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Abstract
Inhomogeneous Poisson point processes are
widely used models of event occurrences. We
address adaptive sensing of Poisson Point pro-
cesses, namely, maximizing the number of cap-
tured events subject to sensing costs. We encode
prior assumptions on the rate function by model-
ing it as a member of a known reproducing ker-
nel Hilbert space (RKHS). By partitioning the
domain into separate small regions, and using
heteroscedastic linear regression, we propose a
tractable estimator of Poisson process rates for
two feedback models: count-record, where exact
locations of events are observed, and histogram
feedback, where only counts of events are ob-
served. We derive provably accurate anytime con-
fidence estimates for our estimators for sequen-
tially acquired Poisson count data. Using these,
we formulate algorithms based on optimism that
provably incur sublinear count-regret. We demon-
strate the practicality of the method on problems
from crime modeling, revenue maximization as
well as environmental monitoring.

1. Introduction
Poisson point processes are widely used for modeling
discrete event occurrences, with a rich history in probability
theory (Kingman, 2002). Their modeling power is
demonstrated by a multitude of applications in engineering
(Snyder and Miller, 2012), crime rate modeling (Shirota
et al., 2017), measuring genetic biodiversity (Diggle et al.,
2013), environmental monitoring (Heikkinen and Arjas,
1999) and pollutant modeling (Diggle, 2013). In this work,
we design a sequential algorithm for adaptive sensing
of spatio-temporal Poisson processes. Our approach
adaptively focuses on particular regions of the space –
sensing regions – in order to maximize the number of events
captured over time subject to the costs of sensing. Crucially,
we allow the rate of event occurrence to vary smoothly
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over the sensed domain. In particular, we assume the rate
function can be modeled as a member of a reproducing
kernel Hilbert space (RKHS) with a known kernel k.

As a running example, consider surveying spontaneous taxi
requests on a street, e.g., by a visual gesture. Recorded
requests over multiple days are depicted in Fig. 1a, along
with the inferred intensity. The rate function in this case can
be modeled as smooth function. For simplicity, suppose that
the intensity is time invariant. As operators, we might be in-
terested in servicing as many requests as possible by allocat-
ing taxi cars to different areas. In this application, a sensing
action corresponds to such an allocation of sending taxis to
a certain region of a city and waiting there for requests. The
sensing regions are sets arising from hierarchically splitting
the domain (cf. Fig. 1a), corresponding roughly to small
city blocks. The cost of each action – sensing region – can
be reasonably chosen to be proportional to the area of the
sensing as it takes more taxi drivers to cover a larger area.

2. Background
Let D ⊂ Rd be a compact subset. An inhomogeneous
spatio-temporal Poisson point process P is a random pro-
cess such that for any subset A ⊂ D, N(A) denotes the
random variable representing the number of events in A
for a unit duration and n(A) a realization of this random
variable. IfA,B ⊂ D andA∩B = ∅ thenN(A) andN(B)
are independent. In addition, the process has an associated
intensity function λ(x), where the number of events sensed
during unit time in A is distributed as,

N(A) ∼ Poisson
(∫

A

λ(x)dx

)
. (1)

These conditions fully specify a Poisson process (Snyder
and Miller, 2012).

2.1. Sensing Problem: Capturing Events
We consider the problem of adaptive sensing of Poisson
processes – capturing of as many events of P as possible
subject to the cost of sensing. We act sequentially by picking
sensing regions, obtaining some feedback about the process
within them at some cost, with the goal minimize count-
regret. Below, we elaborate on these aspects.
Actions In our abstract framework, sensors can be placed
to monitor a subset of the domain D for a certain duration
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Figure 1. a) The estimated rate of taxi requests along with raw observational data in red, as well as a quadtree sensing structure generating
rectangular sensing regions. The blue regions are examples of sensing regions - only events inside it are observed. b) An example of
binning with B: An illustrative rate function is depicted in orange. The difference between the two feedback models is demonstrated in
selected regions. c) This figure refers to Section 5. We depict the values of scaled variances due to the heavier tail of Poisson random
variables, as a function of the true variance. To construct estimators with confidence set guarantees we need to normalize the residuals of
linear regression by scaled variances instead of true variances as is customary. The relation depicts scaled variances k∗µ as function of
true variance µ. We see that as µ gets larger, no scaling is necessary since Poisson tail behaves Gaussian-like. This scaling depends on
norm of feature vectors U .

∆. We refer to such a sensing event as an action. The set
of actions is parametrized by a collection of sets A, where
to simplify the exposition we assume |A| <∞.

Feedback models In each iteration, we pick a sensing
action A, i.e., a measurement region and a duration ∆. We
then receive feedback about the events which occurred in A
only. We distinguish two important feedback modes:
• Count-record feedback: We obtain the number of

events n(A), and the locations of events {xi}n(A)
i=1 in

A during period ∆.
• Histogram feedback: We only receive the number of

events in A, n(A) for the duration period ∆. 1

The count-record feedback has been investigated in the con-
text of geostatistics with passively collected data, and health
surveillance (Diggle et al., 2013). The histogram feedback
can be motivated, e.g., by limitations of the sensing tech-
nology, or by privacy reasons, as sometimes it might not be
desirable to reveal, e.g., locations of sick individuals. In the
taxi pickups example, the taxi driver might not be collecting
the exact locations of passengers, but rather just counting
the number of passengers in the current city block.

Costs Each of the actions A has an associated cost
wt(A,∆), where the cost function wt : A → R is
known and potentially time dependent. A reasonable as-
sumption in practice is that the cost is time uniform and
w(A,∆) = w(|A|,∆) depends on the volume (area) of
the sensed set and the duration of sensing. We will fix
∆t = ∆ to be a fixed minimum sensing time duration.
Should a longer sensing duration be desired, the action can

1Terminology from Snyder and Miller (2012).

be repeated if the costs permit it. Now, we mention three
important classes of costs: a) uniform costs: w(A) ∝ |A|, a
natural notion modeling that the cost of monitoring a sens-
ing region A is proportional to its size. b) Concave costs:
w(A) ∝ g(|A|), where g is monotone concave. This class
of costs allows to model, e.g., fixed setup costs, and puts
preference over larger sets. Without concave cost structure,
sensing the smallest regions of A is always preferred over
any other strategy using larger sets. When including, e.g., a
fixed cost to sensing, it can be beneficial to first sense large
sets before narrowing down to promising regions. Lastly, we
introduce c) one-off costs: wt(A) = |A|+∞× IA=Aii≤t,
where I is an indicator function of whether we sensed that
region already. The cost is infinite for any region that we
already sensed. This covers a practically important scenario,
where regions cannot be sensed multiple times.2

Count-Regret We want to spend our budget in the most
effective way by minimizing the following count-regret,

RT :=

T∑
t=1

∆t

(
wt(At,∆t)

E[N(A∗t )]

wt(A∗t ,∆t)
− E[N(At)]

)
,

(2)
where RT is a function of {(At,∆t)

T
t=1}. This regret

represents the average number of missed events due
to investment of the budget {wt(At)}Tt=1 to potentially
suboptimal actions, in terms of their expected count to
cost ratio. The above expression (2) simplifies significantly
when cost is proportional to the sensed duration ∆t – which
is why we use it in our work. In case of the one-off costs,

2A similar cost is studied in the context of valuable item dis-
covery in Vanchinathan et al. (2015), but with a different regret
measure and sub-Gaussian noise.
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the best sensing action at time t, A∗t depends on the prior
choices of the algorithm. In that sense, with this cost, we
measure whether eventually the future choices are made
in a cost-effective way. For uniform and concave costs it
is time invariant, i.e., A∗t = A∗.

Challenges The goal of this work is to design a sequential
algorithm that is no-regret, meaning that RT /T → 0
as T → ∞, and exploits the regularity that the RKHS
assumption imposes. There are three technical challenges
that are specific to our setting: 1) the intensity function λ
needs to be positive everywhere in D – a constraint we need
to efficiently enforce. 2) The Poisson random variables are
naturally heteroscedastic, since their mean and variance are
equal – which we need to take into account. 3) In order to
prove the no-regret property, we need to design confidence
sets that deal with the tail of the Poisson distribution which
is heaver than that of any sub-Gaussian random variable,
for which adaptive confidence sets are known.

2.2. Contributions
1) We show that approaches to enforce positivity via fi-
nite constraints such as positive bases or positive trace-
regression can be treated jointly in our framework of Poisson
sensing. 2) By carefully designing an appropriate super-
martingale process, we are the first to derive valid anytime
confidence sets for Poisson responses for heteroscedastic
linear regression. 3) Using these estimators and confidence
sets, we formulate an optimistic algorithm CAPTURE-UCB.
It can be used with histogram as well as count-record feed-
back, and both provably suffer count-regret bounded by
Õ(
√
T ) (up to log factors) for finite rank kernels, and we

propose an extension for general kernels. 4) We demon-
strate the broad applicability of our algorithms on several
practically relevant problems.

3. Modeling and Algorithmic protocol
Binning To address the problem, we adopt a regression
perspective, where we regress on the observed counts that
fall into separate parts of the domain. This treatment does
not permit us to directly use the exact locations of the
event occurrences in the count-record feedback. Instead, we
partition D to a set B of small disjoint regions, obtained,
e.g., by hierarchically splitting the domain (as in Fig. 1a).
Then, we model the counts falling into each B ∈ B as
N(B) ∼ Poisson(

∫
B
λ(x)dx). With count-record feed-

back, we obtain multiple observations in each sensing round,
for each B ⊂ A where B ∈ B. To denote the observed
number of counts, instead of random variables, we use the
notation n(A) =

∑
B⊂A n(B ∩A).

Count-record feedback is often referred to as semi-bandit
feedback in bandit literature, which provides superior infor-
mation to just observing n(A), often denoted bandit feed-

back to differentiate them. In Figure 1b, we illustrate the
two different feedback models with partition B. The size
of the partition B influences the information we can extract
from the location data, but as we will see in later sections
it cannot be chosen arbitrarily small. For now, assume a
partition is given.

Estimators Suppose that there are t sensing sessions
during which we sensed regions Aj and observed counts
n(Aj) for j ∈ [t]. With the count-record feedback, we use
the regression estimate λ̂ as:

arg min
λ∈Hk,λ≥0

t∑
j=1

∑
B⊂Aj

(n(B ∩Aj)−
∫
B
λ(x)dx)2

σj(B)2
+
γ

2
‖λ‖2k ,

where λ ≥ 0 denotes the positivity constraint, ‖λ‖k is the
associated norm toHk, γ is the penalization constant, and
σj are the estimated variances that we will describe in later
sections. In the absence of the location feedback, we only
obtain tuples of A and their counts n(A). The estimator λ̂
is the solution to:

arg min
λ∈Hk,λ≥0

t∑
i=1

(
∫
Ai
λ(x)dx− n(Ai))

2

σ2
i

+
γ

2
‖λ‖2k . (3)

Poisson processes have an associated likelihood. The
penalized likelihood estimator might thus seem to be an
appropriate estimator, since it enforces the property that the
mean prediction of N(A) is equal to its variance. However,
as we explain in Section 5.2, confidence sets for these
estimators are difficult to control to facilitate regret analysis.

Algorithm Protocol We design an algorithm that first
estimates the rate function λ̂ using the estimator in (3).
Then, based on a utility function, it chooses the most
suitable sensing region and subsequently receives feedback
in form of observations. As we are interested in maximizing
the number of counts subject to the cost, we adopt the
principle of optimism (Auer, 2002; Srinivas et al., 2010),
and design an algorithm which optimizes a (1 − δ)
confidence upper bound on the number of counts per cost.
We call the algorithm CAPTURE-UCB and report it in
Algorithm 1. In order to apply the algorithm, we need to
perform efficient estimation, as well as construct 1 − δ
confidence sets, which we address in the following sections.
Organization We organize our contributions as follows:
in Section 4, we explain how we efficiently enforce positiv-
ity; in Section 5, we design a novel way to construct confi-
dence set for heteroscedasdic linear regression with Poisson
counts; and lastly in Section 6, we provide a regret analysis
of CAPTURE-UCB followed by experimental results.

Throughout this work, we utilize a technical assumption that
the kernel can be approximated by a finite rank kernel up
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Algorithm 1 CAPTURE-UCB

Require: cost function wt, partition (schedule) B, t = 1
1: while t ≤ T do
2: Estimate λ̂ as in (3)
3: At = arg maxA∈A

ucbt(A)
wt(A) as in (10)

4: Sense At for time ∆

5: Receive:

{
n(B ∩At) for B ∈ B if count-record
n(At) if histogram

6: t = t+ 1.
7: end while

to an arbitrary precision. We make this assumption for two
reasons: a) in order to enforce positivity, we use estimators
which are of this form; and b) the mathematical tools used
to prove confidence sets require Euclidean structure.

General RKHSs can be treated by picking a sufficiently large
basis which incurs negligible approximation error in com-
parison to the desired optimization accuracy. We provide a
more detailed discussion in Section 6.

Assumption 1 (Finite rank representation). We assume that
λ ∈ Hk, where λ : D → R+, where D ⊂ Rd, λ has
bounded norm ‖λ‖k ≤ u for a known value u. Also, λ(x) ≥
l > 0, where can l be arbitrarily small. Further, there exists
a basis {φk} s.t. kernel k has finite rank as k(x, y) =∑m
k=1 φ(x)kφk(y), and

√∑m
k φk(x)2 ≤ U for all x with

U known.

4. Efficient Estimators
Efficient estimators of the rate function need to impose
the positivity constraint in a tractable form, allow us to
efficiently perform the integrations

∫
A
λ(x)dx, and allow us

to construct and optimize over confidence sets. We present
two variants that fulfill this goal that we found practical.

4.1. Linear Model with Positive Basis
Our first estimator category are linear models, i.e., f ≈∑m
i=1 φi(x)>θi, where f ∈ Hk can be represented up to a

truncation error by positive basis functions φ(x) ≥ 0 for all
x ∈ D and positive parameters θi ≥ 0. They satisfy that as
m→∞ the approximation error decreases. With this basis,
the positivity can be simply enforced by the constraint θ ≥ 0.
There are many examples of such bases with Bernstein
polynomials and positive Hermite splines being perhaps the
oldest (Papp and Alizadeh, 2014). In this work, we use the
positive basis due to Maatouk and Bay (2016); Cressie and
Johannesson (2008) which we call triangle basis.

Triangle basis This representation is merely a finite basis
approximation to the original kernel k, which can be made
as accurate as we need by increasing the basis size m. We
follow the exposition of López-Lopera et al. (2019). Given
a domain D = [−1, 1], we create a finite dimensional ap-

proximation λ = Φ(x)>θ where Φ(·) ∈ Rm. Let us define
the individual triangle basis functions φj for j ∈ [m]:

φj(x) =

{
1− | (x−tj)m

2 | if | (x−tj)m
2 | ≤ 1

0 otherwise.
(4)

In order to enforce the same norm constraint under the ap-
proximated basis, Φ(x)>Φ(y) needs to be close to the ker-
nel k(x, y). This can be enforced by transforming the above
basis functions to obtain Φ(x) = Γ1/2φ(x), with Γij =
k(ti, tj), where ti for i ∈ [m] corresponds to the nodes.
This basis has the property that at x = ti, i ∈ [m], the ap-
proximation is exact while in between the nodes t, it linearly
interpolates. The constraints l ≤ λ(x) ≤ u can be repre-
sented as linear constraints on θ: l ≤ Γ1/2θ ≤ u. Cartesian
products of the basis generalize this construction to arbitrary
dimension, albeit increasing the basis size exponentially
with the dimension. Due to the simple form of the basis, the
integrals ϕA :=

∫
A

Φ(x)dx can be easily evaluated.

4.2. Positive Semi-definite Trace Regression Model
Alternatively, we can stipulate λ(x) = Tr(ψ(x)ψ(x)>Θ),
where Θ is a linear map Hk̃ → Hk̃ and ψ(x) : Rd → Hk̃
and ψ(x)> its adjoint. The positivity of the responses is
enforced by requiring that Θ is a positive semi-definite
operator, a model recently introduced by Marteau-Ferey
et al. (2020). To reconcile this assumption with RKHS
membership notice that λ is a member ofHk, where k = k̃2

for finite rank kernels (see Lemma 12 in Appendix).

Employing a finite basis for the kernel, we can represent
λ(x) = ψ(x)>Θψ(x), where Θ � 0. Notice that, as with
the positive basis, the expected counts can be expressed in a
closed form as E[N(A)] = Tr

((∫
A
ψ(x)ψ(x)>dx

)
Θ
)

:=

Tr
(
ΨAΨ>AΘ

)
. The advantage of this formalism is that

the basis ψ does not need to be positive as in the previous
case; the disadvantage is that it increases the parameters
quadratically to m2. Hence, optimal description bases such
as Mercer decomposition, or in the case of stationary ker-
nels, optimal Fourier bases are appropriate choices which
have very low m. Since the trace is a linear operator, it
can be represented as a matrix operator via vectorization,
Tr
(
ΨAΨ>AΘ

)
= vec(ΨAΨ>A)> vec(Θ) and its treatment

is identical to the above estimator with the only difference
in the form of the constraint.

5. Confidence Sets
We now derive ellipsoidal adaptive confidence sets for the
estimator in (3). The analysis easily extends to the count-
record estimator by substitution. We rely on the theory of
self-normalized martingales, and identify a super-martingale
Mt that upper-bounds the error process generating residuals
in our estimation problem and subsequently apply Ville’s
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inequality:

P

(
sup
t

log(Mt) ≥ log

(
E[Mt]

δ

))
≤ δ. (5)

This is a common technique for establishing adaptive confi-
dence sets (de la Peña et al., 2009; Howard et al., 2018).

Optimality Conditions Let us first start by showing that
under the conditions of Assumption 1 and using the short-
hand ϕAi

:= ∆
∫
Ai
φ(x)dx, the optimality conditions of

the estimator (3) can be written in the following form:

(XΣ−1X> + Iγ)θ̂ −X>Σ−1n+ ξ(x)>Λ̄ = 0 (6)

ξ>(x)Λ̄θ = 0 for all x ∈ D. (7)

Specifically for histogram feedback, Xij = (ϕAi)j , Σ is
diagonal with σ2

i on diagonal, ni = n(Ai). The operator
Λ̄ : Rm → R, and ξ(x) the dual variable are associated
with satisfaction of the constraint λ(x) ≥ 0. To facilitate
our analysis, we relate Λ̄, an infinite dimensional operator,
to Λ, a finite dimensional one, by the following assumption.
Both estimators in Section 4 satisfy these conditions as it is
either evident or we show in Appendix A.4.

Assumption 2 (Constraints). The optimality condition in
(7) can be imposed by p < ∞ linear constraints. Namely,
ξ>Λθ = 0, where ξ ∈ Rp+ and Λ ∈ Rp×m.

5.1. Self-normalized Approach: Super-martingale
By manipulating (6) and using the model n = Xθ + ε, we
see that in order to derive ellipsoidal confidence sets, we
need to control the magnitude of the self-normalized noise
term ‖St‖V−1

t
, where

St :=

t−1∑
i=1

ϕAi

σ2
i

εi and Vt =

t−1∑
i=1

ϕAi
ϕ>Ai

σ2
i

+ γI. (8)

The random variable εi is zero mean Poisson noise and σ2
i

are the scaling variances in heteroscedastic linear regression.
If exp(‖St‖V−1

t
) were a super-martingale, we could use

Ville’s inequality (5) to obtain high probability bounds. In
order to show this, we split the problem into two parts. First
we prove that forMt(x) := exp(〈x, St〉− 1

2 ‖x‖
2
Vt

) for any
x s.t. ‖x‖ ≤ 1 is a super-martingale, and by choosing an
extremal x over the set ‖x‖ ≤ 1, Mt(x) can be related to
exp(‖St‖V−1

t
). This step is usually addressed by pseudo-

maximization or a covering argument.

We present the solution to the first problem. It turns out
that Mt(x) is a super-martingale as long as we choose the
variances in our estimation, σ2

i , in a careful way:

Lemma 1. Let εi = zi − µi, where zi ∼ Poisson(µi),
where µi is the rate, ‖ϕAi‖2 ≤ U ∀ i ∈ [t], then there
exists a finite ki(U/µi) ≥ 1 such that when σ2

i ≥ kiµi, and

E[σ2
i |Fi−1] = σ2

i ,Mt(x) is super-martingale for ‖x‖2 ≤ 1,
with M0 = 1. Let ci = U

µi

The smallest such k∗i can be found by solving:

min
k≥1

k s.t.
1

2k

(
−c2i − 2ci

)
+
(

exp
(ci
k

)
− 1
)
≤ 0.

Notice that each variance is scaled individually, depend-
ing on µi. In Figure 1c, we can see the value of k∗ for
different U over the ground-truth variance µ (purple). For
large enough µ, no increase is needed, thus k∗ ≈ 1. This is
intuitive, since the excess kurtosis of the Poisson distribu-
tion decreases as 1

µ . In Appendix B, we provide a detailed
analysis of limiting values of k∗ detailing the intuition from
Fig. 1c.

The above Lemma is the key to finding anytime confidence
sets via pseudo-maximization. The difference to the classi-
cal treatment (see Szepesvari and Lattimore (2019)) arises
because our super-martingale Mt(x) is defined only for
bounded ‖x‖2 ≤ 1 instead on the whole Rm – a challenge
already encountered by de la Peña et al. (2009) and Faury
et al. (2020). By using arguments as in Faury et al. (2020),
we can show anytime confidence sets for our estimator.

Theorem 1. Let δ ∈ (0, 1), under Assumption 1 and 2, the
solution to (6) satisfies for all t ≥ 0∥∥∥θ̂ − θ∥∥∥2

Vt

≤ βt(δ) := bias(ξ, γ) + ζt(δ) (9)

with probability 1− δ, where Vt =
∑t
i=1

ϕAi
ϕAi

σ2
i

+ γI,

ζt(δ) =

(√
γ

2
+

2
√
γ

log

(
1

δ

det(Vt)
1/2

det(γI)1/2

)
+

2m
√
γ

log (2)

)2

,

bias(ξ, γ) = γ ‖θ‖22 +
∥∥ξ>Λ

∥∥2

V−1
t

, σ2
t is such that σ2

t ≥
k∗µt as in Lemma 1, E[σ2

t |Ft−1] = σ2
t .

In contrast to the sub-Gaussian concentration results of
Abbasi-Yadkori et al. (2011), the constant in the confidence
parameter β(δ) has an explicit dimensionality dependence
and an extra power of log det(Vt). In fact, a more general
result can be shown where these two factors can be balanced
slightly, which we do not explore here, but provide in Ap-
pendix. We conjecture that the explicit dependence on m is
an artefact of the anytime proof technique. We provide more
discussion in Section 6 regarding the necessity of the depen-
dence on m. In order to recover overall scaling of

√
β(δ),

which appears in the regret proofs with sub-Gaussian noise
assumption, quantitatively similar to Abbasi-Yadkori et al.
(2011)’s O(

√
m(log t)), we need to set γ = m. Proofs can

be found in Appendix B.

Notice that the µi, which are needed in order to rescale the
confidence ellipsoid Vt, are not known. Therefore in order
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to use the above theorem, we need to estimate them. As
the mean and variance prediction are identical for Poisson
responses, and the scaled variance σi is an increasing func-
tion of µi (Lemma 7 in Appendix), we take a pragmatic
approach and use the upper bound on the mean to estimate
the scaling variance:

σ2
t (A) = ucbt−1(A)k∗(ucbt−1(A)).

At time t = 0, we use the worst case estimates ucb0(A) =
u
∫
A
dx. Notice that the sequence of variances needs to be

deterministic when conditioned on the past data Ft−1. The
above upper-bound fulfills this condition since the estimates
from previous round (t − 1) are used. The positivity con-
straints Λ appears as bias similarly as other sources of bias
appear in related works studying confidence sets (Mutný
et al., 2020).

5.2. Likelihood and Likelihood Ratios
Confidence sets for adaptively collected data with
known likelihood function can be calculated with a
similar procedure as above by noting that the likelihood
ratio is a super-martingale under the true distribution
(Robbins et al., 1972). Consequently, the (1 − δ)
confidence set C(θ) can be constructed as C(θ) ={
θ :
∑t
i=1 log

(
p(θ̂i−1,(ϕAi

,ni))

p(θ,(ϕAi
,ni))

)
≤ log

(
1
δ

)}
, where p

is the likelihood and θ̂i is the estimate at time i. While
appealing, these confidence sets are difficult to approximate
or cover in terms of a tractable convex set, e.g., an ellipsoid.
For example, a common approach to approximate these con-
fidence sets is to use Taylor’s theorem and expand around the
maximum likelihood estimate up to the second order. This is
known as Laplace approximation, in the context of Bayesian
estimators. In particular, short calculation reveals that the ap-
proximate covariance is: Vt =

∑t
i=1 niϕAiϕ

>
Ai
/(ϕ>Ai

θ)2.
This approximation, however suffers from a pathology: in
region A with very small rate ϕ>Aθ, the counts are mostly
zero, but observing ni = 0 does not increase Vt and hence
does not shrink the confidence set. Therefore, on problems
with small counts (small l), it is reasonable to expect that
this approach fails as the algorithm believes the uncertainty
is high despite sensing multiple times – a scenario which we
observe in numerical experiments in Section 7. If we were
to lower bound the likelihood ratio, and hence maintain
coverage, the dependence on ni stays. Nevertheless, as long
as l > 0, an approach based on such confidence sets would
converge, albeit slowly, as it does not extract information
from not observing events (ni = 0).

Penalized likelihood does not in fact differ much from least-
squares regression. Its optimality conditions have exactly
the same form as Equation (6), with the notable difference
that instead of σ2

i on diagonal of Σ, they contain empirical
variances ϕ>Ai

θ̂. In light of this, it might make sense to use

the confidence sets derived for the regression estimator with
the likelihood estimator to achieve best of both worlds in
practice: an approach we explore numerically.

6. Regret Analysis
Upper Confidence Bound In order to run CAPTURE-
UCB, we need to calculate upper confidence bounds for
each sensing region; for the estimators presented in Section
4, we can do this by solving a convex program: 3:

ucbt−1(B), lcbt−1(B) = max
θ
ϕ>B , min

θ
ϕ>Bθ

subject to (θ − θ̂t−1)>Vt−1(θ − θ̂t−1) ≤ βt(δ)
l ≤ Γ1/2θ ≤ u (or M(θ) � 0).

(10)

where Vt−1 =
∑t−1
i=1

1
σt

2(Ai)
ϕAi

ϕ>Ai
+ γI and β(δ) is the

confidence parameter (9).

6.1. Information Gain
Our regret bound that we establish in Section 6.2 will depend
on the representational capacity ofHk, which can be loosely
interpreted as its dimensionality of the Hilbert space. We
will state our results in terms of information gain (Srinivas
et al., 2010), a common notion in the kernelized bandits liter-
ature, which also appears in our confidence parameter βt(δ)
as log(det(Vt)/ det(Iγ)). It is more commonly defined in
its dual formulation due to Weinstein–Aronszajn identity,

γT (A) = log det (KT + ΣT )− log det(ΣT )4

where (KT )i,j =
∫
Aj

∫
Ai
k(x, z)dxdz = κ(Ai, Aj), and

diagonal (ΣT )ii = γσ2
i . Notably, in our setting, the kernel

function measures similarity between Borel sets. This is
in contrast to point-wise similarity as common for kernel
methods. The argument of the information gain indicates
that the form of γT differs for count-record (with B) and
histogram (with A) feedback due to different inputs to the
kernel matrix k.

To give some intuition behind this quantity, for any finite
rank RKHS, as in Assumption 1, we can immediately give
a bound

γT ≤ m log

(
1 +

Tu

γρ2

)
(11)

with ρ2 = mint σ
2
t . This means that it has logarithmic

dependence on T and linear dependence on m. While this
bound is satisfactory for finite rank RKHS – or linear bandits
– with fixed features Φ(x) or Ψ(x), it might be less so for
kernelized bandits where m can grow arbitrarily large.

3The operator M takes vector into a matrix form to be consis-
tent with trace regression formulation.

4The γT with the time subscript should not be confused with γ
without a subscript, which denotes regularization parameter.



No-regret Algorithms for Capturing Events in Poisson Point Processes

In light of this, we show that by using either the triangle
basis or QFF of Mutný and Krause (2018) for stationary
kernels, γT , as function of m has a finite limit related to the
original kernel k. The formal statement of this result along
with its proof can be found Appendix in C.2 and C.4.

Secondly, previous results bounding γT assume point eval-
uations, and do not extend trivially to integral actions. We
show that these can be related to the standard bounds on γT
at cost of changing the regularization parameter (which can
also lead to improvements). Importantly, this change does
not impact the asymptotic scaling in T for stationary kernels,
e.g., for the squared exponential kernel used in our exper-
iments, γT ≤ O((log T )d), (more details in C.4 and C.5).

6.2. Regret Bound
Classical bandit proof techniques yields the following result
as a consequence of Theorem 1.

Theorem 2. For any δ ∈ (0, 1), under Assumptions 1, 2,
and cost function w such that the best sensing action is time
invariant, CAPTURE-UCB suffers for T > 0:

RT ≤

{
O(
√
ρHT∆βT (δ,A)γT (A)) if histogram

O(
√
ρCT∆βT (δ,B)γT (B)) if count-record

with probability 1 − δ. Hereby, β(δ) is a function of γT
and is as in Theorem 1, and ρH = maxt∈T σ

2
t (At), ρC =

maxt∈T maxB∈At
σ2
t (B).

The values of ρH and ρC are finite and depend only on
U and u. As l → 0 (lower bond on the intensity) ρ is
well-behaved an decreases towards zero, where the decrease
depend only on U and u as one can see in Lemma 4 in
Appendix.

Inspecting the direct dependence of βT with γ = m, we con-
clude that the overall regret isO(

√
T (γT /

√
m+
√
m)
√
γT )

involving the basis size m. Using (11), we can refine
this bound and express it only in terms of m and T as
O(m

√
T log T ), i.e., the same as for sub-Gaussian random

noise up to a logarithmic factor of T . The effect of Poisson
noise is captured in the value of ρC and ρH , which are the
scaled variances and they depend only on the values of U ,
u and ∆ in the worst case.

Extension to general RKHS While the rate of regret
Rt is optimal (up to logarithmic factors) for any finite
rank bandit algorithm, m does not always represent the
true intrinsic statistical difficulty of the problem. The
appropriate complexity measure instead is γT . It remains an
important open problem to express the results of Theorem
1 solely in terms of γT . Instead, we discuss an approach
based on finite approximations. Namely, for any time t,
suppose we want to optimize the regret up to precision
ε = 1/t2. This is sufficient, since we cannot hope to have

better estimation accuracy than t−1/2. Using the Mercer
decomposition of the kernel, we use for computation
κ = Φ(x)>Φ(x), where, for Φ(x) ∈ Rm, we construct
a truncated version, where only eigenvalues above ε are
considered. To construct the Mercer decomposition, we
require a measure, which in this case is the uniform measure
over the action set. Let us denote the number of eigenvalues
above ε by mε. This number is upper-bounded by twice
the effective dimension (Bach, 2017), which is itself
upper-bounded by γt. We can then apply the confidence
results with m1/t2 playing effectively role of γt, since it can
be bounded by it (with regularization constant ε). Under
this supposition, the overall regret for t ≤ T is bounded
by O(

√
TγT ), again recovering the best known complexity

for kernelized bandits with sub-Gaussian noise assumption.
Notice that we had to drop the anytime assumption, since
the regularization parameter needs to scale with T .

The previous theorem is proved under the assumption that
the true function can be represented via finite rank approx-
imation. We did not empirically study the effect of the
approximation error, but this error can be reduced arbitrar-
ily by increasing m, and as we already established that γT
of the approximated RKHS converges to the true γT from
below, the bound remains valid.

6.3. Refinement problem: Count-record
The regret of the count-record feedback depends on the
domain partition B we choose. If the partition is very
small, then so are the counts falling into the individual
sets B. We know that the concentration properties of the
Poisson distribution lead to larger corrections for moderate
variances, but overall they decrease to zero, albeit slowly. In
other words, ρC = maxt∈T maxB∈At

σ2
t−1(B) decreases

with decreasing size of partitioning even if the correction
k∗ grows. The overall variance σ2(B) = k∗E[N(B)]
converges to 0 as the variance of N(B) goes to zero
(Lemma 4), which is necessarily an effect of partitioning
more finely. On the other hand, γT (B) ≥ γT (A) for the
same set of chosen actions, since the elements of (KT )ij
are κ(Bi, Bj) for Bi, Bj ∈ B instead of the actions Ai, Aj
as for histogram feedback, and these can be shown to be
smaller (formal statement in Appendix C.9). Hence, one
should choose a level of partition such that the two aspects
are balanced – local information and adaptivity. We call this
the refinement problem. Unfortunately, as our assumptions
are very general, optimal partitioning depends non-trivially
on the kernel k, the action set A and the past data. While
it is theoretically conceivable to search over all B for each
A ∈ A to find the smallest ucb, this procedure is practically
infeasible. Perhaps a practical balance is to calculate a
sequence of bounds for each A based on sequential splitting
of the domain (quadtree in two dimensional case), and stop
splitting once ucb does not decrease, or to fix a sufficiently
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fine binning, an approach we use in our experiments and
in theory. The exact analysis of this refinement problem on
the regret is an interesting direction for future research.

7. Experiments and Applications
In our experiments, we investigate both feedback models
as well as different cost models: uniform cost w(A) = |A|,
concave cost w(A) = |A| + 0.01, and one-off cost. We
compare: ε-greedy, CAPTURE-UCB, and the Thompson
sampling algorithm of Grant et al. (2019), which does not
exploit correlation between sensing regions. We also re-
port a variant of our approach called Information Directed
Sampling CAPTURE-IDS, which we explain in Appendix
A.2. It has a similar flavor as UCB but uses a different
utility function. Additionally, we compare with algorithms
based on penalized likelihood: UCB-L and IDS-L using
the same confidence set as our heteroscedasdic estimator.
We also report UCB-LAP – a UCB algorithm with quadratic
approximation of the likelihood ratio confidence set. This
approximation is equivalent to Laplace approximation in
the Bayesian formulation with a Gaussian prior. The algo-
rithm ε-greedy simply plays the current best estimate with
1− ε probability, and with ε = O(t−1/2) probability a ran-
dom sensing region is selected. To predict the best region,
ε-greedy uses the RKHS model.

Confidence parameter We relax the theoretical require-
ments of the confidence sets, and simply use β = 4, as
well as tweak the past, by which we mean we tweak the
past variances with the new estimates of λ, causing σ2

t

to be no longer adapted. This is not warranted by theory
but nearly always improves the performance in practice.
We study these two aberrations from the theory on a toy-
problem: λ(x) = 4 exp(−(x+ 1)) sin(2xπ)2 with δ = 0.5.
In Fig. 2a), we see that both changes improve the finite time
performance with the most impact due to different choice of
β. While tweaking improves, the overall behavior is similar.
This result is consistent with the observations from the ban-
dit literature, where β is viewed as a tuning parameter. The
remaining experiments are with tweaking, β = 4 and γ = 1.
Additionally, the Poisson counts are superimposable – this
means that sensing the same regions multiple times can be
merged together as they contain the same amount of infor-
mation. While the likelihood estimator automatically im-
plements this feature, we need to enforce it with regression
perspective, which can be done in connection with tweaking.

Summary There are three main overall messages from the
benchmarks: 1) All algorithms utilizing the RKHS structure
substantially outperform algorithms that do not use this
structure, such as Grant et al. (2019). 2) The confidence sets
stemming from Laplace approximation fail, as evident in,
e.g., Fig. 2. 3) Both feedback models, as well as all cost
models do not have qualitative performance effect on the
algorithm and are handled equally well. Now we discuss
the modeling and setup for each experiment separately.

7.1. Benchmarks
Taxis Suppose we have to dispatch 5 taxi cars each to a
distinct block of a city, and the goal is maximize the number
of serviced passengers. We use histogram feedback and
hierarchically split the domain as in Fig. 1a. We use the
triangle basis with squared exponential kernel, uniform
costs, ∆ = 60 min, and report the results in Fig. 2b).

Crime surveillance We use a crime dataset released by
the San Francisco police department to estimate the intensity
of burglary occurrences over space (see Fig. in Appendix D).
The sensing duration is set to ∆ = 30 days corresponding
roughly to placing a mobile camera to that region. We report
the results with count-record feedback, triangle basis and
squared exponential kernel in Fig. 2c).

Environmental Monitoring We use two datasets from
Baddeley et al. (2015), one containing locations of an
African tree shrub Beilschmiedia, and one containing Go-
rilla nesting locations in a Cameroon rain forest. These
examples can be motivated by species monitoring from
satellites or an airplane. Each sensing action corresponds to
zooming onto a specific region in order to identify the ob-
jects of interest. In the first case, we implement the one-off
constraint and use the trace regression estimator, where the
features Ψ are modeled as Fourier features of the squared
exponential kernel. The squared exponential kernel takes as
input the value of slope s(x,y) and height h(x,y) at location
(x, y), since we believe these to be predictive of habitat.
We report captured events with count-record feedback in
Fig. 2d). In Fig. 2e), we report the regret on the Gorillas
dataset with count-record feedback, concave costs, squared
exponential kernel and triangle basis. More details along
with the fitted models are presented in Appendix D.

8. Related Work
The intensity of Poisson point processes is typically
estimated either via smoothing kernels (Berman and Diggle,
1989) or via kernelized estimators (Lloyd et al., 2015).
Kernelized estimators need to enforce the positivity con-
straint either via a link function (Adams et al., 2009; John
and Hensman, 2018), by enforcing it at sufficiently many
points in the domain (Agrell, 2019; Aubin-Frankowski
and Szabó, 2020) or using specially constructed positive
bases such as positive splines, Bernstein polynomials
(Papp and Alizadeh, 2014) or the simpler non-polynomial
triangle basis (Maatouk and Bay, 2016; López-Lopera
et al., 2018). Positive bases have been used for Cox process
inference by López-Lopera et al. (2019) and Alizadeh et al.
(2008). We use estimators based on positive bases or using
constrained formulations as in (Marteau-Ferey et al., 2020)
or (Aubin-Frankowski and Szabó, 2020).

Confidence sets Confidence sets for adaptively collected
data with sub-Gaussian noise dependence are analyzed
via self-normalized processes (de la Peña et al., 2009), as
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Figure 2. Numerical experiments on our benchmarks: Each experiment was repeated 5− 10 times, when randomization is in either the
algorithm or output. Standard quantiles are depicted as shaded regions. Approaches utilizing the RKHS structure are superior for all
datasets. The algorithms with Laplace approximation fail on problems with regions with low intensity. The effect of peeking and width of
confidence sets is investigated in a), where importance of smaller β is more prominent than the effect of tweaking. In f) notice that due to
concave costs, some algorithms start with high cost since they sensed larger regions – this is expected and desired.

in the seminal work of Abbasi-Yadkori et al. (2011) for
linear bandits. This theory can be extended to other noise
generating processes by identifying the right non-negative
super-martingale (Howard et al., 2018). Faury et al.
(2020) present adaptive confidence bounds using the self-
normalized technique for bounded noise. We also exploit
self-normalized martingales with similar techniques.
Adaptive Sensing Grant et al. (2019; 2020) study
adaptive sensing of Poisson point processes with sensing
costs. They bin the domain, and sequentially refine
estimators of bins with truncated gamma priors to design
a regret minimizing algorithm. Importantly, the regret
authors study is different to count-regret studied here – the
cost is additive in their work while here the cost enters as a
ratio. Crucially, their bins are considered to be independent,
while we exploit correlation via the RKHS assumption. The
binning is done in order to address the refinement problem
as their collection action sets A is not finite. Grant and
Szechtman (2020) study a related problem constrained to
sense a region of increasing volumes.

After binning, regression based estimators tailored for heavy
tailed noises, e.g., based on median on means are applicable.
However, these methods do not adapt to a particular noise
model nor they adapt to heteroscedascity (Medina and Yang,
2016; Shao et al., 2018) of the Poisson distribution, and have
worst-case flavor. In the bandit literature, there are meth-
ods that adapt to a priori known heteroscedascity with sub-
Gaussian noice (Kirschner and Krause, 2018), or to semi-
bandit feedback (György et al., 2007; Kirschner et al., 2020).
Generalized Linear Models For count data, the textbook
approach (Cameron and Trivedi, 2013) suggests log-linear
models: E[N(A)] = exp(η>ψ(A)) – an instance of
generalized linear models (GLMs) McCullagh (2018).
However, this approach cannot be easily reconciled with the

linear Poisson process structure and the RKHS assumption.
We explain this in more detail in Appendix A.1. Without the
RKHS assumption and instead using the log-linear model
with specially constructed ψ(A), Filippi et al. (2010); Jun
et al. (2017) propose bandit algorithms for GLMs. However
they do not cover Poisson noise, since they assume bounded
and sub-Gaussian noise, respectively.

9. Future Work and Conclusion
Future Works There are several issues that we did not
address in this paper that warrant further study and open
new avenues of research. Among many others, we did
not allow for ∆ to be time varying nor did we analyze the
approximation properties of finite bases. Perhaps the biggest
open question is the derivation of anytime confidence sets
independent of finite rank m only scaling with respect to
γT .

Conclusion We introduced the problem of sensing inho-
mogeneous Poisson point processes. We derived adaptive
confidence sets for heteroscedasdic linear regression
for Poisson count data with properly scaled variances.
Applying these, we proposed algorithms that minimize the
count regret based on optimism and information directed
sampling. We proved that our optimistic algorithm is no-
regret, and demonstrate the applicability of the approach on
several real-world problems. We discussed several practical
implementation improvements, and compared to algorithms
based on Laplace approximation confidence sets.
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