vec(viv
>
i ), and ξ ∈ Rm. This means, that for the trace-regression the

same inequality holds,

‖vec Θ− vec Θ∗‖2Vt
≤ γ ‖vec Θ∗‖22 +

∥∥µ>Λ̄
∥∥2

(Vt)−1 +
∥∥Φ>Σ−1ε

∥∥2

(Vt)−1 (22)
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B. Adaptive Confidence Sets and Proofs
We split the proof and analysis that eventually leads to the Theorem 1 into two parts. First, we identify a non-negative
super-martingale for Poisson noise by scaling. Then having this in the following subsection, we use a method of pseudo-
maximization to bound the normalized residuals.

B.1. Non-negative Super-martingales scaled for Poisson tails
Let us first define the necessary notation and then jump directly to the main result of this section in Lemma 2. We spit the
Lemma 1 to two parts. First, we show existence of k and then we show that it can be found by a simple root finding program
in Lemma 3.

Note that the results are stated in terms of general B ≥ 1, but for the algorithm and correction we always use B = 1. The
necessary generality in terms of B is only for sake of generality.

The necessary notation:

St :=

t∑
i=1

xi
σ2
i

εi Vt :=

t∑
i=1

xix
>
i

σ2
i

+ γI (23)

and
Mt(x) := exp(x>St −

1

2
‖x‖2Vt

). (24)

Lemma 2 (Super-martingale). Let εi = zi − µi, where zi ∼ Poisson(µi), for i ∈ [t], where µ > 0, and ‖xi‖2 ≤ U and
‖x‖ ≤ B (B ≥ 1), then there exists a finite ki(BU, µi) ≥ 1 such that, where σ2

i = kµi and E[σ2
i |Fi−1] = σ2

i , Mt(x) is
adapted super-martingale for each ‖x‖2 ≤ B, with M0(x) = 1.

Proof.

E[Mt(x)|Ft−1] = E[exp(〈x, St〉 −
1

2
‖x‖2Vt

)|Ft−1] (25)

= Mt(x)E
[
exp

(
εt
σ̄2
t

x>xt −
1

2σ2
t

(x>xt)
2

)
|Ft−1

]
(26)

Let us calculate the first expectation i.e. moment generating function of Poisson distribution,

E[exp(
εt
σ2
t

x>xt)] = E[exp(
Xt − µt
σ2
t

x>xt)] = exp(−µt
σ2
t

x>xt)E[exp(
Xt(xt)

>x

σ2
t

)] (27)

= exp(−µt
σ2
t

x>xt) exp(µt(e
(x>t x)/σ2

t − 1)). (28)

Combining the (26) and (28), we see that the process is super-martingale if the exponent of exp is negative in other words,

−1

2

(x>xt)
2

σ2
t

− (x>xt)µt
σ2
t

+ µt(e
(x>t x)/σ2

t − 1) = −1

2

(x>xt)
2

ktµt
− (x>xt)

kt
+ µt(e

(x>t x)/ktµt − 1) ≤ 0

⇔ −1

2

(x>xt)
2

ktµ2
t

− (x>xt)

ktµt
+ (e(x>t x)/ktµt − 1) ≤ 0︸ ︷︷ ︸

g(k,x>t x/µt)

where the equivalence is by µt > 0. If µt = 0 the process is super-martingale trivially. We show that the g is increasing as
k →∞, and the limit is of g is located at zero. This intuitively means that g as function of k has to approach zero from below.
Hence there exists k∗ s.t. any k ≥ k∗(Z/µ), g is negative for a given Z and µ. Let us use shorthand Z := maxx∈D x

>xt,
where |Z| ≤ ‖xt‖ ‖x‖ ≤ UB and drop the subscript t.

Firstly, note that limk→∞ g(k, µt, x
>
t ) = 0. Secondly,

∂kg(k, Z/µ) =
Z2

2k2µ2
+

Z

k2µ
− Z

µk2
exp(Z/µk) =

Z2

2µ2k2
+O

(
1

k3

)
,

where the leading term is positive, which proves the result. Should U = 0, the result holds trivially with any k.
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Corollary 2. Under assumption of Lemma 2,

P(|S>t x| ≥ log(1/δ) +
1

2
‖x‖Vt

) ≤ δ

for ‖x‖2 ≤ B.

Proof. Follows from straightforward application of Ville’s theorem.

The next lemma demonstrates that k can be solved as root finding problem. The proof splits the problem to two parts for
positive and negative Z. For negative Z, g is always dominated by Z = 0. For positive, g first decreases as Z grows from
zero, but then eventually increases, suggesting that the extremum occurs either at maximal positive Z or Z = 0.

Lemma 3. Under assumptions of Lemma 2, the smallest k∗(BU/µ) for any x>xt ∈ [−BU,BU ], where B ≥ 1 and U ≥ 0,
can be calculated by solving the following optimization problem:

k∗(BU/µ) = arg min
k≥1

k subject to − 1

2

(UB)2

kµ2
− UB

kµ
+ (eUB/kµ − 1) ≤ 0 (29)

Proof. Let g be as in the proof of Lemma 2. In fact, what we want to show that the optimization problem,

arg min
k≥1

k subject to − 1

2

(Z)2

kµ2
− Z

kµ
+ (eZ/kµ − 1) ≤ 0 ∀Z ∈ [−UB,UB]

is equivalent to (29). Let us use shorthand h(k) = supZ − 1
2

(Z)2

kµ2 − Z
kµ + (eZ/kµ − 1).

Let us split the problem by first showing that optimum occur either at Z = 0 or Z = UB. If Z = 0 is the optimum then
trivially for any k, h(k) = 0 including k = 1. In that case plugging in Z = UB instead of 0, would arrive also at k = 1 as
well, since g(k, 0) ≥ g(k, UB).

For the maximum to occur at Z 6= 0, h(k) ≥ 0. The first term − 1
2

(Z)2

kµ2 − Z
kµ is monotonically decreasing in Z, while the

second (eZ/kµ − 1) is monotonically increasing in Z, but asymptotically the second term prevails. As near Z = 0 + ε,
for arbitrarily small positive ε, the ∂Zg(k, ε) < 0 for k > 1, hence there exists Z∗ s.t. h(Z∗) = 0, but Z∗ 6= 0 and
∂Zg(k, Z) ≥ 0 for Z ≥ Z∗. Thus if UB ≥ Z∗, the optimum occurs at Z = UB; otherwise it occurs at Z = 0.

In the above we considered only positive domain. For negative Z, Z = −|V |, we show that ∂Zg(k,−|V |) ≥ 0. Hence the
function is increasing as a function of −|V |, thus for all Z ≤ 0, g(k, Z) ≤ g(k, 0) = 0.

Notice than the condition in Lemma 3 is specified for each value of µt separately. Hence we hope that values with already
large variance µ do not need to be scaled by large constants. Only the small values for µ are unreliable and need to be scaled.
For further values depending on the bound U , we provide in the Figure 3a, and in Figure 3b we show the blow-up in the
denominator. Standard sub-Gaussian variable would follow the dashed line, while for Poisson we increase the variance
accordingly. For large µ the standard sub-Gaussian treatment becomes valid.

(a) Scaling of the variance k∗(U/µ)µ as
a function of µ, we see that as µ→∞ k
is close to 1. In fact, this is not at all very
asymptotic.

(b) The value of critical k∗ − 1 s.t. M(x)
is super-martingale.

(c) The value of k∗(c) − 1, where c =
U/µ.

Figure 3. Empirical exploration of the quantities k∗(µ), k∗(U/µ) and k∗(µ)µ. B = 1.
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B.2. Qualitative behavior of the variance scaling parameter
The following Lemmas demonstrate extreme behavior and monotonicity properties of k∗(U/µ)µ. For example, as µ→ 0,
the confidence sets do not blow-up to infinity, but instead they very slowly converge to zero variance; expected behavior.

Lemma 4 (µ→ 0). Under the assumptions of Lemma 2, B = 1, let k∗ be such as in (29) then, k∗(U/µ)µ is monotonically
decreasing in µ and,

k∗(U/µ)µ = O
(

U

log(U/µ)

)
as µ→ 0

Proof. The monotonicity is proved as a special case of Lemma 7. Let c = U/µ. We know that as a function of c, k(c) is
increasing due to Lemma 6. Let us use an ansatz k(c) = c/f(c), where f(c) has strictly smaller asymptotic growth than c
to maintain monotonicity.

−c2/2k − c/k + exp(c/k)− 1 = −cf(c)

2
− f(c) + exp(f(c))− 1 = 0

As c→∞, the dominating terms are cf(c) and exp(f(c)), hence they need to balance for the implicit relationship to hold
as O(cf(c)) = O(exp(f(c))). Thus coming to conclusion that f(c) = O(log(c)).

Hence asymptotically as c→∞, k(c)/c = log(c). Rearranging and using c = U/µ, k(U/µ)µ = U
log(U/µ) , which finishes

the proof.

Lemma 5 (µ→∞). Under the assumptions of Lemma 2, B = 1, let k∗ be such as in (29) then, limµ→∞ k∗(µ) = 1.

Proof. The asymptotic expansion of g(k, U/µ) = −U2

2kµ2 + U2

2k2µ2 +O( 1
µ3 ) ≤ 0. Hence, in order to be negative, asymptotically,

k can be chosen to be close 1.

Lemma 6 (Monotonicity). k∗(c1) ≥ k∗(c2) where c1 ≥ c2 and in particular, k∗(U/µ1) ≥ k∗(U/µ2) when µ1 ≤ µ2.

Proof. The second statement follows from the more general statement k∗(c1) ≥ k∗(c2) where c1 ≥ c2. We prove it by
showing that ∂ck∗(c) ≥ 0 for all c.5

We use implicit definition of k∗ as:

−1

2

c2

k∗
− c

k∗
+ (ec/k

∗
− 1) = 0 (30)

By differentiation

− c

k∗
+

c2

2(k∗)2

dk∗

dc
− 1

k∗
+

c

(k∗)2

dk∗

dc
+ exp(c/k∗)

(
1

k∗
− c

(k∗)2

dk∗

dc

)
= 0

reorganizing, we find that

dk∗

dc
=
k∗

c

(
c+ 1− exp(c/k∗)

c/2 + 1− exp(c/k∗)

)
.

Now we look at numerator and denominator separately and show that they are both negative. Multiplying both numerator
and denominator by c/k∗, we get for denominator:

c2

2k
+
c

k
− c/k exp(c/k)

(30)
= (exp(c/k)− 1)− c/k exp(c/k)

= −1 + exp(c/k)︸ ︷︷ ︸
≥1

(1− c/k) ≤ −1 + exp(c/k)︸ ︷︷ ︸
≥1

exp(−c/k) = 0.

5The handling of individual cases becomes tedious. We are unfortunately not aware of better proof.
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For numerator:

c2

k
+

2c

k
− c

k
− c/k exp(c/k)

(30)
= − c

k
+ 2(exp(c/k)− 1)− c/k exp(c/k)

=
1

2
(−(1 +

c

k
) + exp(c/k)︸ ︷︷ ︸

≥1

(1− c/2k)

≤ 1

2
(−(1 +

c

k
) + exp(c/k)︸ ︷︷ ︸

≥1

(1− c/2k)

The above as function of c/k at c/k = 0 is zero. Its first derivative in c/k is non-negative always:

2(−1/2 + exp(c/k)(1− c/2k)− exp(c/k)/2) = 2(−1/2 + 1/2 exp(c/k)(1− c/k) ≤ 2(−1/2 + 1/2) = 0.

Hence c2

k + 2c
k −

c
k − c/k exp(c/k) ≤ 0 as well. This shows that dk

∗

dc = k∗

c

(
c+1−exp(c/k∗)
c/2+1−exp(c/k∗)

)
≥ 0, which finished the

proof.

Lemma 7 (Monotonicity II). k∗(c1)/c1 ≤ k∗(c2)/c2 where c1 ≥ c2.

Proof. Using the similar ideas as in Proof of Lemma 6,

d

dc
(k∗(c)/c) =

dk

dc

1

c
− k

c2
=

k

c2

(
c+ 1− exp(c/k)

c/2 + 1− exp(c/k)
− 1

)
=

k

c2

(
c/2

c/2 + 1− exp(c/k)

)
≤ 0,

as the numerator is positive but the denominator is negative as in the proof of Lemma 6.

Lemma 8 (Growth in terms of B). Let U ≥ 0 fixed, then for any p > 1, there exist B̃(U/µ, p) such that for any B ≥ B̃,

B1/p

k∗(UB/µ)
≤ 1

k∗(U/µ)
. (31)

Proof. Rearranging the statement it is equivalent to showing that there exists B̃ s.t. B ≥ B̃.

k∗(U/µ) ≤ k∗(UB/µ)B−1/p.

We show this statement by showing that as B →∞, k∗ ≥ O(B). Hence for any p > 1, there must be a point when this
outgrows it.

Rearranging (29)

k∗(cB) =
B2c2 + 2Bc

2(exp(Bc/k∗)− 1)
≥ B2c2 + 2Bc

2(exp(Bc)− 1)
=

Bc2 + 2c

2
∑∞
j=1B

j−1 cj

j!

= Bc/2 + o(B),

which proves the result.

B.3. Confidence sets and pseudo-maximization
In the following proposition we combine techniques from Abbasi-Yadkori et al. (2011), de la Peña et al. (2009) and Faury
et al. (2020) to bound the norm of the noise process St.

Surprisingly, the nearly concurrent work of Faury et al. (2020) implements very similar ideas which we employ for our
purposes. We use the technique of pseudo-maximization, where we integrate

∫
x
Mt(x)dx in such a way that it maintains

martingale and dependence on ‖St‖V−1
t

. After integration, we simply use Ville’s maximal inequality for non-negative
super-martingales. The challenge is that we cannot integrate Mt(x) over the whole Rm instead only on ‖x‖2 ≤ 1.
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Proposition 1. Let εi = zi−µi, where zi ∼ Poisson(µi), for i ∈ [t], where µ > 0, and ‖xi‖2 ≤ U , xi ∈ Rm for all i ∈ [t].
For δ ∈ (0, 1) and k ∈ (0, 1),

P

(
t ≥ 0 : ‖St‖V−1

t
≥ √γk +

1
√
γk

log

(
1

δ

det(Vt)
1/2

det(γI)1/2

)
+

m
√
γk

log

(
1

1− k

))
≤ δ (32)

where St =
∑t
i=1

xi

σ2
i
εi, Vt :=

∑t
i=1

xix
>
i

σ2
i

+ γI, and E[σt|Ft−1] = σt, where also σ2
t ≥ k∗t µt, where k∗t satisfies (29).

Proof. Let k ∈ (0, 1). By Lemma Lemma 20.3 of Szepesvari and Lattimore (2019) the following process is also non-negative
martingale:

M̄t =

∫
‖x‖2≤1

M(x)dh(x) (33)

where h is probability density function with support on ‖x‖2 ≤ 1. Now using Ville’s inequality

P

(
t ≥ 0 : sup log(M̄t) ≥ log

(
1

δ

))
≤ δ

Let us compute the integral (33), or in fact a lower bound for it. Let h be a truncated normal distribution with inverse
variance γ, and N(h) the normalization factor. Also let Ṽt = Vt − γI be a covariance matrix without the regularization.
The actual correction will be based on U as in the statement of the theorem.

Also, let us use shorthand f(x) = x>St − x>Vtx = f(x∗) + ∇f(x∗)>(x − x∗) − (x − x∗)>Vt(x − x∗), where
x∗ = arg max‖x‖2≤k f(x) where k ∈ (0, 1).

M̄t =
1

N(h)

∫
‖x‖2≤1

exp(x>St − x>Ṽtx)h(x)dx

=
exp(f(x∗))

N(h)

∫
‖x‖2≤1

exp((x− x∗)>∇f(x∗)− (x− x∗)>Vt(x− x∗))dx

=
exp(f(x∗))

N(h)

∫
‖y+x∗‖2≤1

exp(y>∇f(x∗)− y>Vty)dy

≥ exp(f(x∗))

N(h)

∫
‖y‖2≤(1−k)

exp(y>∇f(x∗)− y>Vty)dy

=
exp(f(x∗))

N(h)

∫
‖y‖2≤(1−k)

exp(y>∇f(x∗)) exp(−y>Vty)dy

=
exp(f(x∗))N(g)

N(h)
Eg[exp(y>∇f(x∗))]

where g ∝ exp(− 1
2y
>2Vty) is truncated normal distribution on ball with the radius (1− k) and N(g) is its normalization

constant.

M̄t ≥
exp(f(x∗))N(g)

N(h)
Eg[exp(y>∇f(x∗))] (34)

Jensen
≥ exp(f(x∗))N(g)

N(h)
exp(Eg[y>∇f(x∗)]) (35)

=
exp(f(x∗))N(g)

N(h)
(36)

Now using Ville’s inequality,

δ ≥ P
(
t ≥ 0 : sup

t
log
(
M̄t

)
≥ log(1/δ)

)
≥ P

(
t ≥ 0 : f(x∗) log

(
N(g)

N(h)

)
≥ log(1/δ)

)
(37)
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= P

(
t ≥ 0 : f(x∗) ≥ log

(
N(h)

δN(g)

))
(38)

= P

(
t ≥ 0 : max

‖x‖2≤k
x>St − x>Vtx ≥ log

(
N(h)

δN(g)

))
(39)

≥ P
(
t ≥ 0 : x>St − x>Vtx ≥ log

(
N(h)

δN(g)

))
(40)

(41)

In particular plugging in x =
V−1

t St

‖St‖V−1
t

√
γk, which has bounded norm ‖x‖2 ≤ k, leads to:

δ ≥ P

(
t ≥ 0 : ‖St‖V−1

t

√
γk − S>t V−1

t VtV
−1
t St

‖St‖2V−1
t

γk2 ≥ log

(
N(h)

δN(g)

))
(42)

≥ P
(
t ≥ 0 : ‖St‖V−1

t

√
γk − γk2 ≥ log

(
N(h)

δN(g)

))
(43)

≥ P
(
t ≥ 0 : ‖St‖V−1

t
≥ √γk +

1
√
γk

log
(

((1− k)
√
γ)−m det(Vt)

1/2δ−1
))

(44)

= P

(
t ≥ 0 : ‖St‖V−1

t
≥ √γk +

1
√
γk

log

(
1

δ

det(Vt)
1/2

det(γI)1/2

)
+

m
√
γk

log

(
1

1− k

))
(45)

We use Lemma 9 in the second to last step to bound the log(N(h)/N(g)).

Lemma 9 (Generalized version of Lemma 6 of Faury et al. (2020)). Let the normalization constants be as in the Proof of
Proposition 1.

log

(
N(h)

N(g)

)
≤ log

(
(1− k)−mγ−m/2 det(Vt)

1/2
)

(46)

Proof.

N(h) =

∫
‖x‖2≤

exp(−γ ‖x‖2)

≤ (2γ)−m/2
∫
‖x‖2≤B

√
2γ

exp(−1

2
‖x‖2)

N(g) =

∫
‖x‖2≤(1−k)

exp

(
1

2
x>2Vtx

)
dx

= det(2Vt)
−1/2

∫
∥∥∥2−1/2V

−1/2
t x

∥∥∥
2
≤(1−k)

exp

(
−1

2
‖x‖22

)
dx

≥ det(2Vt)
−1/2

∫
‖x‖2≤(1−k)

√
2γ

exp

(
−1

2
‖x‖22

)
dx

Now we have

N(h)

N(g)
≤ γ−m/2 det(Vt)

1/2

∫
‖x‖2≤

√
2γ

exp(− 1
2 ‖x‖

2
)∫

‖x‖2≤(1−k)
√

2γ
exp

(
1
2 ‖x‖

2
2

)
dx
≤ (1− k)−mγ−m/2 det(Vt)

1/2

as ∫
‖x‖2≤

√
2γ

exp(− 1
2 ‖x‖

2
)∫

‖x‖2≤(1−k)
√

2γ
exp

(
1
2 ‖x‖

2
2

)
dx
≤ volume(

√
2γ)

volume((1− k)
√

2γ)
≤ (1− k)−m
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These results can be combined to our main theorem.

Theorem 3 (Poisson Concentration, Theorem 1 in the main text). Let δ ∈ (0, 1), then under assumption of Poisson feedback
and Assumptions 1, 2, the solution to (3) or (3) satisfies

‖θ − θ∗‖Vt
≤

√(
√
γ/2 +

2
√
γ

log

(
1

δ

det(Vt)1/2

det(γI)1/2

)
+

2m
√
γ

log (2)

)2

+ ‖Λ>ξ‖2V−1
t

+ γ ‖θ∗‖2 (47)

with 1 − δ, where Vt =
∑t
i=1

xixi

σ2
t

and σ2
t is such that σ2

t = k∗µt as in (29) and E[σ2
t |Ft−1] = σ2

t . The ξ is a dual
variable associated with satisfying the constraints in the KKT conditions for the optimization problem (16).

Proof of Theorem 1. Using the optimality conditions 6: (
X>Σ−1X + Iγ

)
θ̂ + XΣ−1n+ Λ>ξ = 0(

X>Σ−1X + Iγ
)
θ̂ + X>Σ−1(Xθ∗ + ε) + Λ>ξ = 0 (model)(

X>Σ−1X + Iγ
)

(θ̂ − θ∗) = X>Σ−1ε−Λ>ξ − γθ∗(
X>Σ−1X + Iγ

)1/2
(θ̂ − θ∗) =

(
X>Σ−1X + Iγ

)−1/2 (
X>Σ−1ε−Λ>ξ − γθ∗

)
V

1/2
t (θ̂ − θ∗) = V

−1/2
t

(
X>Σ−1ε−Λ>ξ − γθ∗

)∥∥∥θ̂ − θ∗∥∥∥2

Vt

≤ ‖St‖2V−1
t

+
∥∥Λ>ξ∥∥2

V−1
t

+ γ2θ∗V−1
t θ∗∥∥∥θ̂ − θ∗∥∥∥2

Vt

≤ ‖St‖2V−1
t

+
∥∥Λ>ξ∥∥2

V−1
t

+ γ ‖θ∗‖2∥∥∥θ̂ − θ∗∥∥∥2

Vt

≤
(
√
γk +

1
√
γk

log

(
1

δ

det(Vt)
1/2

det(γI)1/2

)
+

m
√
γk

log

(
1

1− k

))2

+
∥∥Λ>ξ∥∥2

V−1
t

+ γ ‖θ∗‖2 (Prop. 1)

Using k = 2 in particular finished the proof.

∥∥∥θ̂ − θ∗∥∥∥2

Vt

≤
(
√
γ/2 +

2
√
γ

log

(
1

δ

det(Vt)
1/2

det(γI)1/2

)
+

2m
√
γ

log (2)

)2

+
∥∥Λ>ξ∥∥2

V−1
t

+ γ ‖θ∗‖2

∥∥∥θ̂ − θ∗∥∥∥2

Vt

≤

(
√
γ/2 +

1
√
γ

log

((
1

δ

)2
det(Vt)

det(γI)

)
+

2m
√
γ

log (2)

)2

+
∥∥Λ>ξ∥∥2

V−1
t

+ γ ‖θ∗‖2
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C. Regret bound and Proofs
C.1. Information Gain
Let us start with the definition of information gain:

Definition 1 (Approximate Variance scaled Information Gain). Given a finite dimensional representation of k(x, y) =∑m
i=1 Φi(x)Φi(y), the information gain can be expressed as

γT (γ, k) := log det

(
T∑
t=1

Φ(zt)Φ(zt)
>

σ2
t

+ γI

)
− log det(γI) = log det

(
T∑
t=1

Φ(zt)Φ(zt)
>

γσ2
t

+ I

)
, (48)

which can be re-expressed as,

γT ({γσ2
t }, k) = log det

(
K + D(σ2γ)

)
− log det(D(σ2γ))

where K ∈ RT×T and D is a diagonalization operator, where D(σγ) contains σ2
t γ on the diagonal.

The information gain studied here has been introduced in Srinivas et al. (2010), and was originally studied with γ = 1 due
to connections with Bayesian framework (Kanagawa et al., 2018). Srinivas et al. (2010) provides bounds on information
gain via greedy maximization perspective. Mutný and Krause (2018) uses Gaussian quadrature to derive bounds on this
quantity for stationary kernels. Additional bounds can be found in works of Vakili et al. (2021).

First, we present a claim presented in the paper than for any finite dimensional bounded feature representation, there exist
dimension dependent bound.

Lemma 10 (Linear basis bound). Let k̃(x, y) = φ(x)>φ(x) where ‖φ(x)‖∞ ≤ u and be s s.t. for all t, σ2
t ≥ s2. Then,

γT ({σ2
t }, k) ≤ m log

(
1 + Tu2

γs

)
Proof.

γT ({γσ2
t }, k) = log det

(
T∑
t=1

Φ(xt)Φ(xt)
>

γσ2
t

+ I

)
≤ log det

(
T∑
t=1

Φ(xt)Φ(xt)
>

γs2
+ I

)

≤ log

 m∏
j=1

(

T∑
t=1

(Φ(xt)i)
2

γs2
+ 1)

 ≤ m log(1 +
u2

s2γ
)

C.2. Information Gain for Triangle Basis
In this section we show that as m→∞ grows for triangle basis, information gain converges to the information gain with
kernel k defined on T points. By Lemma 3 in Mutný and Krause (2018), for |k(x, y)− k̃(x, y)|∞ ≤ ε, then for K ∈ RT×T
(Lemma 3 in the above):

K− K̃ � εT,

Lemma 11 (Triangle basis). Let k̃(x, y) = Φ(x)>Φ(x) be triangle basis approximation to kernel k, then γT (k̃) ≤
γT (k) + T 2ε

γs +O(ε2), where ε denotes the maximum point-wise approximation and s ≥ maxt σt.

Proof.

γT = log det

(
T∑
t=1

Φ(xt)Φ(xt)
>

γσ2
t

+ I

)
= log det

(
T∑
t=1

Γ1/2φ(xt)φ(xt)
>Γ1/2

γσ2
t

+ I

)
= log

(
det
(
Φ>ΓΦ + D

)
det(D−1)

)
≤ log det (K + ITε+ D)− log det(D)

= log(det(K + D))− log det(D) + Tr((K + D)−1)Tε+O(ε2)

≤ log(det(K + D))− log det(D) +
T 2ε

γs
+O(ε2)

As ε(m)→ 0 as m→ 0, γT (k̃)→ γT (k).
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C.3. Information Gain for Trace Regression
The following Lemma shows that the trace-regression formulation for a fixed dimensionality is equivalent to RKHS space
formed by squaring the kernel.

Lemma 12 (Hk = Hk̃2). If k̃(x, y) =
∑m
i=1 ψi(x)ψi(y) then the spaces f(·) = Ψ(·)>ΘΨ(·) with ‖Θ‖F bounded and

RKHS with k = k̃2 are the same.

Proof. We first prove one way:

f = Tr(ΘΨΨ>) = vec(Θ)> vec(ΨΨ>) =

m2∑
i=1

vec(ΨΨ>)i vec(Θ)>i (49)

=

m2∑
i=1

(I⊗Ψ)i: vec(Ψ) vec(Θ)>i =

m2∑
i=1

φiθi (50)

where the new kernel can be identified as k(x, y) =
∑m2

i=1 φi(x)φi(y) =
∑m2

i=1(I ⊗ Ψ(x))i: vec(Ψ(x))(I ⊗
Ψ(y))i: vec(Ψ(y)) = (Ψ(x)>Ψ(y))2 = k̃(x, y)2

The other way

f =

n∑
i=1

k̃(xi, x)2αi =

n∑
i=1

k̃(xi, x)k̃(xi, x)αi =

m∑
j=1

m∑
l=1

n∑
i=1

αiψj(x)ψj(xi)ψl(x)ψl(xi)

=

m∑
j=1

m∑
l=1

(
n∑
i=1

αiψj(xi)ψl(xi)

)
ψl(x)ψj(x) =

m∑
j=1

m∑
l=1

Θijψl(x)ψj(x) = Ψ(x)>ΘΨ(x).

Proposition 2 (Trace Regression InfoGain). Let k̃(x, y) =
∑m
i=1 ψi(x)ψi(y) have the representation then the information

gain associated with trace regression defined via basis of k̃, have the information gain equal to:

γT (k) = log det

(
T∑
t=1

1

σ2
i

vec(Ψ(xi)Ψ(xi)
>) vec(Ψ(xi)Ψ(xi)

>)> + γI

)
− log det(γI)

satisfying
γT (k) = γT (k̃2)

Proof. Note that vec(ΦΦ>) =
∑m
i=1 ei ⊗ ΦΦ>ei. Consequently,

vec(Ψ(xi)Ψ(xi)
>) vec(Ψ(xi)Ψ(xi)

>)> = Ψ(xi)Ψ(xi)
> ⊗Ψ(xi)Ψ(xi)

>

γT (k) = log det

(
T∑
t=1

1

σ2
i

vec(Ψ(xi)Ψ(xi)
>) vec(Ψ(xi)Ψ(xi)

>)> + γI

)
− log det(γI) (51)

= log det

(
T∑
t=1

1

σ2
i

Ψ(xi)Ψ(xi)
> ⊗Ψ(xi)Ψ(xi)

> + γIm ⊗ Im

)
− log det(γIm ⊗ Im) (52)

= log det

(
T∑
t=1

1

σ2
i

(Ψ(xi)⊗Ψ(xi))(Ψ(xi)⊗Ψ(xi))
> + γIm ⊗ Im

)
− log det(γIm ⊗ Im) (53)

(∗) = log
(
γm

2

det
(
ΨDΨ> + Im ⊗ Im

))
−m log det(γIm) (54)

where Ψ ∈ Rd2×T and Dii = 1
γσ2

i
for i ∈ [T ]. Using Weinstein–Aronszajn:
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(∗) = log
(
γm

2

det
(
D1/2Ψ>ΨD1/2 + IT

))
−m log det(γIm) (55)

= log
(
γm

2

det
(
D1/2(K ◦K)D1/2 + IT

))
−m log det(γIm) (56)

Alternatively the proof follows directly from Lemma 12.

C.4. Information Gain via Approximations: QFF
This lemma shows in general that finite basis approximation can generate bounds for information gain. These results can be
combined with trace-regression or imposing positivity on finite number of points in the context of this work:

Lemma 13. Let |k(x, y)− k̃(x, y)|∞ ≤ ε where k̃ is the finite basis approximation,

γT = log det(K/γ + I) ≤ log det
(
Φ>Φ + γIm

)
− log det (γIm) + T log((1 +

εT

γ
)γm/T−1)

≤ m log

(
1 +

maxx,i Φ(x)2
iT

γ

)
+ T log((1 +

εT

γ
)γm/T−1))

Proof.

γT = log det

(
K

γ
+ I

)
≤ log det

(
K̃

γ
+

IεT

γ
+ I

)
concave
≤ log det

(
K̃

γ
+ I

)
+ log det

(
IεT

γ
+ I

)
= log det

(
ΦΦ>

γ
+ I

)
+ log det

(
IεT

γ
+ I

)
= log det

(
Φ>Φ + γIm

)
− log det (γIT ) + log det

(
IεT

γ
+ I

)
= log det

(
Φ>Φ + γIm

)
−m log det(Imγ)− (T −m) log (γ) + T log(1 +

εT

γ
)

Using QFF with squared exponential kernel, ε = C exp(−m1/d), and the max-norm is equal to 1. Then choosing
m = (2 log T )d.

γT ≤ (2 log T )d log(1 + T/γ)−T log((1 +
C

Tγ
))︸ ︷︷ ︸

≤Cγ−1

−T
(

(2 log T )d

T
− 1

)
log(γ)︸ ︷︷ ︸

≤0 for γ≥1

≤ O(log(T )d+1)

or

γT ≤ (2 log T )d log(1 + T/γ)−T log((1 +
C

Tγ
))︸ ︷︷ ︸

≤Cγ−1

+
(
(2 log T )d − T−1

)
log(γ)︸ ︷︷ ︸

≤0 for γ≤1

≤ O(log(T )d+1)

which is a classical result from Srinivas et al. (2010). Using ε = Cm−s/d for kernels that generate s-times continuously
differentiable functions gives bounds for Matérn kernels.

Remark 1: Bayesian version of information gain follows with γ = 1, and the second terms vastly simplifies. The
frequentist setting is much more complicated since the strength of regularization in finite basis approximation does not have
the same strength in the kernelized one and needs to be taken into account, by properly rescaling γ in order to have the same
capacity. However, the overall asymptotic scaling as T →∞ does not change.

C.5. The Effect of Integration on Information Gain
Since we are using integral measurements in our problem, we are not using point functionals to evaluate members of
RKHS via 〈k(x, ·), f〉k = f(x). Instead we are using different evaluation elements zA =

∫
A
k(a, ·)dx to evaluate∫

A
f(x)dx = 〈zA, f〉k.
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Hence formulating the kernelized version leads to kernel values KA1,A2
= 〈zA1

, zA2
〉k (instead of the usual Kij =

〈k(·, xi), k(·, xj)〉k).

Note that each

KA1,A2 = 〈zA1 , zA2〉k =

∫
A1

∫
A2

k(x, y)dxdy = k(x̃, ỹ) vol(A1) vol(A2). (57)

where x̃ ∈ A1 and ỹ ∈ A2 such that the equality holds and vol denotes the volume of the set. Since kernel k is continuous
in both variable, this is choice is possible due to mean value theorem.

Consequently for positive kernels kernel defined for the integral measurements can be K = D(vol)K̃D(vol), where K̃ is
the standard pointwise defined kernel on the elements in the respective sets.

Formally, we summarize this in the following Lemma.

Lemma 14. For continuous kernel k, the information gain with integral actions can be upper-bounded by

γT (K) = log det(D(vol)K̃D(vol) + Σ)− log det(Σ) ≤ γT ({γσt/ vol(At)
2}, k)

as in Definition 1, where K̃ is the classical pointwise kernel with K̃ij = k(xi, xj), for specific xi ∈ Ai and xj ∈ Aj , and
K is integral evaluation as in Equation (57).

Due to the previous result, analyzing information gain γT can be related to the classical definition with new regularization
parameter γ̃ = maxi∈[T ]

γ
vol(Ai)2

. Additionally, any worst case bounds measuring worst case point allocation will hold also
in this case. These bounds are usually formulated with γ = 1, which can be directly related by adjusting γ in the algorithm
such that the overall γ̃ = 1. Also, if γ̃ > 1, the bounds are still valid. Most importantly, for stationary kernels, asymptotic
dependence does not change with the regularization constant as we have demonstrated in Appendix ??.

C.6. Auxiliary lemmas

Lemma 15 (Monotonicity of variances). For any t and any A ∈ A, σ2
t−1(A) ≥ σ2

t (A).

Proof.
σ2
t−1(A) = max

µ∈[lcbt−1(A),ucbt−1(A)]
µk∗(τt−1(B)µ)

Lemma 6
≥ max

µ∈[lcbt−1(A),ucbt−1(A)]
µk∗(τt(B)µ)

≥ max
µ∈[lcbt(A),ucbt(A)]

µk∗(τt(B)µ) = σ2
t (A).

Lemma 16 (Lemma 11 in Hazan et al. (2007)). Let xt be t = 1 . . . n, then Vt =
∑t
i=1 xix

>
i + V0, where V0 � 0,

n∑
t=1

x>t V−1
t xt ≤

n∑
t=1

log

(
det(Vt)

det(Vt−1)

)
= log det(Vn)− log det(V0). (58)

C.7. Regret: Histogram feedback

Corollary 3 (Histogram Regret). Let δ ∈ (0, 1), then under assumption of Poisson feedback, Assumption 1 and 2. CAPTURE-
UCB with heteroscedasdic linear regression and histogram feedback suffers

RT ≤ 2
√
ρT∆βt(δ,A)γT (A)

with probability 1−δ,
√
β(δ) =

√(√
γ/2 + 2√

γ log
(

1
δ

det(Vt)1/2

det(γI)1/2

)
+ 2m√

γ log (2)
)2

+ ‖Λ>ξ‖2V−1
t

+ γu, where Ξ denotes

the maximum norm of dual variable ‖ξt‖ ≤ Ξ for all t, γT as in Definition (1), ∆ is the fixed sensing duration, and
ρ = maxt∈T σ

2
t−1(At).
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Proof. In the following proof we use finite dimensional representation where ϕAt
=
∫
At
φ(x)dx and

∫
At
λ(x)dx = ϕ>At

θ∗.

R({(At,∆)}Tt=1) =

T∑
t=1

∆w(At,∆)
ϕ>A∗θ

∗∆

w(A∗,∆)
− ϕ>At

θ∗∆ (59)

≤
T∑
t=1

∆w(At)
ucbt(A

∗)

w(A∗)
−∆ϕ>At

θ∗ (60)

optimism
≤

T∑
t=1

∆w(At)
ucbt(At)

w(At)
−∆ϕ>At

θ∗ (61)

=

T∑
t=1

∆(ucbt(At)− ϕ>At
θ∗) (62)

≤
T∑
t=1

∆ max
θ∈Ct

(θ − θ∗)>ϕAt
≤

T∑
t=1

∆ max
θ∈Ct

‖θ − θ∗‖Vt
‖ϕAt

‖(Vt)−1 (63)

≤
T∑
t=1

∆ max
θ∈Ct

∥∥∥θ − θ̂t + θ̂t − θ∗
∥∥∥

Vt

‖ϕAt
‖V−1

t
(64)

(9)
≤

T∑
t=1

2∆β
1/2
t ‖ϕAt

‖(Vt)−1 ≤
√
βT∆T

√√√√ T∑
t=1

∆ ‖ϕAt
‖2(Vt)−1 (65)

T∑
t=1

∆ ‖ϕAt‖
2
(Vt)−1 =

T∑
t=1

Tr
(
(Vt)

−1∆ϕAtϕ
>
At

)
(66)

=

T∑
t=1

Tr


t−1∑
j=1

ϕAj
ϕ>Atj

σ2
j (Aj)

+ γI

−1

∆ϕAtϕ
>
At

 (67)

≤
T∑
t=1

σ2
t−1(At) Tr

(
Ṽ−1
t (Vt −Vt−1)

)
(68)

(58)
≤

T∑
t=1

σ2
t−1(At) log

(
det(Vt)

det(Vt−1)

)
≤

T∑
t=1

σ2
t−1(At) log

(
det(Vt)

det(Vt−1)

)
(69)

≤ ρ(log det(VT )− log det(γI)) = ργT (70)

where the second to last step follows by Lemma 15, and ρ = maxt∈T σ
2
t−1(At), which is finite and depends only on u.

C.8. Regret: Count-record feedback

Corollary 4 (Count-record Regret). Let δ ∈ (0, 1), then under assumption of Poisson feedback, Assumptions 1, 2 and B be
a fixed partition. CAPTURE-UCB with heteroscedasdic linear regression and count-record feedback suffers

RT ≤ 2
√
ρT∆βt(δ,B)γT (B)

with probability 1−δ,
√
β(δ) =

√(√
γ/2 + 2√

γ log
(

1
δ

det(Vt)1/2

det(γI)1/2

)
+ 2m√

γ log (2)
)2

+ ‖Λ>ξ‖2V−1
t

+ γu, where Ξ denotes

the maximum norm of dual variable ‖ξt‖ ≤ Ξ for all t, γT as in Definition (1), ∆ is the fixed sensing duration, and
ρ = maxt∈T maxB∈At

σ2
t−1(B).

Proof.

R({(At,∆t)}Tt=1) =

T∑
t=1

∆w(At,∆)
ϕ>A∗θ

∗∆

w(A∗,∆)
− ϕ>At

θ∗∆ (71)
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≤
T∑
t=1

∆w(At)
ucbt(A

∗)

w(A∗)
−∆tϕ

>
At
θ∗ ≤

T∑
t=1

∆w(At)
ucbt(At)

w(At)
−∆ϕ>At

θ∗ (72)

≤
T∑
t=1

∆(ucbt(At)− ϕ>At
θ∗) (73)

≤ ∆

T∑
t=1

max
θ∈Ct

(θ − θ∗)>
∑
B⊂At

ϕB ≤ ∆

T∑
t=1

∑
B⊂At

max
θB∈Ct

‖θB − θ∗‖Vt
‖ϕB‖V−1

t
(74)

≤
T∑
t=1

∆
∑
B⊂At

max
θ∈Ct

∥∥∥θB − θ̂t + θ̂t − θ∗
∥∥∥

Vt

‖ϕB‖V−1
t

(75)

≤
T∑
t=1

2∆β
1/2
t

∑
B⊂At

‖ϕB‖V−1
t

Jensen
≤ 2

T∑
t=1

∆tβ
1/2
t

√ ∑
B⊂At

ϕ>BV−1
t ϕB (76)

CS
≤ 2

√√√√ T∑
t=1

βt∆

√√√√ T∑
t=1

∆
∑
B⊂At

ϕ>BV−1
t ϕB (77)

We analyze the two terms in square roots separately. First,

T∑
t=1

∆
∑
B⊂At

ϕ>BV−1
t ϕB =

T∑
t=1

∆ Tr

(
V−1
t

∑
B⊂At

ϕBϕ
>
B

)

(∗) =

T∑
t=1

∆ Tr


t−1∑
j=1

∑
B⊂Aj

ϕBϕ
>
B

σj(B)2
+ γI

−1 ∑
B⊂At

ϕBϕ
>
B


Using a shorthand, Vt+1 −Vt =

∑
B⊂At

1
σ2
t (B)

ϕBϕ
>
B∆.

(∗) ≤
T∑
t=1

Tr

(
max
B∈At

σ2
t−1(B)V−1

t+1(Vt+1 −Vt)

)
(58)
≤

T∑
t=1

max
B∈At

σ2
t−1(B) log

(
det(Vt+1)

det(Vt)

)
Lemma (15)
≤

T∑
t=1

max
B∈At

σ2
t−1(B) log

(
det(Vt+1)

det(Vt)

)
≤ max

t∈T
max
B∈At

σ2
t−1(B)γT (B).

C.9. Information Gain: Histogram vs Count-record Feedback
In the previous subsection we have identified that the regret of a method depends on the maximum information gain γT .
Depending on the feedback form the value of maximum information gain differs. In general, γT (B) tends to be larger than
γT (A) since the other contains potentially more independent vectors. To demonstrate this fact let us assume B:

γT (A) = log det

(
t∑
i=1

1

σt(At)2γ
ϕAt

ϕ>At
+ I

)
= log det

(
t∑
i=1

1

σt(At)2γ

∑
B′⊂At

∑
B⊂At

ϕBϕ
>
B′ + I

)
. (78)

Whereas playing the same actions,

γT (B) = log det

(
t∑
i=1

∑
B⊂At

1

σt(B)2γ
ϕBϕ

>
B + I

)
. (79)

Hence γT (A) does not contain a lot of cross terms which γT (A) contains, however the scaling of variances σt(B2 and
σt(A)2 is different. Despite the fact that smaller sensing sets B often having a bigger correction k∗, it is still reasonable
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to assume to expect for most applications that σt(A)2 ≥ σt(B)2. In fact, if we assume that σt(At)2 is at least as big as
multiple of the constituent σt(B)2, we can formally relate them. If there was no correction k∗, this would always be satisfied,
since Poisson responses have a variance growing with the mean value. For k∗ ≈ 1, this is satisfied approximately.

Lemma 17 (Count-record vs Histogram). If σt(B)2#(A) ≤ σt(At)2 for all B ⊂ At and t ∈ [T ], where #(A) denotes the
number of B that cover At.

γT (A) ≤ γT (B)

Proof. Let us use a shorthand: ΥA is the feature decomposition of A in terms of partition B as (ΥA)B := ϕB for all B ∈
B and B ⊂ A. Also, let SA be a matrix full of ones with the size S ∈ R#A×#A

γT (A) = log det

(
t∑
i=1

1

σt(At)2γ

∑
B′⊂At

∑
B⊂At

ϕBϕ
>
B′ + I

)

= log det

(
t∑
i=1

1

σt(At)2γ
ΥAtSAtΥ

>
At

+ I

)

≤ log det

(
t∑
i=1

#(A)

σt(At)2γ
ΥAtΥ

>
At

+ I

)

≤ log det

(
t∑
i=1

1

γ

ΥAt
Υ>At

σt(B)2
+ I

)
= log det

(
t∑
i=1

1

γ

∑
B⊂At

1

σt(B)2
ϕBϕ

>
B + I

)
= γT (B)

In the second line we used that the maximum eigenvalue of SAt
is at most #(A), and in the third we used the assumption in

the statement of the lemma.
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D. Details of Numerical Experiments
D.1. Values of U for common kernels
We use two common feature representation in our work

Name U L∞ error as function of m
QFF = 1 O(exp(−m))

Triangle basis ≤ 1 ≤ m−1 (Conjecture m−2)

The value of ‖θ‖2 ≤ u, and hence, the largest µ in the experiments is

µ(A) = ϕ>Aθ∆ ≤ ‖ϕA‖ ‖θ‖∆ =

∥∥∥∥∫
A

φ(x)dx

∥∥∥∥u∆ ≤ vol(A)Uu∆.

D.2. Practical implementation tips
UCB While the calculation of UCB in (10) is a convex program and can be easily implemented, we employ a minor
approximation, where we optimize ucb without the inequality constraints and then threshold the results if they are below or
above the inequality constraints. Similarly, for Θ � we only calculate the upper-bound without the psd constraint as we
found this to be sufficiently good approximation not impacting the correctness of the algorithm.

Superimposability Poisson counts are superimposable – this means that sensing the same regions multiple times can be
merged together as they contain the same amount of information. While the likelihood estimator automatically implements
this feature, we need to enforce it with regression perspective, which can be done in connection with tweaking.

D.3. Further benchmarks

Figure 4. Numerical experiments on additional benchmarks: Each experiment was repeated 5− 10 times. Standard quantiles are depicted
as shaded regions. in a) we investigate choice of empirical β. It seems that the best choice seems to lie around β = 1.5 to 2. The value at
1.5 is even comparable to heuristic of not using correction k∗ at all b) we report toy-problem with concave costs. In c) we report another
Gorilla with different sensing duration.

D.4. Hyper-parameters and Detail
In our experiments, we consider three cases of cost

• uniform w(A) = |A|

• fixed w(A) = |A|+ 0.005 for Gorillas and w(A) = |A|+ 0.002 for toy problem.

• one-off as in the main text.

In the table below, ` designates the lengthscale of the RBF kernel as k(r) = exp(− 1
2`2 r

2). Also, in the table below depth of
A or B signifies how deep was the quadtree for the action and partition B, respectively. Note that the number of actions
grows as 4depth for 2D problems.

Experiment name Domain Kernel Cost
toy-problem [−1, 1] RBF both
Taxis [−1, 1]2 RBF uniform
San Francisco dataset [−1, 1]2 RBF uniform
Gorillas dataset [−1, 1]2 RBF fixed
Gorillas dataset (Appendix) [−1, 1]2 RBF fixed
Beilschmiedia dataset [−1, 1]2 (see below) one-off
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Experiment
name

Params. l u U m ∆ Depth A Depth B Repeats T

toy-problem ` = 0.1 0 4 1 64 5 6 7 10 200
Taxis ` = 0.075 0 5.5 1 202 60 mins 3 N/A 10 100
San Francisco
dataset

` = 0.1 0 7.8 1 302 30 days 4 5 10 120

Gorillas
dataset

` = 0.1 0 12.95 1 252 1 4 5 5 400

Gorillas
dataset
(Appendix)

` = 0.1 0 12.95 1 252 5 4 5 5 200

Beilschmiedia
dataset

` = 0.1 0 ≈ 800 N/A 10× 10 30 4 5 N/A 64

Beilschmiedia This benchmarks differs from other mainly by using different cost model. We use the real dataset and try
to simulate a sensing process from a satellite. Since trees do not have ability to move sensing multiple times does not lead to
any different information and this mode of operation is justified. To model simillarity of the sensing regions we use slope
magnitude and height of the spatial profile as we believe these might be predictive of the habitat.

Namely, we create a smooth model of slope s(x, y) and height h(x, y) with Gaussian process fit and then use these to define
the additive kernel:

k((x, y), (x′, y′)) = exp

(
(s(x, y)− s(x′, y′))2

2`2

)
+ exp

(
(h(x, y)− h(x′, y′))2

2`2

)
.

We do not use directly using this kernel, instead we approximate each additive component with Quadrature Fourier Features
with m = 10 stack them together and then use the trace regression formulation. The trace regression formulation due to its
feature to increase capacity from k to k2 automatically induces cross-terms between the additive components. We found this
model to be sufficiently good in terms of descriptive power and small enough such that the positive definite constraint could
be efficiently enforced. The visual fit of this model can be seen in Figures below.

D.5. Infrastructure
The average runtine of each benchmark is below 6 hours. We run the experiments on a medium size CPU server with 28
cores and used approximately 2GB of memory.

D.6. Pictorial depictions of the problems
In Figure 5 we can see the intensity functions of the benchmarks we used in the experimental section.
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(a) San Francisco burglaries.
(b) Gorillas nesting spots in Cameroon rain forest.

(c) Beilschmiedia - African tree shrub

(d) Porto spontaneous taxi pickups

Figure 5. Experiments and their rates.


