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1. Derivation of Proposition 3.1
We comment on deriving Proposition 3.1 (formulated in
the article) from the results in (Hairer & Mattingly, 2011).
For stating the Harris ergodic theorem shown in (Hairer
& Mattingly, 2011) we need to introduce the following
weighted supremum norm. For a chosen weight function
V : Rd → [0,∞) and for ϕ : Rd → R define

‖ϕ‖V := sup
x∈Rd

|ϕ(x)|
1 + V (x)

.

One may think of V as the Lyapunov function of a generic
transition kernel P . Now we state Theorem 1.2 from (Hairer
& Mattingly, 2011) on Rd.

Theorem 1.1. Let P be a transition kernel on Rd. Assume
that V : Rd → [0,∞) is a Lyapunov function of P with
δ ∈ [0, 1) and L ∈ [0, 1). Additionally, for some constant
R > 2L/(1− δ) let

SR := {x ∈ Rd : V (x) ≤ R}

be a small set w.r.t. P and a non-zero measure ν on Rd.
Then, there is a unique stationary distribution µ? of P on
Rd and there exist constants γ ∈ (0, 1) as well as C <∞
such that

‖Pnϕ− µ?(ϕ)‖V ≤ Cγn‖ϕ− µ?(ϕ)‖V , (1)

where Pnϕ(x) :=
∫
Rd ϕ(y)Pn(x,dy) and µ?(ϕ) :=∫

Rd ϕ(y)µ?(dy) for any x ∈ Rd as well as any n ∈ N.

Let us assume that all requirements of the previous theorem
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are satisfied. Then, for any x ∈ Rd we have

‖Pn(x, ·)− µ?‖tv = sup
‖f‖∞≤1

|Pnf(x)− µ?(f)|

≤ sup
‖ϕ‖V ≤1

|Pnϕ(x)− µ?(ϕ)|

= (1 + V (x)) sup
‖ϕ‖V ≤1

|Pnϕ(x)− µ?(ϕ)|
1 + V (x)

≤ (1 + V (x)) sup
‖ϕ‖V ≤1

‖Pnϕ− µ?(ϕ)‖V

≤ (1 + V (x))Cγn sup
‖ϕ‖V ≤1

‖ϕ− µ?(ϕ)‖V

≤ 2(1 + V (x))Cγn,

which shows that the statement of Proposition 3.1 is a con-
sequence of Theorem 1.1.

2. Further Example from the Exponential
Family

We formulate a consequence of Proposition 4.2 (stated in the
article) in terms of properties of the exponential family and
provide examples which eventually satisfy our regularity
condition. For the convenience of the reader we repeat the
assumption which guarantees the applicability of the main
theorem.

Assumption 2.1. The function % : Rd → (0,∞) satisfies
the following properties:

1. It is bounded away from 0 and∞ on any compact set.

2. There exists an α > 0 and R > 0, such that

Bα‖x‖(0) ⊆ G%(x) for ‖x‖ > R.

It is clear that regularity properties for members of the ex-
ponential family are required, since already by part 1. of
the former assumption we need that % has full support. For
example, % coming from the exponential distribution does
not work, since then it is not bounded away from 0 on any
compact set where % is equal to 0.

Let |·| be a norm on Rd, which is equivalent to the Euclidean
norm ‖ · ‖, that is, there exist constants c1, c2 ∈ (0,∞) such



Geometric Convergence of Elliptical Slice Sampling

that

c1‖x‖ ≤ |x| ≤ c2‖x‖, ∀x ∈ Rd. (2)

We obtain the following result:
Corollary 2.2. Let % be proportional to the mapping

x 7→ exp(η(x)Tµ−A(x)), x ∈ Rd,

for some η : Rd → Rk, µ ∈ Rk and A : Rd → R with
k ∈ N. Assume that there exists an increasing function
ϕ : [0,∞)→ R as well as a point x0 ∈ Rd, such that

η(x)Tµ−A(x) = −ϕ(|x− x0|), ∀x ∈ Rd,

or equivalently, such that % is proportional to the mapping

x 7→ exp(−ϕ(|x− x0|)), x ∈ Rd.

Then % satisfies Assumption 2.1 with R = 4 c2c1 ‖x0‖ and
α = c1

2c2
.

Proof. Apply Proposition 4.2 from the article with arbi-
trary R′ > 0, function r(t) := exp(−ϕ(t)) and %R′(x) =
exp(−ϕ(|x− x0|)) defined on BR′(x0).

Now we illustrate how to use the former corollary.

2.1. Gaussian density

Despite having the Gaussian setting already covered in Sec-
tion 4.1 of the article, we show that this canonical member
of the exponential family can also be treated with Corol-
lary 2.2.

For any x0 ∈ Rd and any symmetric, positive-definite ma-
trix Σ ∈ Rd×d the classical Gaussian setting, where

%(x) = exp

(
−1

2
(x− x0)TΣ−1(x− x0)

)
, x ∈ Rd,

corresponds to a member of the exponential family with
k = 1, µ = −1, A(x) = 0 and

η(x) =
1

2
(x− x0)TΣ−1(x− x0).

It can be rewritten as

%(x) = exp(−ϕ(‖x− x0‖Σ−1)), x ∈ Rd,

with the continuous increasing function ϕ(t) = t and a
norm | · | = ‖ · ‖Σ−1 , defined by

‖x‖Σ−1 := xTΣ−1x. (3)

Note that the norm is equivalent to the Euclidean one since

λ−1
max‖x‖2 ≤ ‖x‖2Σ−1 ≤ λ−1

min‖x‖
2, ∀x ∈ Rd, (4)

where λmin is the smallest and λmax is the largest eigen-
value of the symmetric, positive-definite matrix Σ. Thus,
all requirements of Corollary 2.2 are satisfied and therefore
Assumption 2.1 is fulfilled.

2.2. Multivariate t-distribution

For any ν > 1, x0 ∈ Rd and any symmetric, positive-
definite matrix Σ we have

%(x) =

(
1 +

1

ν
(x− x0)TΣ−1(x− x0)

)−(ν+d)/2

,

for x ∈ Rd. This corresponds to a member of the exponen-
tial family with k = 1, µ = −1, A(x) = 0 and

η(x) =
ν + d

2
log

(
1 +

1

ν
(x− x0)TΣ−1(x− x0)

)
.

Using | · | = ‖ · ‖Σ−1 as defined in (3) and the fact that
ϕ : [0,∞)→ R, given by

ϕ(t) :=
ν + d

2
log

(
1 +

1

ν
t

)
, t ≥ 0,

is increasing we can apply Corollary 2.2 and therefore As-
sumption 2.1 is satisfied.

3. “Tail-Shift” Modification
If % : Rd → (0,∞) has “poor” tail behavior and therefore
does not satisfy Assumption 2.1, as e.g. in the scenario of
the “volcano density” or logistic regression considered in
the article, then a “tail-shift” modification might help. The
idea is to take a small part of the Gaussian prior and shift it
to % to get sufficiently “nice” tails.

Assume that the distribution of interest µ is determined by
% : Rd → (0,∞) and prior distribution µ0 = N (0, C), that
is,

µ(dx) ∝ %(x)µ0(dx).

For arbitrary ε ∈ (0, 1) set

f(x) := exp
(
−ε

2
xTC−1x

)
, x ∈ Rd,

and µ̃0 := N (0, (1− ε)−1C)). Note that

µ0(dx) ∝ f(x)µ̃0(dx). (5)

The function f represents the part of µ0 which we shift from
the prior to %. For doing this rigorously we define

%̃(x) := %(x)f(x), x ∈ Rd, (6)

and obtain an alternative representation of µ. Namely,

µ(dx) ∝ %(x)µ0(dx) ∝
(5)
%(x)f(x)µ̃0(dx) =

(6)
%̃(x)µ̃0(dx).

Using the representation of µ in terms of %̃ and µ̃0 it might
be possible to satisfy Assumption 2.1 for %̃ as the following
example shows.
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Example 3.1. We apply the “tail-shift” modification to the
“volcano density” considered in Section 4.3 in the article.
Recall that

%(x) = exp(‖x‖), x ∈ Rd,

and µ0 = N (0, I). For ε ∈ (0, 1) after setting

f(x) := exp
(
−ε

2
‖x‖2

)
,

we obtain µ0(dx) ∝ f(x)µ̃0(dx) with µ̃0 = N (0, (1 −
ε)−1I) and

%̃(x) = exp
(
‖x‖ − ε

2
‖x‖2

)
.

By applying Proposition 4.2 from the article with | · | =
‖ · ‖, x0 = 0, R′ = 2ε−1 and r(t) := exp(t − εt2/2) as
well as %R′ being the restriction of %̃ to BR′(0) we get that
Assumption 2.1 is satisfied.

We want to emphasize here that different representations of
µ lead, eventually, to different algorithms. Observe that one
can choose ε ∈ (0, 1) arbitrarily small and the requirements
for the main theorem are satisfied, whereas for ε = 0 our
theory does not apply. Unfortunately it is not always easy
to verify Assumption 2.1 in the modified setting.

In the following, we provide another tool for showing As-
sumption 2.1. Independent of the “tail-shift” modification
it can be used to prove that for certain % : Rd → (0,∞) the
main theorem is applicable.
Proposition 3.2. For % : Rd → (0,∞) and some R > 0
suppose that there are continuous functions %` : Rd →
(0,∞) and %u : Rd → (0,∞), such that

%`(x) ≤ %(x) ≤ %u(x), ∀x ∈ Rd. (7)

Furthermore, assume that for some α > 0 we have

Ax := {y ∈ Rd : %`(y) ≥ %u(x)} ⊇ Bα‖x‖(0) (8)

for any x ∈ BR(0)c. Then % satisfies Assumption 2.1 with
constants R and α.

Proof. Obviously, % is bounded away from 0 and ∞ on
any compact set, since %` and %u are strictly positive and
continuous. Therefore, part 1. of Assumption 2.1 is satisfied.
For part 2. notice that for all x ∈ BcR(0) holdsG%(x) ⊇ Ax,
since, if y ∈ Ax, then %`(y) ≥ %u(x) and therefore

%(y) ≥
(7)
%`(y) ≥ %u(x) ≥

(7)
%(x).

Thus,

G%(x) ⊇ Ax ⊇ Bα‖x‖(0), ∀x ∈ BR(0)c,

which finishes the proof.

We apply the former proposition to the logistic regression
example and therefore prove Proposition 4.4 from the arti-
cle.

3.1. Logistic Regression

For some data (ξi, yi)i=1,...,N with ξi ∈ Rd and yi ∈
{−1, 1} for i = 1, . . . , N let

%(x) =

N∏
i=1

1

1 + exp(−yixT ξi)
, x ∈ Rd. (9)

In this case % does not satisfy Assumption 2.1, see Sec-
tion 4.4 in the main article. Using the “tail-shift” modifica-
tion changes the picture.

Let µ0 = N (0, I) and note that for arbitrary ε ∈ (0, 1),
with

f(x) := exp(−ε‖x‖2/2), θ ∈ Rd,

the measure µ0 can be expressed as

µ0(dx) ∝ f(x)µ̃0(dx)

with µ̃0 := N (0, (1− ε)−1I). Therefore, %̃ from (6) takes
the form

%̃(x) = exp(−ε‖x‖2/2)

N∏
i=1

1

1 + exp(−yixT ξi)
.

Observe that %̃ has, in contrast to %, exponential tails. To
apply Proposition 3.2 to %̃ we need to find suitable lower
and upper bounds which satisfy the conditions formulated
in (7) and (8). For any x ∈ Rd we have by applying the
Cauchy-Schwarz inequality that

exp(−β‖x‖) ≤ %(x) ≤ 1,

where β := 2N min
i=1,...,N

‖ξi‖. Taking this into account, with

%`(x) := exp(−ε‖x‖2/2) exp(−β‖x‖),
%u(x) := exp(−ε‖x‖2/2),

we have the desired lower and upper bound for %̃. For Ax
defined in (8) (based on %` and %u) we show that

Ax ⊇
{
z ∈ Rd : ‖z‖ ≤ ε

2
‖x‖
}

(10)

for all x ∈ Rd with ‖x‖ ≥ 2β/ε. For this notice that

Ax =
{
z ∈ Rd : − β‖z‖ − ε‖z‖2/2 ≥ −ε‖x‖2/2

}
=
{
z ∈ Rd : ε‖z‖2 + 2β‖z‖ − ε‖x‖2 ≤ 0

}
=
{
z ∈ Rd : ‖z‖ ≤ −β +

√
β2 + ε2‖x‖2

}
⊇
{
z ∈ Rd : ‖z‖ ≤ ε‖x‖ − β

}
,

where the inclusion is due to the fact that
√
β2 + ε2‖x‖2 ≥

ε‖x‖. We conclude that for any x ∈ Rd with ‖x‖ ≥ 2β/ε,
or equivalently, β ≤ ε‖x‖/2, condition (10) holds true.
Thus, all requirements of Proposition 3.2 are fulfilled for
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α = ε/2 and R = 2β/ε and therefore %̃ satisfies Assump-
tion 2.1.

We summarize that the application of the main theorem,
which gives geometric ergodicity of elliptical slice sampling,
depends on the representation of µ. As pointed out for

µ(dx) ∝ %(x)µ0(dx),

with % : Rd → (0,∞) and µ0 = N (0, C), it might be
possible that Assumption 2.1 is not satisfied. Therefore, for
elliptical slice sampling with this representation of µ we do
not provide any ergodicity guarantee. However, by using
the “tail-shift” modification it is likely that one can find
%̃ : Rd → (0,∞) and a Gaussian measure µ̃0 with

µ(dx) ∝ %̃(x)µ̃0(dx),

such that for %̃ Assumption 2.1 is satisfied and the geometric
ergodicity theorem for elliptical slice sampling is applicable
for %̃ and µ̃0.
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