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Appendices
A. Discussion on the choice of Proximal Policy Optimization as a baseline
A general learning process of RL can be described using policy iteration, which consists of two iterative phases: policy
evaluation and policy improvement (Sutton & Barto, 1998). In policy iteration, the value function is assumed to be exact,
meaning that given policy, the value function is learned until convergence for the entire state space, which results in a strong
bound on the rate of convergence to the optimal value and policy (Puterman, 1994).

But the exact value method is often infeasible from resource limitation since it requires multiple sweeps over the entire state
space. Therefore, in practice, the value function is approximated, i.e. it is not trained until convergence nor across the entire
state space on each iteration. The approximate version of the exact value function method, also known as asynchronous
value iteration, still converges to the unique optimal solution of the Bellman optimality operator. However, the Bellman
optimality only describes the limit convergence, and thus the best we can practically consider is to measure the improvement
on each update step.

Bertsekas & Tsitsiklis (1996) have shown that, when we approximate the value function Vπ of some policy π with Ṽ , the
lower bound of a greedy policy π′ is given by

Vπ′(x) ≥ Vπ(x)− 2γε

1− γ
, (22)

where ε = maxx|Ṽ (x)−Vπ(x)| is the L∞ error of value approximation Ṽ . This means a greedy policy from an approximate
value function guarantees that its exact value function will not degrade more than 2γε

1−γ . However, there is no guarantee on
the improvement, i.e. Vπ′(x) > Vπ(x) (Kakade & Langford, 2002).

As a solution to this issue, Kakade & Langford (2002) have proposed a policy updating scheme named conservative policy
iteration,

πnew(a|x) = (1− α)πold(a|x) + απ′(a|x), (23)

which has an explicit lower bound on the improvement

η(πnew) ≥ Lπold(πnew)− 2εγ

(1− γ)2
α2, (24)

where ε = maxx |Eπ′ [Aπ(x, a)]|, Aπ(x, a) = Q(x, a)− V (x) is the advantage function, η(π) denotes the expected sum
of reward under the policy π,

η(π) = E

[ ∞∑
t=0

γtR(xt, at)

]
, (25)

and Lπold is the local approximation of η with the state visitation frequency under the old policy.

From the definition of distributional Bellman optimality operator in (6), one can see that the lower bound in (24) also holds
when π′ is greedy with respect to the expectation of the value distribution, i.e., Ex′∼P [Z(x′, a′)]. Thus the improvement of
the distributional Bellman update is guaranteed in expectation under conservative policy iteration, and the value functions
are guaranteed to converge in distribution to a fixed point by γ-contraction.

Schulman et al. (2015) takes this further, suggesting an algorithm called trust region policy optimization (TRPO), which
extends conservative policy iteration to a general stochastic policy by replacing α with Kullback-Leibler (KL) divergence
between two policies,

Dmax
KL (π, π̃) = max

x
DKL (π(·|x)‖π̃(·|x)) . (26)

Then, the newly formed objective is to maximize the following, which is a form of constraint optimization with penalty:

Êt
[
π(at|xt)
π̃(at|xt)

Ât − βDKL(π(·|xt), π̃(·|xt))
]

= Êt
[
rt(π)Ât − βDKL(π(·|xt), π̃(·|xt))

]
. (27)
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where r(π) refers to the ratio r(π) = π(at|xt)
π̃(at|xt) . However, in practice, choosing a fixed penalty coefficient β is difficult and

thus Schulman et al. (2015) uses hard constraint instead of the penalty.

max
θ

Êt
[
rt(π)Ât

]
(28)

s.t. DKL(π(·|xt), π̃(·|xt)) ≤ δ (29)

Schulman et al. (2017) simplifies the loss function even further in proximal policy optimization (PPO) by replacing KL
divergence with ratio clipping between the old and the new policy with the following:

LCLIP = Êt
[
min

(
rt(π)Ât, clip(rt(π), 1− ε, 1 + ε)Ât

)]
. (30)

Thus, by using PPO as the baseline, we aim to optimize the value function via unique point convergence of distributional
Bellman operator for a policy being approximately updated under the principle of conservative policy.

B. Expectation value of Z(λ)
t

Continuing from (13), let us define a random variable that has a cumulative distribution function of E[F̃Z ] as Z(λ)
t . Then, its

cumulative distribution function is given by

F
Z

(λ)
t

= (1− λ)

∞∑
n=1

λn−1F
Z

(n)
t
. (31)

If we assume that the support of Z(λ)
t is defined in the extended real line [−∞,∞],

E[Z
(λ)
t ] =

∫ ∞
0

(
1− F

Z
(λ)
t

)
dz −

∫ 0

−∞
F
Z

(λ)
t
dz (32)

=

∫ ∞
0

(
1− (1− λ)

∞∑
n=1

λn−1F
Z

(n)
t

)
dz −

∫ 0

−∞
(1− λ)

∞∑
n=1

λn−1F
Z

(n)
t
dz (33)

= (1− λ)

∞∑
n=1

λn−1
[∫ ∞

0

(
1− F

Z
(n)
t

)
dz −

∫ 0

−∞
F
Z

(n)
t
dz

]
(34)

= (1− λ)

∞∑
n=1

λn−1G
(n)
t = G

(λ)
t . (35)

Thus we can arrive at the desired expression of E[Z
(λ)
t ] = G

(λ)
t .

C. Distributional Bellman operator as a contraction in Cramér metric space
The Cramér distance possesses the following characteristics (detailed derivation of each can be found in (Bellemare et al.,
2017b)):

lp(A+X,A+ Y ) ≤ lp(X,Y ), lp(cX, cY ) ≤ |c|1/plp(X,Y ). (36)

Using the above characteristics, the Bellman operator in lp divergence is

lp (T πZ1(x, a), T πZ2(x, a)) = lp(R(x, a) + γPπZ1(x, a), R(x, a) + γPπZ2(x, a))

≤ |γ|1/plp(PπZ1(x, a), PπZ2(x, a))

≤ |γ|1/p sup
x′,a′

lp(Z1(x′, a′), Z2(x′, a′)).

(37)
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Substituting the result into the definition of the maximal form of the Cramér distance yields

l̄p(T πZ1, T πZ2) = sup
x,a

lp(T πZ1(x, a), T πZ2(x, a))

≤ |γ|1/p sup
x′,a′

lp(Z1(x′, a′), Z2(x′, a′))

= |γ|1/p l̄p(Z1, Z2).

(38)

Thus the distributional Bellman operator is a |γ|1/p-contraction mapping in the Cramér metric space, which was also proven
in Rowland et al. (2019).

Similar characteristics as in (36) can be derived for the energy distance

E(A+X,A+ Y ) ≤ E(X,Y ), E(cX, cY ) = cE(X,Y ), (39)

showing that the distributional Bellman operator is a γ-contraction in energy distance

E(T πZ1, T πZ2) ≤ γE(Z1, Z2). (40)

D. Loss Functions
As in other policy gradient methods, our value distribution approximator models the distribution of the value, V (xt), not the
state-action value Q(xt, at), and denote it as Zθ(xt) parametrized with θ, whose cumulative distribution function is defined
as

FZθ(xt) =
∑
a∈A

π(a, xt)FZ(xt,a). (41)

Below, we provide the complete loss function of value distribution approximation for each of the cases used in experiments
(Section 5).

D.1. Implicit Quantile + Huber quantile (IQAC)

For the value loss of IQAC, we follow the general flow of Huber quantile loss described in Dabney et al. (2018b). For two
random samples τ, τ ′ ∼ U([0, 1]),

δτ,τ
′

t = Z
(λ)
t (xt, at; τ

′)− Zθ(xt; τ) (42)

where Z(λ)
t is generated via SR(λ) and Z(x; τ) = F−1Z (τ) is realization of Z(X) given X = x and τ . Then, the full loss

function of value distribution is given by

LZθ =
1

N ′

N∑
i=1

N ′∑
j=1

ρκτi

(
δ
τi,τ

′
j

t

)
(43)

where N and N ′ are number of samples of τ, τ ′, respectively, and ρ is the Huber quantile loss

ρκτ (δij) = |τ − I{δij < 0}|Lκ(δij)

κ
, with (44)

Lκ(δij) =

{
1
2δ

2
ij , if|δij | ≤ κ

κ(|δij | − 1
2κ), otherwise.

(45)

D.2. Implicit Quantile + Energy Distance (IQAC-E)

Here, we replace the Huber quantile loss in (43) with sample-based approximation of energy distance defined in (20).

LZθ =
2

NN ′

N∑
i=1

N ′∑
j=1

∣∣∣δτi,τ ′
j

t

∣∣∣− 1

N2

N∑
i=1

N∑
i′=1

∣∣δτi,τi′t

∣∣− 1

N ′2

N ′∑
j=1

N ′∑
j′=1

∣∣∣∣δτ ′
j′ ,τ

′
j

t

∣∣∣∣ (46)
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D.3. Gaussian Mixture + Energy Distance (GMAC)

Unlike the two previous losses, which use samples at τ generated by the implicit quantile network Zθ(xt; τ), here we
discuss a case in which the distribution is k-component Gaussian mixture parameterized with (µk, σ2

k, wk).

Using the expectation of a folded normal distribution, we define δ between two Gaussian distributions as

δ(µi, σ
2
i , µj , σ

2
j ) =

√
2

π

√
σ2
i + σ2

j exp

(
− (µi − µj)2

2(σ2
i + σ2

j )

)
+ (µi − µj)

[
1− 2Φ

(
(µi − µj)√

2

)]
. (47)

Let Zθ(x) and Z(λ)
t be Gaussian mixtures parameterized with (µθi, σ

2
θi, wθi), (µλj , σ

2
λj , wλj), respectively. Then, the loss

function for the value head is given by

LZθ =
2

NN ′

N∑
i=1

N ′∑
j=1

wθiwλjδ(µθi, σ
2
θi, µλj , σ

2
λj)

− 1

N2

N∑
i=1

N∑
i′=1

wθiwθi′δ(µθi, σ
2
θi, µθi′ , σ

2
θi′)

− 1

N ′2

N ′∑
j=1

N ′∑
j′=1

wλjwλj′δ(µλj , σ
2
λj , µλj′ , σ

2
λj′).

(48)
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E. Pseudocode of GMAC

Algorithm 2 Pseudocode of GMAC

Input: Initial policy parameters θ0, initial value function parameters φ0, length of trajectory N , number of environments
E, clipping factor ε, discount factor γ, weight parameter λ
repeat

for e = 1 to E do
Collect samples of discounted sum of rewards {Z1, . . . , ZN} by running policy πk = π(θk) in the environment
Compute the parameters (µi, σi, wi) for each of the λ-returns {Z(λ)

1 , . . . , Z
(λ)
N−1} by SR(λ) (Algorithm 1)

Compute advantage estimates Ât using GAE (Schulman et al., 2016), based on the current value function Vφk
end for
Gather the data from E environments
Update policy using the clipped surrogate loss:

θk+1 = arg max
θ

E
[
min

(
πθ(at|st)
πθk(at|st)

Ât, g(ε, Ât)

)]
via stochastic gradient ascent.
Update value function using the energy distance between Gaussian mixtures (Equation 20):

φk+1 = arg min
φ

E
[
E
(
Vφ(st), Z

(λ)
t

)]
via stochastic gradient descent.

until Final update step

The clipping function g(ε, A) shown in the algorithm is defined as follows:

g(ε, A) =

{
(1 + ε)A if A ≥ 0

(1− ε)A if A < 0

Note that expectation of each loss is taken over the collection of trajectories and environments.
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F. Implementation Details
For producing a categorical distribution, a softmax layer was added to the output of the network. For producing a Gaussian
mixture distribution, the mean of each Gaussian is simply the output of the network, the variance is kept positive by running
the output through a softplus layer, and the weights of each Gaussian is produced through the softmax layer. Since

Table 2: Network architecture for GMAC on atari

Layer Type Specifications Filter size, stride

Input 84 x 84 x 4
Conv1 20 x 20 x 32 8 x 8 x 32, 4
Conv2 9 x 9 x 64 4 x 4 x 64, 2
Conv3 7 x 7 x 32 3 x 3 x 32, 1
FC1 512

Heads Policy Value
(FC) action dim # of modes (= 5)

our proposed method takes an architecture which only changes the value head of the original PPO network, we base our
hyperparameter settings from the original paper (Schulman et al., 2017). We performed a hyperparameter search on a subset
of variables: optimizers={Adam, RMSprop}, learning rate={2.5e-4, 1.0e-4}, number of epochs={4, 10}, batch size={256,
512}, and number of environments={16, 32, 64, 128} over 3 atari tasks of Breakout, Gravitar, and Seaquest, for which there
was no degrade in the performance of PPO.

Table 3: Parameter settings for training Atari games and PyBullet tasks

Task Atari PyBullet
Parameter PPO IQ IQAC-E GMAC PPO IQ IQAC-E GMAC

Learning rate 2.5e-4 1e-4
Optimizer Adam Adam

Total frames 2e8 5e7
Rollout steps 128 512
Skip frame 4 1

Environments 64 64
Minibatch size 512 2048

Epoch 4 10
γ 0.99 0.99
λ 0.95 0.95

Dirac samples - 64 - - 64 -
Mixtures - - - 5 - - - 5
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G. More Experimental Results

(a) Quantile Regression (b) Expectile Regression

Figure 6: In addition to Figure 3, quantile and expectile regressions are also evaluated in the 5-state MDP against IQE and GMM with
their respective loss functions.

(a) Huber Quantile Regression (b) Quantile Regression (c) Expectile Regression

Figure 7: Evaluation of the five-state MDP under tabular setting on a asymmetric reward distribution). Huber quantile(κ = 1), quantile,
and expectile regressions are compared to the energy distance minimization between samples and Gaussian mixtures.

Here we provide more details on the five-state MDP presented in Figure 3. For each cases in the figure, 15 diracs are used for
quantile based methods and 5 mixtures are used for GMM to balance the total number of parameters required to represent a
distribution. For the cases with the label ”naive”, the network outputs (quantiles, expectiles, etc.) are used to create the
plot. On the other hand, the cases with ”imputation” labels apply appropriate imputation strategy to the statistics to produce
samples which are then used to plot the distribution. Sample based energy-distance was used to calculate the distance from
the true distribution for all cases.
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(a) Breakout-v4 (b) Breakout-v4

(c) Seaquest-v4 (d) Seaquest-v4

(e) BeamRider-v4 (f) BeamRider-v4

(g) Gravitar-v4 (h) Gravitar-v4

Figure 8: More value distributions of different tasks. All states are chosen such that the agent is in place of near-death or near positive
score. Thus, when the policy is not fully trained, such as in a very early stage, the value distribution should include a notion of death
indicated by a mode positioned at zero. In all games, IQN + Huber quantile (IQAC) fails to correctly capture a mode positioned at zero
while the other two methods, IQN + energy distance (IQAC-E) and GMM + energy distance (GMAC) captures the mode in the early stage
of policy improvement. Again, the visual representation is maxpool of the 4 frame stacks in the given state.
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(a) BeamRider (b) Breakout (c) Enduro

(d) Gopher (e) Gravitar (f) Montezuma’s Revenge

(g) Seaquest (h) Venture

Figure 9: Raw learning curves over 5 random seeds for 8 selected Atari games. The y-axis is raw score and x-axis is in frames. The tasks
are selected considering the stochasticity in games, score gap between the previous scalar and distributional method (DQN (Mnih et al.,
2015) vs. IQN (Dabney et al., 2018a)), and complexity of the game in terms of exploration.
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(a) Hopper (b) Walker2D (c) HalfCheetah

(d) Ant (e) Humanoid

Figure 10: Raw learning curves over 5 random seeds for 5 selected PyBullet continuous control tasks. The y-axis is in raw score and
x-axis is in environment steps.
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Figure 11: Full learning curves of 61 atari games from ALE
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Table 4: Average score over last 100 episodes in 200M frame collected for training 61 atari games. The algorithms are trained using same
single seed and hyperparameters. Random and Human scores are taken from Wang et al.

GAMES RANDOM HUMAN PPO IQAC IQAC-E GMAC

Adventure NA NA 0.00 0.0 0.00 0.00
AirRaid NA NA 10,205.75 8,304.50 7,589.50 62,328.75
Alien 227.80 7,127.70 2,918.60 2,505.80 2,704.20 3,687.10

Amidar 5.80 1,719.50 1,244.12 1,210.40 932.11 1,363.72
Assault 222.40 742.00 7,508.03 12,053.03 8,589.55 10,281.73
Asterix 210.00 8,503.30 13,367.00 6,868,00 15,426.00 22,650.00

Asteroids 719.10 47,388.70 2,088.10 3,428.10 2,332.00 2,597.50
Atlantis 12,850.00 29,028.10 3,073,796.00 2,916,292.00 3,373,635.00 3,141,534.00

BankHeist 14.20 753.10 1,263.80 1,265.80 1,286.60 1,274.30
BattleZone 2,360.00 37,187.50 18,540.00 35,160.00 21,310.00 32,490.00
BeamRider 363.90 16,926.50 5,913.84 8,968.58 6,507.68 8,718.72

Berzerk 123.70 2,630.40 1,748.10 1,682.70 887.50 3,081.20
Bowling 23.10 160.70 33.54 65.81 30.00 19.39
Boxing 0.10 12.10 96.79 97.84 97.10 99.89

Breakout 1.70 30.50 384.29 296.91 445.64 462.68
Carnival NA NA 5,079.20 2,865.40 4,401.00 6,344.20

Centipede 2,090.90 12,017.00 5,205.25 4,085.38 4,864.69 4,303.10
ChopperCommand 811.00 7,387.90 872.00 1,096.00 1,314.00 1,795.00

CrazyClimber 10,780.50 35,829.40 112,640.00 107,375.00 121,550.00 125,143.00
DemonAttack 152.10 1,971.00 50,590.65 40,369.90 236,839.85 411,118.85
DoubleDunk -18.60 -16.40 -3.26 -6.30 -8.28 -2.72

ElevatorAction NA NA 10,449.00 50.00 8,516.00 14,254.00
Enduro 0.00 860.50 1,588.68 861.65 1,612.17 2,092.65

FishingDerby -91.70 -38.70 37.01 9.12 33.13 37.52
Freeway 0.00 29.60 32.53 32.96 33.68 32.84
Frostbite 62.50 4,334.70 3,571.50 3,550.10 307.10 3,392.40
Gopher 257.60 2,412.50 8,199.80 2,932.20 16,934.60 25,266.80
Gravitar 173.00 3,351.40 1,151.50 2,798.00 2,178.50 2,401.00

Hero 1,027.00 30,826.40 37,725.55 32,568.50 43,065.95 41,509.05
IceHockey -11.20 0.90 -1.90 -1.98 2.13 0.34
Jamesbond 29.00 302.80 642.50 4,913.50 961.00 1,512.00

JourneyEscape NA NA -607.00 -339.00 -840.00 -680.00
Kangaroo 52.00 3,035.00 1,742.00 2,368.00 12,208.00 12,909.00

Krull 1,598.00 2,665.50 9,605.51 8,643.09 9,514.03 9,127.63
KungFuMaster 258.50 22,736.50 26,846.00 12,006.00 33,378.00 31,025.00

MontezumaRevenge 0.00 4,753.30 0.00 3.00 0.00 0.00
MsPacman 307.30 6,951.60 3,674.20 2,450.70 4,699.00 3,884.40

NameThisGame 2,292.30 8,049.00 13,229.10 6,027.80 13,454.00 14,031.30
Phoenix 761.40 7,242.60 37,263.70 6,366.20 26,154.00 42,664.00
Pitfall -229.40 6,463.70 0.00 0.00 -18.86 -3.36
Pong -20.70 14.60 20.87 20.68 20.88 20.97

Pooyan NA NA 4,018.95 1,819.85 3,674.70 4,178.65
PrivateEye 24.90 69,571.30 100.00 71.51 196.30 100.00

Qbert 163.90 13,455.00 25,519.25 11,728.25 21,599.50 23,176.25
Riverraid 1,338.50 17,118.00 15,983.00 10,840.80 18,073.40 19,761.30

RoadRunner 11.50 7,845.00 56,321.00 44,685.00 56,121.00 68,272.00
Robotank 2.20 11.90 23.45 60.79 36.69 45.82
Seaquest 68.40 42,054.70 1,832.00 2,704.40 1,814.60 1,838.40
Skiing -17,098.10 -4,336.90 -7,958.81 -8,987.12 -29,971.02 -29,975.52
Solaris 1,236.30 12,326.70 2,452.80 2,342.60 2,204.80 2,579.20

SpaceInvaders 148.00 1,668.70 2,544.10 1,177.65 2,410.90 2,228.30
StarGunner 664.00 10,250.00 74,848.00 57,053.00 97,450.00 104,188.00

Tennis -23.80 -8.30 -8.16 -6.17 -7.54 -5.90
TimePilot 3,568.00 5,229.20 12,157.00 14,746.00 11,704.00 13,227.00

Tutankham 11,40 167.60 206.32 210.66 208.72 209.82
UpNDown 533.40 11,693.20 158,629.50 84,962.70 161,328.40 129,243.70

Venture 0.00 1,187.50 0.00 0.00 1,339.00 1,181.00
VideoPinball 16,256.90 17,667.90 279,504.81 55,113.30 59,988.90 55,272.82
WizardOfWar 563.50 4,756.50 8,749.00 5,688.00 9,165.00 11,388.00
YarsRevenge 3,092.90 54,576.90 92,709.94 83,136.68 100,082.55 103,895.05

Zaxxon 32.50 9,173.00 13,336.00 11,886.00 14,882.00 18,436.00


