Memory-Efficient Pipeline-Parallel DNN Training

A. Planner, Additional Details

For every possible configuration of width and depth,
PipeDream-2BW’s planner explores the benefit of pipelining
and each space-saving optimization. For example, with acti-
vation recomputation as a target memory-savings optimiza-
tion, PipeDream-2BW considers three possible executions:

e Model and data parallelism without pipelining (with the
largest per-GPU microbatch size that fits in memory).

e Hybrid parallelism with pipelining and without activation
recomputation (all required weight versions and activa-
tion stashes in memory for in-flight microbatches).

e Hybrid parallelism with pipelining and recomputation.

PipeDream-2BW’s planner estimates the throughput and
memory footprint of each of these possible executions us-
ing a cost model. PipeDream-2BW’s planner then tries to
find the configuration with highest throughput that also fits
in main device memory of the accelerators used (memory
capacity provided as input). In this section, we show one
such cost model for throughput and memory.

A.1. Closed-Form Cost Functions

In our experiments, we used profile-based cost functions
that run configurations end-to-end for a couple of hundred
iterations. However, performance of different parallel con-
figurations can also be estimated using closed-form expres-
sions that use more fine-grained profile information (e.g.,
time and memory footprint of each transformer block). We
present one such cost model here.

A.1.1. THROUGHPUT(.) COST FUNCTION

The throughput of various hybrid-parallel setups with and
without pipelining can be modeled using the times of for-
ward and backward passes obtained from a simple profiling
step. Let b be the largest per-GPU microbatch size with-
out additional weight and activation versions, and b’ be the
largest per-GPU microbatch size that can fit on the device
when multiple versions are needed (b’ < b). As before, w
and d are the pipeline width and depth.

Let 7" (b,w,d) represent the compute time of stage
i with a per-GPU microbatch size b, T7%"" (b, w, d) rep-
resent the communication time of activations and gradi-
ents between stages ¢ and j with microbatch size b, and
Tom™ (b, w, d) represent the communication time of ex-
changing gradients between w replicas of stage ¢ with mi-
crobatch size b. We assume that the global batch size used
is B. With pipeline width w and microbatch size b, data-
parallel communication is required every m(b) = B/(w - b)
microbatches.

Then, without pipelining, each microbatch of size b takes

the following computation time, t:
t—ZmaX T (b, w, d) +ZT;°:;“1 (b,w, d),

1

m : Ticomm(b7 w, d))

With pipelining, computation of different stages can be
overlapped. A microbatch of size b’ can then be processed
every t seconds, where ¢ is given by the expression:

t = max max (T, "™ (v, w, d)+

> Temm (b, w, d),
J
1
m(b')

. CZW’L_COmm(b/’ w, d))

With activation recomputation, the number of floating point
operations increases, since forward passes need to be re-
peated to recompute the activation stashes needed in the
backward pass. We use a constant multiplier ¢**'™ to repre-
sent this. ¢**"™ = 4/3 is a reasonable value for this constant,
since the backward pass typically takes twice as long as
the forward pass. ¢**™ can also be measured empirically.
Arithmetic intensity might also increase, which is captured
by 77" (.) being a function of the microbatch size b. Com-
munication time remains unchanged from before. Every b
inputs can now be processed in time ¢, where ¢ is given by,

t = max max(c™"™ - T; "™ (b, w, d)+
1

> T (b, w, d),
J
1

) 7™ (b, w, d))

The throughput in samples per second of each of these
setups is then the corresponding per-GPU microbatch size
(b or b') divided by ¢.

Estimating 7™ (.). T;°"" (b, w, d) is the compute time
of stage ¢+ with per-GPU microbatch size b, and can be
computed by summing up the forward and backward pass
times of all blocks within the stage. If the depth of the
pipeline is d and the total number of blocks in the model
is B, then the total number of blocks in a given stage is
B/d. Forward and backward pass times for each stage can
be estimated by profiling 100-200 iterations of training.

Estimating 7°°™™(.). Communication times can be simi-
larly modeled. Let the size of the associated parameter with
B total blocks be , and the size of the block’s input and
output activations be | A"P+°ut (p)|. With a pipeline of depth
d, each pipeline stage has 1/d of the total model parameters.

Memory-Efficient Pipeline-Parallel DNN Training

Algorithm 1 Partitioning Algorithm

Input: Model m, memory capacity M, m’s associated
search function SEARCH(.), m’s associated throughput
cost function THROUGHPUT(.), m’s memory footprint
cost function MEMORY (.), maximum safe batch size B.
Return: Optimal width and depth w° and d°", opti-
mal per-GPU microbatch size b°", boolean whether ac-
tivations should be recomputed r°P', optimal degree of
gradient accumulation g°P".

Initialize t™* = 0, w°"* = NULL, d°** = NULL
for w =1to N do
ford =1to N/w do
// For given width w, depth d, and batch size B,
find optimal microbatch size and whether activation
recomputation should be performed.
b,” = m.SEARCH(w, d, B)

t = m.THROUGHPUT(w, d, b, 1)
if m.MEMORY (w, d, b, r) > M then
continue
end if
if t > t™* then
$max — t7,wopt — w7dopl — d7 poPt — b, 7OPt —
end if
end for
end for
" = B/(N - b°"") // To reach batch size B.

The time to communicate activations across stages can be
computed as (factor of 2 for gradients in the backward pass),

9] A+ ()| . T(d > 1)
Teomm () 4y) =
() dethdep[h (d)

]

The time to communicate weight gradients across stage
replicas can be computed similarly given a bandwidth func-
tion bwdthygn (w), and the number of bytes communicated
during all-reduce. The number of byes communicated in an
all-reduction can either be explicitly measured, or estimated
using a closed-form expression (Narayanan et al., 2019).

bwdthgepm (d) and bwdthyiqm (w) represent the bandwidths
for inter-stage and intra-stage communication. These band-
width functions can respect hierarchical network topologies.
For example, if w is less than the number of workers in
a single server, communication can be performed entirely
within a server, using the higher intra-server bandwidth.

Bhjgn if w < number of GPUs in server
Biow otherwise

bwdthwidth(w) = {

A.1.2. MEMORY(.) COST FUNCTION

The memory footprint can similarly be modeled using the
sizes of activations and weights obtained from a profiling
step. Let the total size of the weight parameters for the
entire model be |W/|, let the total size of the activations
given a microbatch size b for the entire model be | A% (b)],
and let the size of the input activations for a single stage be
| Ainput(p) |, With a pipeline of d stages, each pipeline stage
has weight parameters of size |W|/d, and activations of size
|Atotal(b)|/d‘

Without Activation Recomputation. As discussed in §3.1,
2BW maintains 2 different versions of the weight parameters.
PipeDream-2BW also maintains d versions of activations
(the total number of in-flight activations). This means the
total PipeDream-2BW memory footprint is:

2(W| | dA° ()|

d| A" (b)].
] 7 TdA)|

With Activation Recomputation. With activation recom-
putation, the total number of activation versions in GPU
memory at any point in time is 1. This means that the
PipeDream-2BW memory footprint with d stages is:

2w A ()|
d d

+ d| AP (b))

A.2. Partitioning Algorithm

We show pseudocode for the full partitioning algorithm in
Algorithm 1.

B. Evaluation, Additional Graphs

In this section, we present additional results we could not
fit in the main paper due to space.

B.1. Throughput and Memory Footprint with BERT
Models

We also ran PipeDream-2BW on two BERT models: one
with 2.2 billion parameters, and another with 3.8 billion pa-
rameters. Figure 10 compares PipeDream-2BW’s throughput
against the same baselines as before, and Figure 11 com-
pares PipeDream-2BW’s memory footprint for these BERT
models. We see that results are similar to GPT. One point
of difference is that GPipe does not run out of memory at
the batch size of 64 (for GPT, only a batch size of 32 fits
in memory, leading to a larger pipeline bubble); however,
GPipe still has higher memory footprint compared to all
other baselines.

B.2. Impact of Activation Recomputation

Figure 12 shows the effect of activation recomputation
on throughput for various GPT models. For a given per-

Memory-Efficient Pipeline-Parallel DNN Training

F50 :
ER=N) w# \nter-layer MP
28 0 # Tensor MP
= - GPipe
o E_ 0 §§§ B PipeDream-Flush
= 2 0 E:E:i i B PipeDream-2BW
~ 0 DN 5
6 256
Batch size
(a) BERT, 2.2B, 8-way model parallelism (8 x V100s).
5 2 w# Inter-layer MP
a8 Tensor MP
= = GPipe
g g B PipeDream-Flush
2 B PipeDream-2BW

Batch size
(b) BERT, 2.2B, 8-way model parallelism (64 x V100s).

< 160
5 ¢ w# Inter-layer MP
28120 Tensor MP
24 80 %% GPipe
I g_ 40 B PipeDream-Flush
Fo) B PipeDream-2BW
0 512 2048
Batch size

(c) BERT, 3.8B, 16-way model parallelism (64 x V100s).

Figure 10. Throughput of various systems for different batch sizes
for BERT models. Results are shown with a single 8 x V100 server,
and with eight 8 X V100 servers (with 16GB).

>‘g12 o w \nter-layer MP
5= 9 :z:g Tensor MP
E £ £ e GPipe
2= 6 5 B PipeDream-Flush
S 3 o = PipeDream-2BW
N— 0 XX
64 256
Batch size

Figure 11. Worst-case memory footprint (in GB) of various sys-
tems with 8 V100 GPUs for a BERT model with 2.2B parameters.

5260 540
£38 23301
o O 40 o D
59 A 22201 o A
i P e ct. recomp. 3% ct. recomp.
s g{ —e— W/oact. recomp. = §10 —e— W/o act. recomp.
0 1 2 4 8 16 0 1 2 4 8 16
Microbatch size Microbatch size
(a) GPT, 1.3B. (b) GPT, 2.2B.

Figure 12. Throughput of (1, 8) PipeDream-2BW configurations
vs. per-GPU microbatch size for GPT models using a maximum
sequence length of 512 and 8 16-GB-V100 GPUs, with and without
activation recomputation. Activation recomputation helps increase
the maximum per-GPU microbatch size that fits, especially for
larger models, leading to higher throughput in some cases.

GPU microbatch size, recomputation introduces overhead
(capped at 33% since the backward pass takes twice as long
as the forward pass for most operators). However, recom-
putation allows for a larger per-GPU microbatch to fit on
the worker, sometimes leading to higher throughput than

without activation recomputation: activation recomputation
leads to higher throughput in Figure 12b, but not in Fig-
ure 12a. In the extreme case (not pictured), recomputation
makes it possible to train large models by reducing peak
memory footprint of training, at the cost of extra compute
operations due to an extra forward pass.

