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Abstract
In this paper, we devise a distributional frame-
work on actor-critic as a solution to distributional
instability, action type restriction, and conflation
between samples and statistics. We propose a new
method that minimizes the Cramér distance with
the multi-step Bellman target distribution gener-
ated from a novel Sample-Replacement algorithm
denoted SR(λ), which learns the correct value
distribution under multiple Bellman operations.
Parameterizing a value distribution with Gaussian
Mixture Model further improves the efficiency
and the performance of the method, which we
name GMAC. We empirically show that GMAC
captures the correct representation of value distri-
butions and improves the performance of a con-
ventional actor-critic method with low computa-
tional cost, in both discrete and continuous ac-
tion spaces using Arcade Learning Environment
(ALE) and PyBullet environment.

1. Introduction
The ability to learn complex representations via neural net-
works has enjoyed success in various applications of rein-
forcement learning (RL), such as pixel-based video game-
plays (Mnih et al., 2015), the game of Go (Silver et al.,
2016), robotics (Levine et al., 2016), and high dimensional
controls like humanoid robots (Lillicrap et al., 2016; Schul-
man et al., 2015). Starting from the seminal work of Deep
Q-Network (DQN) (Mnih et al., 2015), the advance in value
prediction network, in particular, has been one of the main
driving forces for the breakthrough.

Among the milestones of the advances in value function
approximation, distributional reinforcement learning (DRL)
further develops the scalar value function to a distributional
representation. The distributional perspective offers various
benefits by providing more information on the characteris-
tics and the behavior of the value. One such benefit is the
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(a) The observation input

(b) The evaluated value distributions

Figure 1: Modality of value distribution during the learning process
of Breakout-v4. (a) An arrow is added in the inset to indicate the
ball’s direction of travel. The episode reaches a terminal state if the
paddle misses the ball. (b) Learned probability density functions of
the value distributions of IQN + Huber-quantile (left) vs. GMAC
(Gaussian mixture model + energy distance) (right) for a same
policy when trained on {0.2, 0.4, 1.2}M frames. As the policy
improves, the probability of losing a turn (V = 0) should decrease
while the probability of earning scores (V > 0) increases. Note
that the modality transition from V = 0 is clearly captured by
GMAC.

preservation of multimodality in value distributions, which
leads to more stable learning of the value function (Belle-
mare et al., 2017a).

Despite the development, several issues remain, hindering
DRL from becoming a robust framework. First, a theoretical
instability exists in the control setting of value-based DRL
methods (Bellemare et al., 2017a). Second, previous DRL
algorithms are limited to a single type of action space, either
discrete (Bellemare et al., 2017a; Dabney et al., 2018b;a) or
continuous (Barth-Maron et al., 2018; Singh et al., 2020).
Third, a common choice of loss function for DRL is the
Huber quantile regression loss, which is vulnerable to con-
flation between samples and statistics without an imputation
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strategy (Rowland et al., 2019).

While the instability and action space issue can be
avoided simply by applying a general actor-critic frame-
work (Williams, 1988; 1992; Sutton et al., 1999), practical
methods critical to actor-critic framework such as TD(λ)
have not been established in the distributional perspective.
Therefore we suggest a novel sample-replacement algorithm
denoted by SR(λ) to generate multi-step Bellman target dis-
tribution with high efficiency. Furthermore, we avoid the
conflation problem by directly learning samples through
minimizing the Cramér distance between distributions.

As proven in (Rowland et al., 2019), using an imputation
strategy can help DRL methods to learn a more accurate
representation of a distribution. However, many actor-critic
methods are designed to use multi-step returns such as the λ-
return (Watkins, 1989) for which the imputation strategy can
be a computational burden. Therefore, we instead construct
the multi-step returns from samples and parameters to avoid
the necessity of imputation. We propose to parameterize
the value distribution as a Gaussian mixture model (GMM),
and minimize the Cramér distance between the distributions.
When combining GMM with the energy distance, a specific
case of the Cramér distance, we can derive an analytic solu-
tion and obtain unbiased sample gradients at a much lower
computational cost compared to the method using the Huber
quantile loss. We call our framework GMAC (Gaussian
mixture actor-critic).

We present experimental results to demonstrate how GMAC
can successfully solve the three problems of DRL. Firstly,
we illustrate that GMAC is a competitive actor-critic frame-
work by showing that the framework outperforms its base-
line algorithms in the Atari games(Bellemare et al., 2013).
Secondly, the experiments on the continuous control tasks
in PyBullet environments (Coumans & Bai, 2016–2020)
show that the same framework can be used for both tasks
with discrete and continuous action spaces. Lastly, we share
the FLOP measurement results to show that the accurate
representation of value distributions can be learned with less
computational cost.

2. Related Works
Bellemare et al. (2017a) has shown that the distributional
Bellman operator derived from the distributional Bellman
equation is a contraction in a maximal form of the Wasser-
stein distance. Based on this point, Bellemare et al. (2017a)
proposed a categorical distributional model, C51, which is
later discussed to be minimizing the Cramér distance in the
projected distributional space (Rowland et al., 2018; Belle-
mare et al., 2019; Qu et al., 2019). Dabney et al. (2018b) pro-
posed quantile regression-based models, QR-DQN, which
parameterizes the distribution with a uniform mixture of

Diracs and uses sample-based Huber quantile loss (Huber,
1964). Dabney et al. (2018a) later expanded it further so that
a full continuous quantile function can be learned through
the implicit quantile network (IQN). Yang et al. (2019) then
further improved the approximation of the distribution by
adjusting the set of quantiles. Choi et al. (2019) suggested
parameterizing the value distribution using Gaussian mix-
ture and minimizing the Tsallis-Jenson divergence as the
loss function on a value-based method. Outside of RL,
Bellemare et al. (2017b) proposed to use Cramér distance
in place of Wasserstein distance used in WGAN due to its
unbiasedness in sample gradients (Arjovsky et al., 2017).

There have been many applications of the distributional
perspective, which exploit the additional information from
value distribution. Dearden et al. (1998) modeled paramet-
ric uncertainty and Morimura et al. (2010a;b) designed a
risk-sensitive algorithm using a distributional perspective,
which can be seen as the earliest concept of distributional
RL. Mavrin et al. (2019) utilized the idea of the uncertainty
captured from the variance of value distribution. Nikolov
et al. (2019) has also utilized the distributional represen-
tation of the value function by using information-directed-
sampling for better exploration of the value-based method.
While multi-step Bellman target was considered (Hessel
et al., 2018), the sample-efficiency was directly addressed by
combining multi-step off-policy algorithms like Retrace(λ)
(Gruslys et al., 2017).

Just as C51 has been expanded deep RL to distributional per-
spective, Barth-Maron et al. (2018) studied a distributional
perspective on DDPG (Lillicrap et al., 2016), an actor-critic
method, by parameterizing a distributional critic as categor-
ical distribution and Gaussian mixture model. Singh et al.
(2020) has further expanded the work by using an implicit
quantile network for the critic. Several works (Duan et al.,
2020; Kuznetsov et al., 2020; Ma et al., 2020) have proposed
a distributional version of the soft-actor-critic (SAC) frame-
work to address the error from over-estimating the value.
These works mainly focused on combining a successful dis-
tributional method with a specific RL algorithm. To this
end, this paper aims to suggest a more general method that
can extend any actor-critic to the distributional perspective.

3. Distributional Reinforcement Learning
We consider a conventional RL setting, where an agent’s
interaction with its environment is described by a Markov
Decision Process (MDP) (X ,A, R, P, γ), where X and A
are state and action spaces, R(x, a) is the stochastic reward
function for a pair of state x and action a, P (x′|x, a) is the
transition probability of observing x′ given the pair (x, a),
and γ ∈ (0,1) is a time discount factor. A policy π(·|x)
maps a state x ∈ X to a probability distribution over actions
a ∈ A.
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The objective of RL is to maximize the expected return,
E[Gt] where Gt =

∑∞
t=0 γ

tR(xt, at) is the sum of dis-
counted rewards from state xt given a policy π at time t.
Then for any state xt, the value V and state-action value Q
under the given policy π can be defined as

V (xt) = E[Gt | X = xt], (1)
Q(xt, at) = E[Gt | X = xt, A = at]. (2)

A recursive relationship in the value in terms of the reward
and the transition probability is described by the Bellman
equation (Bellman, 1957) given by

Q(x, a) = E[R(x, a)] + γEa′∼π,x′∼P [Q(x′, a′)] , (3)

where the first expectation is calculated over a given state-
action pair (x, a) and the second expectation is taken over
the next possible states x′ ∼ P (·|x, a) and actions a′ ∼
π(·|x).

DRL extends the Bellman equation to an analogous recur-
sive equation, termed the distributional Bellman equation
(Morimura et al., 2010a;b; Bellemare et al., 2017a), using
a distribution of the possible sum of discounted rewards
Z(x, a):

Zπ(x, a)
D
= R(x, a) + γZπ(X ′, A′), (4)

where D
= denotes having equal distributions and Q(x, a) =

E[Z(x, a)]. Then Z is learned through distributional Bell-
man operator T π defined as

T πZ(x, a) :
D
= R(x, a) + γPπZ(x, a) (5)

where Pπ : Z → Z is a state transition operator under

policy π, PπZ(x, a)
D
:= Z(X ′, A′), where X ′ ∼ P (·|x, a)

and A′ ∼ π(·|X ′). Analogously, the distributional Bellman
optimality operator T can be defined as

T Z(x, a)
D
:= R(x, a) + γZ(X ′, arg max

a′
E[Z(X ′, a′)]).

(6)

The distributional Bellman operator has been proven to be
a γ-contraction in a maximal form of Wasserstein distance
(Bellemare et al., 2017a), which has a practical definition
given by

dp(U, V ) =

(∫ 1

0

|F−1U (ω)− F−1V (ω)|pdω
)1/p

, (7)

where U, V are random variables and FU , FV are their cu-
mulative distribution functions (cdf).

However, unlike the distributional Bellman operator, the dis-
tributional Bellman optimality operator is not a contraction

in any metric (Bellemare et al., 2017a), causing an instability
where the distance dp(T Z1, T Z2) between some random
variables Z1, Z2 may not converge to a unique solution.
This issue has been discussed in Bellemare et al. (2017a),
with an example of oscillating value distribution caused by
a specific tie-breaker design of the argmax operator.

The instability can be removed simply by learning the value
distribution under the evaluation setting of the Bellman op-
eration described in (5). This, on the other hand, poses a
new problem on the RHS of (5): the next state-action value
distribution Z(X ′, A′) becomes a mixture distribution of
all possible state-action value distributions, the computa-
tion of which can be infeasible for value-based methods in
continuous action space. We avoid this issue by directly
approximating the state value distribution Z(X ′) instead of
the state-action value distribution Z(X ′, A′). This lets us to
use the general actor-critic policy gradient,

∇J(θ) = E [At∇ ln(πθ(xt, at))] , (8)

where the advantage At may be estimated using the
temporal-difference (TD) error between expectations of the
value distributions, or using generalized advantage estima-
tion (Schulman et al., 2016) in a similar manner. At this
point, we are left with estimating multi-step distributional
Bellman target while avoiding the data conflation problem
(Rowland et al., 2019).

4. Algorithm
4.1. SR(λ): Sample-Replacement for λ-return

Distribution

Here we introduce SR(λ), a novel method for estimating
the multi-step distributional Bellman target, analogous to
the TD(λ) in the case of scalar value functions. The actor-
critic method is a temporal-difference (TD) learning method
in which the value function, the critic, is learned through
the TD error defined by the difference between the TD
target given by n-step return, G(n)

t =
∑n
i=1 γ

i−1rt+i +
γnV (xt+n), and the current value estimate V (xt). A spe-
cial case of TD method, called TD(λ) (Sutton, 1988), gener-
ates a weighted average of n-step returns for the TD target,
also known as the λ-return,

G
(λ)
t = (1− λ)

∞∑
n=1

λn−1G
(n)
t , λ ∈ [0, 1], (9)

to mitigate the variance and bias trade-off between Monte
Carlo and the TD(0) return to enhance data efficiency.

An important piece of SR(λ) is the use of a random vari-
able Z(λ)

t that is the distributional analogue of the λ-return,
which we propose in the following. First let us define a ran-
dom variable G̃ whose sample space is the set of all n-step



GMAC: A Distributional Perspective on Actor-Critic Framework

Input:
{Z(x1), . . . , Z(xN )}

Output:
{Z(λ)

0 , . . . , Z
(λ)
N−1}

Figure 2: A visual representation of the SR(λ) algorithm for generating N distributional Bellman targets from given a trajectory of length
N . Set of dirac samples (m = 4) are represented by the colored shapes. Shapes of same colors denote that they are transformed from the
same Z(xt) and different shapes denote numbers of Bellman operation applied to a specific sample. Each row of samples in the rightmost
figure represent the samples the λ-return Bellman target Z(λ)

t−1 for each time step.

returns, {G(1)
t , . . . , G

(∞)
t } with the probability distribution

given by

Pr[G̃ = G
(n)
t ] = (1− λ)λn−1. (10)

Then, (9) is same as the expectation of the random variable
G̃. Similar to G(n)

t , we define n-step approximation of the
value distribution as

Z
(n)
t :

D
=

n−1∑
i=0

γiR(xt+i, at+i) + γnZ(xt+n), (11)

where E[Z
(n)
t ] = G

(n)
t . Then we can imagine a random

variable Z̃ whose sample space is a set of all n-step approx-
imations, {Z(1)

t , . . . , Z
(∞)
t } , which are random variables

as well. However, unlike G̃ whose expectation is a scalar
value, i.e. the weighted mean of its supports, the expectation
of Z̃ is a random variable that has a distribution equal to the
mixture of distributions of Z(n)

t . To avoid the ambiguity of
“an expectation of a random variable of random variables”,
we define the distributional analogue of (10) in terms of
cdfs:

Pr[F̃ = F
Z

(n)
t

] = (1− λ)λn−1. (12)

F
Z

(n)
t

denotes the cdf of the n-step return Z
(n)
t , and

F̃ is a random variable over the set of F
Z

(n)
t

∈
{F

Z
(0)
t
, . . . , F

Z
(∞)
t
}. Then using (12), we can successfully

define the expectation of F̃ as a linear combination of F
Z

(n)
t

E[F̃ ] = (1− λ)

∞∑
n=1

λn−1F
Z

(n)
t
. (13)

Let us define a random variable Z(λ)
t that has E[F̃ ] as its

cdf, i.e. the probability distribution of Z(λ)
t is a mixture

distribution of the probability distributions of Z(n)
t ’s. Then

the expectation of Z(λ)
t and the expectation of Z(n)

t have an
analogous relationship to (9) (see Appendix B), meaning
that the expectation of Z(λ)

t is equal to the λ-return.

Note that, in practice, collecting infinite horizon trajectory is
infeasible and thus the truncated sum is often used (Cichosz,
1995; van Seijen et al., 2011):

F
Z

(λ)
t

= (1− λ)

N∑
n=1

λn−1F
Z

(n)
t

+ λNF
Z

(N)
t
. (14)

Given a trajectory of length N , naively speaking, finding
Z

(λ)
t for each time step requires finding N different Z(n)

t .
As a result, we need to find total of O(N2) different distri-
butions to find Z(λ)

t for all states in the given trajectory. But
the number of distributions to find reduces to O(N) when
we create approximations of Z(n)

t beforehand and reuse
them for calculating Z(λ)

t for each time step.

One choice among such approximations is to use a mixture
of diracs from the sample values, as described in (Dabney
et al., 2018b):

F
Z

(n)
t
≈ FZθ(xt) :=

1

m

m∑
i=1

δθi(xt), (15)

where θ : X → Rm is some parametric model. In this case,
we can approximate the distribution of Z(λ)

t by aggregating
the samples from each Zθ(xt) with probability λn−1. Since
the total set of samples remains unchanged during the calcu-
lation, we can create the N different Z(λ)

t in a single sweep
by replacing a portion of samples for each time step, which
leads to the name of our method Sample-Replacement, or
SR(λ).

Figure 2 describes SR(λ) schematically. The approximated
distribution of the λ-returns, Z(λ)

t , for the last state in a
trajectory is simply given by the samples of the last value
distribution Zθ(xt). Then traversing the trajectory in a re-
versed time order, we replace each of the samples with a
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Algorithm 1 SR(λ)

Input: Trajectory of states and value distributions
{(x1, Z1), . . . , (xN , ZN )} of length N , discount factor
γ, weight parameter λ
Output: Set of λ-returns {Z(λ)

0 , . . . , Z
(λ)
N−1}

Z ← Collect m samples {z1, . . . , zm} from ZN
for t = N − 1 to 0 do
Z ← rt + γZ {Bellman operation}
Z

(λ)
t ←

∑m
i=1 δzi
{empirical distribution using m Diracs}

Z ′ ← Collect m samples {z′1, . . . , z′m} from Z
(λ)
t

for i = 1 to m do
zi ← z′i with probability 1− λ

end for
end for

new sample from the earlier time step with a probability of
1 − λ. The replaced collection of samples is used as the
approximation for Z(λ)

t in that time step. We iterate this
process until the beginning of the trajectory to create a total
of N approximations. A more detailed description of the
algorithm can be found in Algorithm 1.

We further propose to apply SR(λ) to the parameters of
GMM instead of dirac samples in the following sections.
There exists a closed-form solution for minimizing the
Cramér distance between Gaussian mixtures, which enables
us to create unbiased gradients at a lower computational
cost compared to when using samples or statistics. In the
case of statistics, Rowland et al. (2019) has shown that one
should use an imputation strategy on the statistics to ac-
quire samples of the distribution, which may add significant
computational overhead.

4.2. Cramér Distance

Let P and Q be probability distributions over R. If we
define the cdf of P,Q as FP , FQ respectively, the lp family
of divergence between P and Q is

lp(P,Q) :=

(∫ ∞
−∞
|FP (x)− FQ(x)|pdx

)1/p

. (16)

When p = 2, it is termed the Cramér distance. The dis-
tributional Bellman operator in the evaluation setting is
a |γ|1/p-contraction mapping in the Cramér metric space
(Rowland et al., 2019; Qu et al., 2019), whose worked out
proof can also be found in Appendix C.

A notable characteristic of the Cramér distance is the unbi-
asedness of the sample gradient,

E
X∼Q

∇θl22(P̂m, Qθ) = ∇θl22(P,Qθ) (17)

where P̂m := 1
m

∑m
i=1 δXi is the empirical distribution,

and Qθ is a parametric approximation of a distribution. The
unbiased sample gradient makes it suitable to use Cramér
distance with stochastic gradient descent method and empir-
ical distributions for updating the value distribution.

Székely (2002) showed that, in the univariate case, the
squared Cramér distance is equivalent to one half of en-
ergy distance (l22(P,Q) = 1

2E(P,Q)) defined as

E(P,Q) := E(U, V )

= 2E ‖U − V ‖2 − E ‖U − U ′‖2 − E ‖V − V ′‖2,
(18)

where U,U ′ and V, V ′ are random variables that follow
P,Q, respectively. Then, energy distance can be approxi-
mated using the random samples of U and V .

4.3. Energy Distance between Gaussian Mixture
Models

We take a step further to enhance the approximation accu-
racy and computational efficiency by considering the param-
eterized model of the value distribution as a GMM (Choi
et al., 2019; Barth-Maron et al., 2018). Following the same
assumption used for (15), the approximation using GMM is
given using parametric models µ, σ, w : X → RK

Zθ(xt) ∼ N (µk(xt), σ
2
k(xt)),

k ∼ Categorical(w(xt)).
(19)

If random variables U, V follow the distributions P,Q pa-
rameterized as GMMs, the energy distance has the following
closed-form

E(U, V ) = 2δ(U, V )− δ(U,U ′)− δ(V, V ′),
where

δ(U, V ) =
∑
i,j

wuiwvj E [|Xij |] ,

Xij ∼ N (µui − µvj , σ2
ui + σ2

vj).

(20)

Here, µui refers to the mean of the ith component for ran-
dom variable U and same applies for σ and w for both U
and V . The closed-form solution of the energy distance
defined in (20) has a computational advantage over sample-
based approximations like the Huber quantile loss. When
using the GMM, the analytic approximation of (15) can be
derived as

Z
(λ)
t ∼ N (µnk(xt), σ

2
nk(xt)),

n ∼ Geo(1− λ),

k ∼ Categorical(w(xt)),

F
Z

(λ)
t
≈ 1

m

m∑
i=1

Φ(z|µnk, σ2
nk),

(21)
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S1

...

S4

S5

T

γ

γ

r4 ∼ U{−1, 1}

r5 ∼ N (0, 0.12)

(a) MDP (b) Densities and distances

Figure 3: (a) An environment with five states and stochastic re-
wards with expected value of zero. (b) The probability density
functions (top) and the energy distance between the ground truth
and the estimated distributions (bottom) for tabular methods with
Huber-quantile, Huber-quantile with imputation, energy distance,
and GMM with energy distance.

where µnk refers to the kth component of µn·, and
Φ(z|µnk, σ2

nk) denotes the cdf of a normal distribution given
its mean and standard deviation, µnk and σnk, respectively.
This can be empirically approximate as a mixture ofmGaus-
sians and we can simply perform sample replacement on the
parameters (µ, σ2), instead of realizations of the random
variables as in (15). Then, the distance function described
in (20) can easily be applied.

When bringing all the components together, we have a distri-
butional actor-critic framework with SR(λ) that minimizes
the energy distance between Gaussian mixture value distri-
butions. Comprehensively, we call this method GMAC. A
brief sketch of the algorithm is shown in Appendix E.

5. Experiments
In this section, we present experimental results for three
different distributional versions of Proximal Policy Opti-
mization (PPO) with SR(λ): IQAC (IQN + Huber quantile),
IQAC-E (IQN + energy distance), and GMAC (GMM +
energy distance), in the order of the progression of our sug-
gested approach. The performance of the scalar version of
PPO with value clipping (Schulman et al., 2016) is used as
the baseline for comparison. Details about the loss function
of each method can be found in Appendix D. For a fair com-
parison, we keep all common hyperparameters consistent
across the algorithms except for the value heads and their
respective hyperparameters (see Appendix F).

The results demonstrate three contributions of our proposed
DRL framework: 1) the ability to correctly capture the mul-
timodality of value distributions, 2) generalization to both
discrete and continuous action spaces, and 3) significantly
reduced computational cost.

Representing Multimodality As discussed throughout
Section 4, we expect minimizing the Cramér distance to
produce a correct depiction of a distribution without using
an imputation strategy. First, we demonstrate this with a
simple value regression problem for an MDP of five sequen-
tial states, as shown in Figure 3 (a). The reward function
ri of last two state Si is stochastic, with r4 from a uniform
discrete distribution and r5 from a normal distribution. Then
the value distribution of S1 should be bimodal with expec-
tation of zero (Figure 3 (b)). In this example, minimizing
the Huber-quantile loss (labeled as HQ-naive) of dirac mix-
ture underestimates the variance of S1 due to conflation and
does not capture the locations of the modes. By applying an
imputation strategy as suggested in Rowland et al. (2019), a
slight improvement on the underestimation of variance can
be seen. On the other hand, both dirac mixture and GMM,
labeled as Energy and GM respectively in the figure, show
that minimizing the energy distance converges to correct
mode locations. For a fair comparison, GMM uses one-third
of the parameters used in the dirac mixtures as its number
of mixtures. More details about the experimental setup and
further results can be found in Appendix G. The comparison
is extended to complex tasks such as the Atari games, of
which an example result is shown in Figure 1, and additional
visualizations of the value distribution during the learning
process from different games can be found in Appendix G.

Discrete and Continuous Action Spaces The human
normalized score for 57 Atari games in ALE (Bellemare
et al., 2013) is presented in Figure 4. The results show
that GMAC outperforms its scalar baseline PPO and other
known distributional methods IQN and QR-DQN in mean
scores. On the other hand, in the median scores, GMAC
places between IQN and QR-DQN. The results tell us that
GMAC significantly outperforms the value-based distribu-
tional methods in some of the Atari games while its overall
performance is competitive. Another clear distinction is that
there is a significant decrease in performance when implicit
quantile network is used with Huber-quantile loss for the
critic with same architecture with same hyperparameters. In
contrast, using energy distance as the loss function ensures
non-degenerative performance. The learning curves for each
of 61 Atari games, including ones that did not have human
scores, can be found in Appendix G.

The same exact algorithm is taken to continuous control task
of PyBullet environments (Coumans & Bai, 2016–2020),
with the changes only made in the hyperparameters and pol-
icy parameters, from softmax logits to mean and variance
of normal distribution. Without any continuous-control spe-
cific modifications made, our methods produce competitive
performance compared to the scalar version PPO with slight
improvements in the hard tasks such as HumanoidBulletEnv-
v0. More results can be found in Appendix G.
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(a) ALE mean human-normlized score (b) ALE median human-normlized score

(c) Hopper (d) HalfCheetah (e) Humanoid

Figure 4: Learning curves for Atari games from ALE and 3 continuous control tasks from PyBullet during training. The scores for IQN
and QR-DQN are taken from Dabney et al. (2018a). For Atari, GMAC was run for 3 seeds, PPO and other baselines were run for 2 seeds.
Results of selected Atari games run for 5 seeds can be found in Appendix G. For PyBullet, all algorithms were run for 5 seeds.

Computational Cost Table 1 shows the number of param-
eters and the number of floating-point operations (FLOPs)
required for a single inference and update step of each agent.
We emphasize three points here. Firstly, the implicit quantile
network requires more parameters due to the intermediate
embeddings of random quantiles. Secondly, the difference
between the FLOPs for a single update in IQAC and IQAC-
E indicates that the proposed energy distance requires less
computation than the Huber quantile regression. Lastly, the
results for GMAC show that using GMM can greatly reduce
the cost even to match the numbers of PPO while having
improved performance.

Table 1: FLOP measurement results for a single process in
Breakout-v4

Algorithm Params (M)
FLOPs (G)

Inference Update

PPO 0.44 1.73 5.19
IQAC 0.52 2.98 12.98

IQAC-E 0.52 2.98 8.98
GMAC 0.44 1.73 5.27

Using Distributions By capturing the correct modes of a
value distribution, an additional degree of freedom on top of

Figure 5: Learning curve of Montezuma’s Revenge using modality
information as intrinsic reward. For a fair comparison, both TD
error and energy distance used for intrinsic rewards are normalized
in a similar manner to that of RND (Burda et al., 2019) to keep the
scales at a similar level.

the expected value can be accurately obtained, from which
richer information can be derived to distinguish states by
their value distributions. In particular, the extra information
may be utilized as an intrinsic motivation in sparse-reward
exploration tasks. To demonstrate the plausibility of such
application, we compare using Cramér distance between
value distributions as intrinsic reward to using TD error be-
tween scalar value estimates in a sparse reward environment
of Montezuma’s Revenge in Figure 5, which shows a clear
improvement in performance.
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6. Conclusion
In this paper, we have developed the distributional perspec-
tive of the actor-critic framework which integrates the SR(λ)
method, Cramér distance, and Gaussian mixture models for
improved performance in both discrete and continuous ac-
tion spaces at a lower computational cost. Furthermore,
we show that our proposed method can capture the correct
modality in the value distribution, while the extension of the
conventional method with the stochastic policy fails to do
so.

Capturing the correct modality of value distributions can
improve the performance of various policy-based RL ap-
plications that exploit statistics from the value distribution.
Such applications may include training risk-sensitive poli-
cies and learning control tasks with sparse rewards that
require heavy exploration, where transient information from
the value distribution can give benefit to the learning pro-
cess. We leave further development of these ideas as future
works.
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and Pérez-Cruz, F. (eds.), Artificial Intelligence and
Statistics (AISTATS), volume 84 of Proceedings of
Machine Learning Research, pp. 29–37. PMLR, 2018.

Rowland, M., Dadashi, R., Kumar, S., Munos, R., Belle-
mare, M. G., and Dabney, W. Statistics and samples
in distributional reinforcement learning. In Chaudhuri,
K. and Salakhutdinov, R. (eds.), Proceedings of the 36th
International Conference on Machine Learning (ICML),
2019.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz,
P. Trust region policy optimization. In Proceedings of
the 32nd International Conference on Machine Learning
(ICML), 2015.

Schulman, J., Moritz, P., Levine, S., Jordan, M. I., and
Abbeel, P. High-dimensional continuous control us-
ing generalized advantage estimation. In International
Conference on Learning Representations (ICLR), 2016.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
Van Den Driessche, G., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., et al. Mastering the
game of go with deep neural networks and tree search.
Nature, 529(7587):484–489, 2016.

Singh, R., Lee, K., and Chen, Y. Sample-based distributional
policy gradient. arXiv preprint arXiv:2001.02652, 2020.

Sutton, R. S. Learning to predict by the methods of temporal
differences. Machine Learning, 3(1):9–44, aug 1988.
ISSN 0885-6125. doi: 10.1023/A:1022633531479.

Sutton, R. S. and Barto, A. G. Introduction to
Reinforcement Learning. MIT Press, Cambridge, MA,
USA, 1st edition, 1998. ISBN 0262193981.

Sutton, R. S., McAllester, D., Singh, S., and Mansour,
Y. Policy gradient methods for reinforcement learn-
ing with function approximation. In Proceedings of
the 12th International Conference on Neural Information
Processing Systems (NeurIPS), Cambridge, MA, USA,
1999.
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