Generating images with sparse representations

A. Quantization matrices

Following the Independent JPEG Group standard we use
the following quality parameterized quantization matrix Q
to quantize DCT pixel blocks. For quality ¢ in [1, 100] the
matrix is defined as:

[16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62

Thuma = 18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 93 112 100 103 99 |
5000/q, ifq <50
s(q) = .
200 — 2q, otherwise
s(q)T + 50

For the chrominance components we replace Ty, with
an alternative base matrix T'cproma Which provides stronger
quantization:

[17 18 24 47 99 99 99 99]
18 21 26 66 99 99 99 99
24 26 56 99 99 99 99 99
T 147 66 99 99 99 99 99 99

chroma =199 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99

When using block sizes other than 8, we use nearest neigh-
bour interpolation to resize the base matrices Ty, and
T chroma to the target size.

B. Architecture details

DCTransformer consists of a Transformer encoder that pro-
cesses partial DCT images, and three stacked Transformer
decoders that process slices from the DCT co-ordinate list
(Section 3.2). We use a number of modifications to the orig-
inal architecture that we found to improve stability, training
speed, and memory consumption:

Layer norm placement Following Child et al. (2019) and
Parisotto et al. (2020) we use Transformer blocks with layer
norm placed inside the residual path, rather than applying
layer norm

ReZero We use ReZero (Bachlechner et al., 2020; De &
Smith, 2020), multiplying each residual connection with a

zero-initialized scalar value, which is optimized jointly with
the model parameters. In our experiments we found this
to improve training speed and stability to a small degree.
The combination of ReZero and our chosen layer norm
placement results in residual connections of the following
form:

H; = H;_1 + oy fi(layernorm(H; 1)), (10)

where H; is a sequence of activations at layer [, and f is the
residual function.

PAR Transformer Mandava et al. (2020) showed through
Neural architecture search that the default alternation of
fully connected and self attention layers in Transformer
blocks is sub-optimal with respect to performance-speed
trade offs. Based on the results of the search they proposed
the PAR Transformer, which applies a series of fully con-
nected layers after each self-attention layer, resulting in
improved inference speed, and memory savings. We use
a PAR Transformer style architecture in DCTransformer
encoder and decoders, and while we didn’t experiment rig-
orously with the ratio of fully-connected to self-attention
layers, we found that architectures using 2-4 fully connected
layers per self-attention layer helped to boost the parameter
count at a given memory budget.

Table 3 details the architecture configurations used for our
main experiments.

C. Training details

Optimization We train our models using Adam Opti-
mizer (Kingma & Ba, 2015) and train for a fixed number of
tokens, where the number of tokens processed in a batch is
the number of elements in the target chunk that we apply
a loss to. We use a linear warmup of 1000 steps up to a
maximum learning rate, and use a cosine decay over the
course of training. We train all models using Google Cloud
TPUv3 (Google, 2018), and detail the number of cores used
during training in Table 3.

Chunk selection policy As described in Section 3.1, we
train DCTransformer on input and target chunks selected
from larger sequences. If the target chunk is sampled uni-
formly from the sequence representation of an image, the
sample gradient is unbiased because it is a Monte Carlo
estimate of the gradient computed on the full sequence. As
discussed in Section 2, lossy image compression codecs
such as JPEG preferentially discard high frequency data
when allocating limited storage capacity. It stands to reason
that we may benefit from making an analogous decision
when allocating limited model capacity. We found it ad-
vantageous for sample quality to bias the selection of target
chunks toward the beginning of the sequence, which con-
tains more low frequency information (see Figure 2).

Generating images with sparse representations

Total bpd Total bpd (chunk 0)

0.24 1 0.0132 A

0.0130 -

0.22 4 0.0128 -

0.0126 -

0.20 4
0.0124

/
/

Channel bpd 1e—g Channel bpd (chunk 0)

0.0007 -

0.0006 -

0.0005 A

.
>

Position bpd Position bpd (chunk 0)

0.085 4 0.000120 A

0.080 A
0.000115 A

0.075 A

0.070 A 0.000110 A

/
/

0.065 -

Value bpd Value bpd (chunk 0)

0.0132 -
0.16 4

0.0130
0151 0.0128 A

0.0126 -

)
/

0.0124 -
0.13 4

T T T T
10t 10? 10t 10?2
Num. params (millions) log-scale

Num. params (millions) log-scale

Total bpd (per chunk)

0.010 1

0.005

0.000 1

Chunk
- 0 21 41
0.00006 -1 22 42
- 2 23 43
- 3 24 44
0.00004 o 4 25 45
- 5 26 46
0.00002 4 - 6 27 47
- 7 28 48
- 8 29 49
0.00000 ! = e 9 30 50
Position bpd (per chunk) e 10 3 51
- 11 32 o 52
— - 12 33 o 53
0.004 %%A\A - 13 34 —e- 54
IS===== - 14 35 —e- 55
—— —

—e—F—3%—3 —o- 15 36 -e 56

0.002 A
[— —— 1 o 16 37 -e 57
[—— — > 17 38 -e— 58
== 18 39 —e- 59
0.00010——9—@—o 9 19 40 - 60

Value bpd (per chunk)

0.010 4

0.005 4 &=

0.000

T T
10! 102
Num. params (millions) log-scale

Figure 9. Model performance, reported in bits per image subpixel (bpd) as a function of model size for DCTransformer trained on LSUN
bedrooms. We report the total bpd, as well as the contributions from the channel, position and value distributions. We additionally report
bpd broken down by sequence chunk, where each chunk corresponds to 896 sequence elements. The model size is reported in terms of the
number of total parameters, ranging from roughly 3 million to 448 million.

We select chunks using the following process: A sequence
of length L is split into chunks of size C, with the final
chunk containing L mod C' elements. The probability of
selecting a chunk with start position [decays to a lower
limit py,;,, with probability proportional to a polynomial
in [. By default we decay the probability of selecting a
chunk beginning at position / proportional to [~ down to a
minimum of py;, = 0.1, a hyperparameter choice we fixed
early in model development and found no need to adjust.

Sequence length bias adjustment Chunk-based training
introduces an issue in unconditional generative modelling:

It biases the model towards chunks from shorter sequences.

Consider the first chunk, that occurs at the very start of the
sequence. For long sequences, this chunk will be selected
relatively infrequently compared to short sequences. The
model will therefore assign greater probability to initial
chunks from short sequences, than initial chunks from long
sequences.

We counter the bias by randomly filtering out sequences with
a probability that is inversely proportional to the sequence
length. We pick a maximum filtering sequence length L.«

and filter our sequences with probability:

L
DPrilter ([tl]le) = maximum (, 1> . (11)

max

D. Model scaling properties

Kaplan et al. (2020) show that for Transformer language
models, performance improves reliably subject to con-
straints on model size, compute and dataset size. In particu-
lar, they show that if compute and data are not bottlenecks,
then test-loss performance improves log-linearly with model
size. Follow-up work Henighan et al. (2020) has shown
that this phenomenon applies more generally beyond just
language data. We investigate the extent to which DCTrans-
former scales as a function of model size by training models
of varying sizes on LSUN bedrooms. Figure 9 shows the
results broken down by channel, position and value predic-
tion contributions, and chunk position. We find that the total
bits-per-dimension (bpd) roughly matches the expected log-
linear fit, with the exception of the smallest model, which
performs worse than the expected trend. Another exception
is chunk 0, where the performance improvement is less than
expected for the largest model.

Generating images with sparse representations

s Data

s VQ-VAE2

= BigGAN

s DCTransformer

sFID score (10k samples)
3 8 &8 g 3

-
5]

)

sFIDo:7 SFID7:14 SFID14:21 SFID21:28 SFID2g:35

Figure 10. Comparison of sFID scores for different Inception
mixed_6/conv feature channels using 10k samples. The x-axis
label subscripts refer to the indices of the feature channels used.
For example sFID4.21 refers to the 14th to 21st channels of the
mixed_6/conv Inception feature map. We find that although the
absolute scores vary across feature channels, the relative perfor-
mance of different model samples are preserved.

We also find that the value predictions account for the largest
portion of the total bpd, followed by positions, and finally
channels, which accounts for a very small portion of the total
bpd. For the total bpd, the contribution per chunk decreases
with the chunk position. This is likely because the total
bpd is dominated by the value bpd, and we expect the value
bpd to decrease as we transition from lightly quantized low
frequency components, to more heavily compressed high
frequency components.

E. sFID analysis

In Section 4 we introduced sFID, a variant of Frechet in-
ception distance (FID, Heusel et al. (2017)) that uses fea-
tures from the Inception network’s mixed_6/conv layer,
rather than the poo1_3 features used in standard FID. The
pool_3 features are preceded by a global average pooling
stage in the Inception network, and are therefore highly
invariant to the spatial distribution of input image features.
This means that FID is unlikely to detect spatial mode-
collapse: where model samples fail to reproduce the spatial
variability of objects. The mixed_6/conv features used
in sFID are taken from an intermediate feature map with a
spatial resolution of 17 x 17, so that the degree of spatial
invariance is likely to be substantially reduced.

In order to produce a relatively compact feature set, we use
the first 7 channels of the mixed_6/conv feature maps,
resulting in a total of 17 x 17 x 7 features. In Figure 10
we show that the ranking produced by sFID scores is not
sensitive to the particular feature channels used.

F. Additional samples

Figures 11 and 12 compare uncurated samples from DC-
Transformer and baselines to a random selection of real data
on the FFHQ and LSUN datasets respectively. Figures 13
and 14 show uncurated upsampling and colorization results
on ImageNet and OpenlmagesV4 respectively.

Generating images with sparse representations

! d / o
Data DCTransformer Styl

Figure 11. Comparison between FFHQ images and uncurated model samples, all at 1024x1024 resolution.

- : Sle s
Data DCTransformer ProGAN StyleGAN

Figure 12. Comparison between LSUN images and uncurated model samples for bedroom,tower and church-outdoor subsets. StyleGAN
refers to StyleGAN1 for bedrooms, and StyleGAN2 for church-outdoor samples. DCTransformer produces variable aspect ratio samples
with long-side resolution 384. BigGAN and VQ-VAE aretrained and sample at a fixed 256x256 resolution corresponding to a resized
long-side crop of the input images. ProGAN and StyleGAN samples use truncation 1.0 to yield maximum diversity.

Generating images with sparse representations

LSUN (all) FFHQ ImageNet OpenlmagesV4
Image resolution 384 1024 384 640
DCT block size 8 16 8 8
DCT quality 75 35 75 50
DCT clip value 1200 3200 1200 1200
Target chunk size 896 896 896 896
Target chunk overlap 128 128 128 128
Hidden units 896 896 1152 896
Self-attention heads 14 14 14 18
Layer spec (encoder) [(1,2)] * 4 [(1,2)] *4 [(1,2)] * 4 [(1,2)] * 4

Layer spec (channel decoder)
Layer spec (position decoder)
Layer spec (value decoder)

DCT image downsampling kernel

[(1,2)]*3+[(1,4)]
[(1,2)]*3+[(1,4)]
[(1,2)]*5+[(1, 7]
kernel size 4, stride 2

[(1,2)] *3+[(1,4)]
[(1,2)] * 3+ [(1,4)]
[(1,2)] * 6+ [(1,7)]
kernel size 6, stride 3

[(1,2)] *3 +[(1,4)]
[(1,2)] * 3+ [(1,4)]
[(1,2)] * 6+ [(1,7)]
kernel size 8, stride 4

[(1,2)] *3 +[(1,4)]
[(1,2)] * 3+ [(1,4)]
[(1,2)] * 6+ [(1,7)]
kernel size 6, stride 3

Batch size 512 448 512 512
Dropout rate 0.1 0.1 0.01 0.01
Learning Rate Start Se-4 Se-4 Se-4 Se-4
Tokens processed 300e9 250e9 1000e9 1000e9
Parameters 448e6 473e6 738e6 533e6
TPUV3 cores 64 64 128 64
Plant Leaves Retinopathy CLEVR
Image resolution 2048 1024 480
DCT block size 32 16 8
DCT quality 50 75 90
DCT clip value 4000 3200 1200
Target chunk size 896 896 896
Target chunk overlap 128 128 128
Hidden units 768 768 896
Self-attention heads 12 12 14
Layer spec (encoder) [(1,2)] * 4 [(1,2)] *4 [(1,2)] * 4

Layer spec (channel decoder)
Layer spec (position decoder)
Layer spec (value decoder)

DCT image downsampling kernel
Batch size

Dropout rate

Learning Rate Start

Tokens processed

Parameters

TPUv3 cores

[(1,2)]* 3 +[(1, 3)]
[(1,2)]*3+[(1,4)]

[(1,2), (1, 2),(1,3), (1,3), (1, 7]
kernel size 4, stride 2

256

04

Se-4

100e9

325e6

64

[(1,2)] * 3 +[(1, 3)]
[(1,2)]*3+[(1,4)]

[(1,2), (1, 2),(1,3), (1, 3), (1, 7)]
kernel size 4, stride 2

512

0.1

Se-4

200e9

318e6

64

[(1,2)]* 3 +[(1,4)]
[(1,2)]*3+[(1, 4]
[(1,2)]*6+[(1,7)]
kernel size 6, stride 3
128

0.5

Se-4

50e9

483e6

32

Table 3. Model and training hyperparameters. The layer spec for the Transformer encoder and decoders is a list of tuples, where each
tuple describes the number of self-attention layers, followed by the number of fully-connected layers in a Transformer block. For example
[(1,2)] * 3 + [(1, 4)] expands to [(1,2),(1,2),(1,2),(1,4)], and corresponds to four Transformer blocks, where the first three blocks consist
of a single self-attention layer, followed by two fully-connected layers. The final block has one self-attention layer followed by four

fully-connected layers.

Generating images with sparse representations

Figure 13. Uncurated 8x image upsampling results on ImageNet validation set. (left) input downsampled image, (middle) three samples
generated by DCTransformer, (right) original image.

Generating images with sparse representations

Figure 14. Uncurated image colorization results on OpenlmagesV4 validation set. (left) input grayscale image, (middle) three samples
generated by DCTransformer, (right) original image.

