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Abstract

Social learning is a key component of human

and animal intelligence. By taking cues from the

behavior of experts in their environment, social

learners can acquire sophisticated behavior and

rapidly adapt to new circumstances. This paper

investigates whether independent reinforcement

learning (RL) agents in a multi-agent environment

can learn to use social learning to improve their

performance. We find that in most circumstances,

vanilla model-free RL agents do not use social

learning. We analyze the reasons for this defi-

ciency, and show that by imposing constraints on

the training environment and introducing a model-

based auxiliary loss we are able to obtain general-

ized social learning policies which enable agents

to: i) discover complex skills that are not learned

from single-agent training, and ii) adapt online

to novel environments by taking cues from ex-

perts present in the new environment. In contrast,

agents trained with model-free RL or imitation

learning generalize poorly and do not succeed in

the transfer tasks. By mixing multi-agent and

solo training, we can obtain agents that use social

learning to gain skills that they can deploy when

alone, even out-performing agents trained alone

from the start.

1. Introduction

Social learning—learning by observing the behavior of other

agents in the same environment—enables both humans and

animals to discover useful behaviors that would be diffi-

cult to obtain through individual exploration, and to adapt

rapidly to new circumstances (Henrich & McElreath, 2003;

Laland, 2004). For example, fish are able to locate safe

sources of food in new environments by observing where

other members of their species congregate (Laland, 2004).
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Humans are able to learn from one another without direct

access to the experiences or memories of experts. Rather,

the interactions that constitute social learning are mediated

directly by the environment. A novice may gain the ability

to solve a task merely by watching a self-interested expert

complete the same task, and without an explicit incentive

to mimic the expert. Beyond simple imitation, social learn-

ing allows individual humans to “stand on the shoulders of

giants” and develop sophisticated behaviors or innovations

that would be impossible to discover from scratch within

one lifetime. In fact, social learning may be a central fea-

ture of humans’ unprecedented cognitive and technological

development (Humphrey, 1976; Boyd et al., 2011).

Contemporary techniques for transmitting skills between

agents in AI systems are much more limited. For example,

Imitation Learning (IL) depends on manually curated expert

demonstration trajectories. This requires a system extrinsic

to the learning agent (i.e., a developer) to (1) identify tasks of

interest, (2) find and instrument task experts, and (3) collect

demonstration data. The resulting agent is brittle, only able

to replicate skills within the collected demonstrations, and

otherwise vulnerable to compounding error (Ross et al.,

2011; Reddy et al., 2019). In contrast, humans and animals

capable of social learning are able to identify experts at tasks

relevant to their own interests and learn from those experts

without the intervention of an external system. In novel

circumstances, social learning enables adapting online to

the new task, which IL cannot do.

In this work, we investigate whether RL agents can learn

to learn from the cues of other agents. We focus on two

hypotheses related to the benefits of social learning: H1)

Social learning can discover more complex policies that

would be difficult to discover through costly individual ex-

ploration, and H2) Social learning can be used to adapt

online to a new environment, when the social learning pol-

icy encodes how to learn from the cues of experts. We study

a setting representative of real-world human environments:

multi-agent reinforcement learning (MARL) where com-

pletely independent agents pursue their own rewards with

no direct incentive to teach or learn from one another (de-

centralized training and decentralized execution, with no

shared parameters or state). This setting is representative of

real-world multi-agent problems such as autonomous driv-

ing, in which there are other cars on the road but the drivers



are not motivated to teach a learning agent, and may or may

not have relevant expertise. Novice agents are able to see

the experts in their partial observations, but must learn the

social learning behavior that would allow them to make use

of that information. In these challenging scenarios, we find

that vanilla model-free RL agents fail to use social learning

to improve their performance.

Since social learning does not occur by default, we thor-

oughly investigate the environment conditions and agent

abilities which are needed for it to emerge, and propose

both a training environment and model architecture that

facilitate social learning.

We show that when social learning does occur, it enables

agents to learn more complex behavior than agents trained

alone and even the experts themselves.

Within each episode, social learners selectively follow ex-

perts only when doing so is rewarding — which pure

imitation learning cannot do. To prevent social learners

from becoming reliant on the presence of experts, we inter-

leave training with experts and training alone. Social learn-

ers trained in this manner make use of what they learned

from experts to improve their performance in the solo en-

vironment, even out-performing agents that were only ever

trained solo. This demonstrates that agents can acquire

skills through social learning that they could not discover

alone, and which are beneficial even when experts are no

longer present.

We show for the first time that social learning improves

generalization for RL agents. When evaluated in novel

environments with different experts, social learners use cues

from the new experts to adapt online, achieving high zero-

shot transfer performance. They significantly out-perform

agents trained alone, agents that do not learn social learning,

and imitation learning. Imitation learning leads to similar

transfer performance as the original experts, whereas social

learning enables agents to actively seek information about

the new environment from a new set of experts and adjust

their policy accordingly. The difference between imitation

learning and social learning can best be understood using

the following analogy: Teach someone to fish, and they will

learn how to fish. Teach someone to acquire skills from

other agents, and they can learn how to fish, hunt, swim,

and any other skills they require.

The contributions of this work are to show how learning

social learning—specifically, learning how to learn from

other agents using RL—can lead to improved generaliza-

tion to novel environments, reduce the cost of individual

exploration, and enhance performance. We show how both

algorithm and environment design are critical to facilitat-

ing social learning, and provide details for how to achieve

it. Since deep RL often generalizes poorly (Cobbe et al.,

2019; Farebrother et al., 2018; Packer et al., 2018), we be-

lieve these results are a promising first step on a new path

for enhancing generalization. In real-world tasks, such as

autonomous driving or robotics, there are many human ex-

perts who know how to perform useful tasks, but individual

exploration can be costly, inefficient, error-prone, or un-

safe. Social learning could enable agents to adapt online

using cues from these experts, without resorting to clumsy

or costly exploration.

2. Related Work

There is a rich body of work on imitation learning, which

focuses on training an agent to closely approximate the be-

havior of a curated set of expert trajectories (Pomerleau,

1989; Schaal, 1999; Billard et al., 2008; Argall et al., 2009).

For example, Behavioral Cloning (e.g. Bain & Sammut

(1995); Torabi et al. (2018)) uses supervised learning to imi-

tate how the expert maps observations to actions. Because

imitation learning can be brittle, it can also be combined

with RL (e.g. Guo et al. (2019); Lerer & Peysakhovich

(2019)), or make use of multiple experts (e.g. Cheng et al.

(2020)). Third-person imitation learning (e.g. Shon et al.

(2006); Calinon et al. (2007); Stadie et al. (2017)) enables

agents to learn to copy an expert’s policy when observing

the expert from a third-person perspective.

Our work shares some similarities with third-person imita-

tion learning, in that our agents are never given access to

expert’s observations and therefore only have a third-person

view. However, we do not assume access to a curated set

of expert trajectories. Rather, our agents co-exist in a multi-

agent environment with other agents with varying degrees of

expertise, who are not always within their partially observed

field of view. We do not assume experts are incentivized

to teach other agents (as in e.g. Omidshafiei et al. (2019);

Christiano et al. (2017)). Since agents are not given priv-

ileged access to information about other agents, they do

not explicitly model other agents (as in e.g. Albrecht &

Stone (2018); Jaques et al. (2018)), but must simply treat

them as part of the environment. Finally, unlike in imitation

learning, we do not force our agents to copy the experts’

policy; in fact, we show that our agents eventually learn to

out-perform the experts with which they learned.

Our work is distinct from Inverse RL (IRL) (e.g. Ng et al.

(2000); Ramachandran & Amir (2007); Ziebart et al. (2008);

Hadfield-Menell et al. (2016)), because our agents share a

single environment with the experts which has a consistent

reward function, and thus do not need to infer the reward

function from expert trajectories.1 However, we do consider

learning from sub-optimal experts, which was studied by

1Note that novices and experts do not share rewards; if an
expert receives a reward the novice does not benefit.
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Jacq et al. (2019) in the context of IRL.

Learning online from other agents has been studied in the

context of autonomous driving, where Landolfi & Dragan

(2018) trained cars which copied the policy of human drivers

on the road when the agent had a high degree of uncertainty.

However, they assume access to privileged information

about other cars’ states and policies. Sun et al. (2019) make

similar assumptions, but use other cars to update agents’

beliefs; e.g. about the presence of pedestrians in occluded

regions.

Most closely related to our work is that of (Borsa et al.,

2019), who train model-free RL agents in the presence of a

scripted expert. In the partially observed exploration tasks

they consider, they find that that novice agents learning from

experts outperform solitary novices only when experts use

information that is hidden from the novices. In our work,

experts do not have access to privileged information about

the environment; rather they are distinguished by their task

skill. We analyze why it is difficult for RL agents to benefit

from expert demonstrations in sparse reward environments,

and propose a method to solve it. With our proposed learn-

ing algorithm, novices learning from unprivileged experts

do outperform solitary learners. Unlike Borsa et al. (2019),

we show for the first time that social learning allows agents

to transfer effectively to unseen environments with new

experts, resulting in better generalization than solo learners.

Finally, our approach uses a model-based auxiliary loss,

which predicts the next state given the current state, to better

enable agents to learn transition dynamics from trajectories

in which they received no reward. The idea of using aux-

iliary losses in deep RL has been explored in a variety of

works (e.g. Ke et al. (2019); Weber et al. (2017); Shelhamer

et al. (2016); Jaderberg et al. (2016)). Model-based RL

(MBRL) has also been applied to the multi-agent context

(e.g. Krupnik et al. (2020)). Hernandez-Leal et al. (2019)

use predicting the actions of other agents as an auxiliary

task, and show that it improves performance on multi-agent

tasks. However, they do not study social learning, transfer or

generalization, and assume privileged access to other agents’

actions.

3. Learning Social Learning

We focus on Multi-Agent Partially Observable Markov De-

cision Process (MA-POMDP) environments defined by the

tuple 〈S,A, T ,R, I, N〉, where N is the number of agents.

The shared environment state is s ∈ S. I is an inspection

function that maps s to each agent’s partially observed view

of the world, sk. At each timestep t, each agent k chooses

a discrete action akt ∈ A. Agents act simultaneously and

there is no notion of turn-taking. Let AN be the joint action

space.The transition function depends on the joint action

space: T : S×AN ×S → [0, 1]. The reward function is the

same across agents, but each agent receives its own individ-

ual reward rkt = R(st, a
k
t ). Each agent k is attempting to

selfishly maximize its own, individual reward by learning a

policy πk that optimizes the total expected discounted future

reward: J(πk) = Eπ

[

∑

∞

t=0
γt rkt+1 | s0

]

, given starting

state s0 and discount factor γ ∈ [0, 1]. Note that agents are

trained independently, cannot directly observe other agents’

observations or actions, and do not share parameters. To

simplify notation, when we discuss the learning objectives

for a single novice we forego the superscript notation.

3.1. Model-Free Sparse Reward Social Learning

To understand how experts present in the same environment

could provide cues that enhance learning—and how model-

free RL could fail to benefit from those cues—consider an

example environment in which agents must first pick up a

key, and use it to pass through a door to reach a goal. In this

sparse-reward, hard exploration environment, agents only

receive a reward for reaching the goal; the rest of the time,

their reward is 0. Assume there is a boundless supply of

keys, and after an agent passes through the door it closes —

then other agents cannot modify the environment to make

the task easier. Instead, an expert agent can demonstrate

a novel state s̃ that is difficult to produce through random

exploration: opening the door. Ideally, we would like novice

agents to learn from this demonstration by updating their

internal representation to model s̃, and eventually learn how

to produce this state.

However, if the novice does not receive any reward as a

result of observing s̃, model-free RL receives little benefit

from the expert’s behavior. Assume that the novice agent

is learning policy πθ with a policy-gradient objective on a

trajectory including the demonstrated state s̃k, k ∈ (0, T −
1):

∇θJ(θ) =

T−1
∑

t=0

∇θ log πθ(at|st)Rt (1)

where Rt =
∑T

t′=t+1
γt′−t−1rt′ is the total reward re-

ceived over the course of the trajectory. If the agent receives

0 reward during the episode in which the demonstration

occurred (e.g. it does not reach the goal), we can see that

∀t ∈ (0, T ), Rt =
∑T

t′=t+1
γt′−t−1(0) = 0. Therefore

∇θJ(θ) =
∑T−1

t=0
∇θ log πθ(at|st)(0) = 0, and the novice

receives no gradients from the expert’s demonstration which

allow it to update its policy.

Temporal Difference (TD) Learning could temporarily mit-

igate this issue, but as we show in the Appendix, this abil-

ity quickly deteriorates. Consider Q-learning, in which

Q(a, s) = Eπ

[

∑

∞

t=0
γt rt+1 | a, s

]

models the total ex-
3



pected reward from taking action a in state s. As the agent

continues to receive 0 rewards during training, all Q values

will be driven toward zero. Even if the agent observes a use-

ful novel state such as s̃, as Q(a, s) → 0, ∀a ∈ A, s ∈ S,

the Q-learning objective becomes:

Q(s̃, a) = r + γmax
a′

Q(s′, a′) = 0 + γ0 = 0 (2)

Thus, the objective forces the value of Q(s̃, a) to be zero.

In this case, modeling transitions into or out of state s̃ is

not required in order to produce an output of zero, since

all other Q-values are already zero. In both cases, we can

see that before a model-free RL agent receives a reward

from the environment, it will have difficulty modeling novel

states or transition dynamics. This makes learning from the

cues of experts particularly difficult.

Learning to model the expert’s policy πE(aE |sE) would

likely help the novice improve performance on the task.

However, the novice does not have explicit access to the

expert’s states or actions. From its perspective, the other

agent’s policy is simply a part of the environment transition

dynamics. While the true state transition function st+1 =
T (st, a

N
t , aEt ) depends on both the novice’s own action aNt ,

and the expert’s policy (since aEt = πE(sEt )), the novice is

only able to observe p(sNt+1|s
N
t , aNt ). Therefore, the novice

can only obtain knowledge of the expert’s policy through

correctly modeling the state transitions it observes. Since,

as we have argued above, the novice will struggle to model

state transitions in the absence of external reward, it will

also have difficulty modeling another agent’s policy.

3.2. Social Learning with Auxiliary Losses

To mitigate this issue, we propose augmenting the novice

agent with a model-based prediction loss. Specifically, we

append additional layers θA to the policy network’s encod-

ing of the current state, fθ(st), as shown in Figure 1. We

introduce an unsupervised mean absolute error (MAE) aux-

iliary loss to train the network to predict the next state st+1,

given the current state st and action at:

ŝt+1 = fθA(at, st); J =
1

T

T
∑

t=0

|st+1 − ŝt+1| (3)

This architecture allows gradients from the auxiliary loss

to contribute to improving fθ(st). Figure 2 shows exam-

ple state predictions generated by the auxiliary layers of a

trained agent, demonstrating that this architecture enables

effective learning of the transition dynamics.

We can now see that if the novel demonstration state is in a

trajectory, s̃k ∈ (0, T ), the term |s̃k − ŝk| will be part of the

objective. It will not be 0 unless the agent learns to perfectly

predict the novel demonstration state. Therefore, cues from

the expert will provide gradients that allow the novice to

Figure 1. PPO + auxiliary loss deep neural network architecture.

Convolution layers extract information about the state from pixels,

which is fed into a Fully Connected (FC) layer, and a recurrent

LSTM. The yellow shaded box shows the components of the model

which learn the RL policy π and value function V (s). The green

shaded box shows the components of the model dedicated to com-

puting the auxiliary loss, which predicts the next state from the

current state.

improve its representation of the world, even if it does not re-

ceive any reward from the demonstration. This architecture

also implicitly improves the agent’s ability to model other

agents’ policies, since it must correctly predict other agents’

actions in order to accurately predict the next state. It is able

to do this without ever being given explicit access to the

other agent’s states or actions, or even any labels indicating

what elements of the environment constitute other agents.

We refer to our approach as social learning with an auxiliary

predictive loss, and hypothesize that it will improve agents’

ability to learn from the cues of experts. Note, however,

that simply modeling the other agent’s policy does not force

these independent agents to copy the actions of other agents

(unlike in imitation learning). When an independent social

learner receives a low reward for following the policy of

another agent, it can learn to avoid following that agent in

future.

To optimize our agents, we test both TD-learning (deep Q-

learning) and policy-gradient methods, and find that Prox-

imal Policy Optimization (PPO) (Schulman et al., 2017)

provides better performance and stability, and is most able

to benefit from social learning. We use Generalized Advan-

tage Estimation (GAE) (Schulman et al., 2016) to train the

PPO value function. As shown in Figure 1, our agents use

convolution layers to learn directly from a pixel represen-

tation of the state st. Because the environments under in-

vestigation are partially observed and non-Markov, we use a

recurrent policy parameterized by a Long Short-Term Mem-

ory (LSTM) network (Hochreiter & Schmidhuber, 1997) to

model the history of observations in each episode. LSTM

hidden states are stored in the experience replay buffer. Fol-

lowing the recommendations of Andrychowicz et al. (2020),

we recalculate the stored state advantage values used to com-

pute the value function loss between mini-batch gradient

updates. In addition, we recalculate and update the stored
4



Figure 2. Examples of future states ŝt+1 predicted by the network given state st (“observed state”), and each of the possible movement

actions at. Most predictions are highly accurate, indicating the network has learned to effectively model transition dynamics. The

transition for the ‘do nothing’ action is less accurate because it is infrequently chosen by the agent.

hidden states as suggested by Kapturowski et al. (2018)

for off-policy RL. A detailed description of the network

architecture and hyperparameters are given in an appendix.

3.3. Social Learning Environments

Humans and animals are most likely to rely on social learn-

ing when individual learning is difficult or unsafe (Henrich

& McElreath, 2003; Laland, 2004). Further, individuals

prefer to learn from others that they perceive to be highly

successful or competent, which is known as prestige bias

(Jiménez & Mesoudi, 2019). Cues or signals associated

with prestige have shown to be important to both human and

animal social learning (Barkow et al., 1975; Horner et al.,

2010).

Motivated by these two ideas, we introduce a novel envi-

ronment specifically designed to encourage social learn-

ing by making individual exploration difficult and expen-

sive, and introducing prestige cues. The code for both

the environment and social learning agents is available at:

https://github.com/kandouss/marlgrid. In

Goal Cycle (Figure 3a), agents are rewarded for navigating

between several goal tiles in a certain order, and penalized

for deviating from that order. The goal tiles are placed

randomly and are visually indistinguishable, so it is not

possible for an agent to identify the correct traversal order

without potentially incurring an exploration penalty. When

the penalty is large, this becomes a hard exploration task.

Agents can achieve high rewards by efficiently traversing

between the goals in the correct order, and skilled agents are

able to identify the correct order while incurring minimal

penalties. Agents can accomplish this either by trial and

error, or by observing other agents. In practice, since the

behavior of other agents can be unpredictable and poten-

tially non-stationary, agents more easily learn to solve the

task directly through trial and error. But by adjusting the

penalty for navigating to goals in the wrong order, we can

penalize individual exploration and thereby encourage so-

cial learning. In all the Goal Cycle variants discussed here,

agents receive a reward of +1 for navigating to the first goal

they encounter in an episode, and +1 for any navigating to

any subsequent goals if in the correct order. They receive

a penalty of −1.5 for navigating to the incorrect goal. In

Appendix 7.2 we conduct experiments to assess the effect

of the exploration penalty, and find that with no exploration

penalty agents do not learn to rely on social learning.

Prestige cues are implemented in Goal Cycle signal through

agents changing color as they collect rewards over the

course of each episode. At time t, the color of an agent

is a linear combination of the red and blue RGB color

vectors: COLORt = BLUE · c̃t + RED · (1 − c̃t), where

c̃t = sigmoid(ct), and ct is a reward-dependent prestige

value given by:

ct =

{

αcct−1 + rt, rt ≥ 0

0, otherwise.
(4)

Thus the color of each agent changes from red to blue as

it collects rewards (slowly decaying with constant αc, but

reverts to red if it incurs a penalty.

The Goal Cycle environments are challenging to master

because there are many more incorrect than correct goal

traversal sequences. When the penalty is large, the returns

for most traversal orders are negative, so mistake-prone

agents learn to avoid goal tiles altogether (after the first goal

in an episode, which always gives a reward of +1). We can

obtain agents that perform well in high penalty environments

using a curriculum: we train them initially in low-penalty

environments and gradually increase the penalty.

3.4. Social Learning in New Environments

A central thesis of this work is that social learning can help

agents adapt more rapidly to novel environments. This

could be particularly useful because deep RL often fails

to generalize to even slight modifications of the training

environment. Therefore, we test the zero-shot transfer per-

formance of agents pre-trained in 3-Goal Cycle in three new

environments. The first is Goal Cycle with 4 goals. This
5
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(a) Goal Cycle (b) Four Rooms (c) Maze

Figure 3. Goal Cycle (a) is a 13x13 environment in which the positions of goal tiles (yellow) and obstacles (brown) are randomized at the

start of each episode. Agents receive rewards for repeatedly traversing the goal tiles in a certain order and penalties for deviations from

the correct order. However, the correct order is not visible. Agents always receive a reward from the first goal tile they encounter in an

episode. We test whether agents trained in Goal Cycle can generalize to Four Rooms (b), and Maze (c); larger environments with walls

hiding the location of a single goal.

variant is significantly harder, because while there are two

possible cycles between three goals, there are six ways to

cycle between four goals (there are (n−1)! distinct traversal

orders, since the cycle can be entered at any goal). Thus,

even optimal agents must incur higher penalties to identify

the correct traversal order in each episode.

We also test transfer to the 17x17 Four Rooms (in Figure

3b), and 19x19 Maze environments (Figure 3c). In both en-

vironments, the goal and obstacles are randomly generated

each episode, and agents must navigate around walls to find

the goal within a time limit. These environments represent

challenging transfer tasks, because navigating the maze is

significantly more complex than navigation in Goal Cycle,

and agents are unlikely to have encountered walls in Four

Rooms while training in Goal Cycle (Dennis et al., 2020).

4. Experiments

To establish that independent agents with the auxiliary pre-

dictive loss described in Sec. 3.2 can use social learning

to improve their own performance, we compare the per-

formance of agents with auxiliary predictive losses learn-

ing in an environment shared with experts (SOCIAL PPO +

AUX PRED) to that of agents with the same architecture but

trained alone (Solo PPO + aux pred).

We also compare social learning performance (in the pres-

ence of experts) across two ablations. The first uses the

same architecture with no auxiliary loss, which corre-

sponds to standard PPO. The second replaces the next-state-

prediction objective of Equation 3 with a simple autoen-

coder reconstruction objective that predicts the current state,

ŝt = fθA(at, st). The loss is thus J = 1

T

∑T

t=0
|st − ŝt|.

We refer to this as social learning with an auxiliary recon-

struction loss (Solo PPO + aux rec). Unlike the auxiliary

prediction loss, this reconstruction loss does not need to

learn about transition dynamics or other agents’ policies.

Finally, we compare to imitation learning (IL), which is an

upper bound on the performance that can be obtained when

learning from other agents with direct access to their ground

truth state and action information (which is not provided to

the other methods).

4.1. H1: Learning Social Learning

Figure 4 compares Goal Cycle performance of agents

trained alone (solo) to agents trained in the presence of

experts (social). Solo agents, even with the predictive auxil-

iary loss (SOLO PPO + AUX PRED), are not able to discover

the strategy of reaching the goals in the correct order; in-

stead, all random seeds converged to a strategy of stopping

after reaching a single goal (with a maximum return of 1).

Even when trained in the presence of experts, agents with-

out an auxiliary loss (SOCIAL PPO (VANILLA)) failed in the

same way, with all seeds receiving a maximum reward of 1.

This supports our hypothesis that model-free RL by itself

has difficulty benefiting from the cues of experts in sparse

reward environments.

In contrast, social agents trained with auxiliary predictive

or reconstructive losses were able to achieve higher perfor-

mance. This confirms hypothesis H1, that when successful,

social learning can enable agents to learn more complex be-

havior than when learning alone. While the reconstruction

loss helps agents learn from experts, still higher perfor-

mance is obtained with the model-based prediction loss. In

contrast to the reconstruction loss, the prediction loss helps

agents learn representations that capture the transition dy-

namics and (implicitly) other agents‘ policies. Note that in

our experiments, solo agents with auxiliary predictive losses

6



Figure 4. While learning in the presence of experts, only agents

with an auxiliary loss that enables them to model expert cues (with

either a predictive (pred) or reconstructive (rec) auxiliary loss)

succeed in using social learning to improve performance. None

of the seeds for solo agents are able to solve the task. Further,

no vanilla PPO seeds solve the task, showing that social learning

does not occur automatically with RL. In contrast, 4 of 5 seeds

with an auxiliary reconstructive loss (SOCIAL PPO + AUX REC)

are able to exceed the performance of the experts present in their

environment. Faded dotted lines show the performance of indi-

vidual random seeds and bolded lines show the mean of 5 seeds.

The final performance is bimodal, with some novice seeds achiev-

ing expert-level performance and others failing to learn entirely.

Since the normality assumption is violated, we refrain from using

confidence intervals.

performed much worse than social learners, showing that

good performance can depend on learning effectively from

expert cues in sparse reward hard-exploration environments.

Interestingly, the majority of random seeds with predictive

losses are actually able to exceed the performance of both

the experts and the imitation learning (IL) methods. Un-

like IL, which requires direct access to experts’ states and

actions, social learners reach equivalent performance only

through learning from their partially observed view of ex-

perts via RL. The reason that social learners can actually

exceed the performance of the experts themselves is that

they learn an improved policy that leverages social informa-

tion. During each episode, social learners wait and observe

while the expert explores the goals to find the correct order.

Only then do they follow the expert’s cues. Thus, they allow

the expert to incur the exploration penalties of Goal Cycle

and use social learning to follow when it is safe. Despite be-

ing a non-cooperative strategy, this is reminiscent of social

learning in the animal kingdom (Laland, 2018).

Learning from Sub-Optimal Experts. In real-world en-

vironments, not all other agents will have optimal perfor-

mance. Therefore, we test whether it is still possible to

learn from imperfect experts. The results in Figure 5 show

that while expert performance does affect the novices’ final

Figure 5. The effect of expert skill on social learning. With auxil-

iary predictive losses, novice agents benefit from social learning in

the presence of near-optimal experts (green) or imperfect experts

(yellow), surpassing the performance of solo agents in both cases.

However, agents learning from imperfect experts achieve lower

performance, and only 1/5 random seeds exceed the performance

of the imperfect experts.

performance, even when learning from imperfect experts

novices can use social learning to exceed the performance of

agents trained alone. However, novices trained with optimal

experts more frequently learn to exceed the performance of

the experts with which they are trained.

4.2. H2: Adapting Online to New Environments

We hypothesize that using social learning to adapt online

within an episode will allow agents to achieve higher perfor-

mance when transferred to a new environment with experts.

To evaluate this hypothesis, we investigate how well agents

pre-trained in 3-Goal Cycle can generalize to three new

environments: a 4 goal variant of the Goal Cycle environ-

ment, Four Rooms, and Maze. Figure 6 shows the zero-shot

transfer performance of agents trained in 3-Goal Cycle to

each new environment. Agents trained alone (which have

not learned to rely on social learning) perform poorly, likely

because they were never able to obtain good exploration

policies during training, due to the high cost of exploration

in the training environment.

Imitation learning agents perform poorly across all three

transfer environments, under-performing the original 3-Goal

experts in every case. These results demonstrate the brit-

tleness of imitation learning, which can only fit the expert

trajectories, and generalizes poorly to states outside of the

training distribution (Ross et al., 2011; Reddy et al., 2019).

In contrast, agents trained with social PPO + aux pred loss

employ a generalized social learning policy that encodes

how to adapt online based on expert cues. Thus, these agents

use social learning to achieve high performance in the new

environments with a new set of experts. For example, in the

Maze environment they can follow the cues of the Maze ex-
7



(a) Goal Cycle (4 goals, with experts) (b) Four Rooms (with expert) (c) Maze (with expert)

Figure 6. Zero-shot transfer performance in novel environments with expert demonstrators. Each bar shows the mean of the multiple

seeds, with the performance of each seed shown as a black ‘x’. The experts and 3-goal solo learners were also trained with auxiliary

predictive losses. Error bars show 95% confidence intervals for the estimated means. Agents which have learned to rely on social learning

benefit from the cues of novel experts in the new environment., and easily out-perform agents trained alone, agents training with imitation

learning, and in some cases, the experts from which they originally learned. Videos: tinyurl.com/SociAPL

perts to more closely approximate the optimal policy, rather

than continuing to rely on learning from 3-Goal experts.

It is worth noting that the original 3-Goal experts transfer

poorly to both 4-Goal Cycle and Maze. In 4-Goal, they

receive large negative scores, repeatedly incurring a penalty

for navigating to the goals in the incorrect order. This illus-

trates the brittleness of an RL policy which is overfit to the

training environment. In both environments, social learning

agents achieve better performance on the transfer task than

the original experts, suggesting social learning may be a

generally beneficial strategy for improving transfer in RL.

Taken together, these results provide support for hypothesis

H2, and suggest social learning can enable RL agents to

adapt online (within an episode) to new environments by

taking cues from other agents.

4.3. Social Learning Helps Solo Learning

A potential downside to learning to rely on the cues of ex-

perts is that agents could fail to perform well when experts

are removed from the environment. For novice agents al-

ways trained with experts, there appears to be a trade-off

between social learning and individual learning. As shown

in Figure 7, novice SOCIAL PPO + AUX PRED agents initially

learn to solve the Goal Cycle task with individual explo-

ration, but eventually they overfit to the presence of experts

and become reliant on expert cues to the detriment of solo

performance. We can see this because the performance in

the 3-goal environment in the presence of experts increases

(7a), while the performance in the 3-goal environment when

alone drops (7b). Observing the agent’s behavior reveals

that it has learned to follow the cues of experts when they

are present in the environment, but refrain from individual

exploration when experts are not present. Given the high

cost of individual exploration in this environment, this a

safe but conservative strategy.

We find that we can improve the solo performance of social

learning agents by changing the distribution of training tasks

to include episodes in which the experts are not present. The

green curves in Figure 7 show the performance of a check-

point switched from entirely social training environments

to a mix of solo and social environments as training pro-

ceeds. The agent is able to retain good performance in solo

3-goal environments as well as 4-goal environments with

experts, indicating that it is learning to opportunistically

take advantage of expert cues while building individual ex-

pertise in the 3-goal environment. In fact, agents trained

with SOCIAL PPO + AUX PRED perform better in solo trans-

fer environments than agents exclusively trained in the solo

environment (see Figure 7b), because agents trained alone

never discover the optimal strategy due to the difficulty of

exploring in this environment. This demonstrates that not

only does social learning enable agents to discover skills

that they could not learn by themselves (again supporting

hypothesis H1), but that they are able to retain this knowl-

edge to improve their individual performance even when

experts are not present.

5. Conclusions

In this work we investigated how model-free deep RL can

benefit from the presence of expert agents in the environ-

ment. We design an environment to elicit social learning by

increasing the cost of individual exploration and introducing

prestige cues. However, we find that even in this environ-

ment, model-free agents fail to use social learning to reach

optimal performance. By adding a model-based auxiliary

loss, which requires implicitly modeling other agents’ poli-

cies, we are able to train agents to use social learning. When

deployed to novel environments, these agents use their so-

cial learning policies to adapt online using the cues of novel

experts, and perform well in zero-shot transfer tasks. In con-

trast, agents trained alone or with imitation learning cannot

adapt to the new task. Further, by mixing social and solo
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(a) Training with experts (b) Transfer to solo 3-Goal (c) Transfer to 4-Goal with experts

Figure 7. ORANGE LINES: performance throughout training for one of the SOCIAL PPO + AUX PRED seeds from Figure 4 evaluated

in three Goal Cycle environments: (a) the training environment, 3-goal Goal Cycle with experts; (b) a solo version of the training

environment (no experts); and (c) 4-Goal Cycle, with experts. The agent initially relies mostly on individual exploration as indicated

by good zero-shot transfer performance in the solo environment. After about 500k episodes the agent becomes reliant on cues from

the 3-Goal experts, and its performance in solo 3-goal Goal Cycle degrades. GREEN LINES: performance of the same agent if the

distribution of training environments is changed from 100% social to 75% solo and 25% social after about 500k episodes. As training

proceeds the agent retains the capacity to solve the solo 3-goal environment while learning to use cues from expert behavior when they

are available. The performance of this agent in the solo environment actually exceeds that of agents trained exclusively in the solo

environment. The agent retains the capacity to use social learning when possible, with performance in the social training environment (a)

and 4-goal Goal Cycle with experts (c) comparable to the orange agent (for which 100% of training episodes included experts).

training, we obtain social learning agents that actually have

higher performance in the solo environment than agents

trained exclusively in the solo environment. Our results

demonstrate that social learning not only enables agents

to learn complex behavior that they do not discover when

trained alone, but that it can allow agents to generalize better

when transferred to novel environments.

5.1. Limitations and Future Work

Our social learning experiments focus on exploratory navi-

gation tasks. Future work includes extending this to other

domains such as manipulation, to scenarios in which experts

pursue different goals than the novices, and to scenarios

with multiple experts that employ a variety of strategies.

We found that training in a mixture of social and solitary

environments can permit novice social learning agents to

develop effective strategies for both social and individual

task variants, and notably that the resulting individual skill

far exceeds that of a solitary novice. However, in this work

we do not thoroughly explore different strategies for aug-

menting solitary with social experience. Further research

could clarify the circumstances in which adding social ex-

periences could aid solitary task performance, and see the

development of algorithms to facilitate this for arbitrary

tasks. Finally, we assume that prestige cues which indicate

how well experts perform in the environment are visible to

social learners. Future research could investigate how to ac-

curately predict another agent’s performance when prestige

cues are not available.
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7. Appendix

7.1. SociAPL auxiliary prediction loss

Figure 8 shows the training curve for the next-state aux-

iliary prediction loss of Equation 3, for the five SociAPL

agent seeds plotted in Figure 4. The curve shows that the

agent is effectively learning to predict the next state with

low mean absolute error. However, because the agent’s pol-

icy is changing at the same time, the prediction problem

is non-stationary, which means that the loss does not al-

ways decrease. If the agent discovers a new behavior, the

model will be required to predict new state transitions not

previously experienced.

Figure 8. Next-state auxiliary prediction loss (in Mean Absolute

Error (MAE) over the course of training the SociAPL agents shown

in Figure 4.

7.2. Training without an exploration penalty

The Goal Cycle environments include a penalty for reaching

the goals in the incorrect order. We conducted an additional

experiment to investigate whether social learning emerges

effectively without the exploration penalty. Figure 9 com-

pares the transfer results of agents trained in Goal Cycle

with the standard exploration penalty of p = −1.5, to agents

trained with no penalty (p = 0). Without the penalty, agents

in Goal Cycle lack an incentive to learn from experts in the

environment. The solitary policies they learn mirror those

of the three-goal experts, reflected by similar performance

in the four-goal transfer environment. This mirrors the find-

ing that animals engage in social learning when individual

exploration is most costly or dangerous (Laland, 2004).

7.3. Identifying the experts

In most of our experiments, we assume that social learners

are trained in the presence of two high-performing expert

agents. We conduct an additional experiment to determine

if social learners can learn effectively in the presence of

both high-performing experts, and non-experts. In this new

Figure 9. Next-state auxiliary prediction loss (in Mean Absolute

Error (MAE) over the course of training the SociAPL agents shown

in Figure 4.

experiment, the transfer task experts are accompanied by

two non-expert distractor agents that take random movement

actions. As shown by the maze transfer results in Figure 10,

our method is robust to the presence of these distractions

and still outperforms the baselines.

Figure 10. Distractors

7.4. Imitation learning details

The imitation learning agents shown in Section 4 were

trained with behavior cloning(Bain & Sammut, 1995). The

model architecture is similar to that of the SociAPL agents,

but layers specific to the value function and next state predic-

tion were unused. The policy parameters θ were optimized

with Adam(Kingma & Ba, 2014) to minimize the loss

LBC = ED − log πθ(aexpert|sdemo),

where D is a dataset of expert trajectories consisting of

states sdemo and expert actions aexpert. Figure 11 shows

the returns of imitation learning agents during training.

7.5. Q-learning learning in sparse reward

environments

Before a Temporal Difference (TD) learning agent has

received any reward, it will be difficult for it to learn
12



Figure 11. Returns over the course of training imitation learning

agents in the 3 goal Goal Cycle environment with experts.

to model transition dynamics. Consider as an example

deep Q-learning, in which the Q-function is parameter-

ized by a neural network which encodes the state using

a function fθ(s). Assume the network is randomly initial-

ized such that all Q-values are small, random values; i.e.

∀a ∈ A, s ∈ S, Q(a, s) = ǫ ∼ N (0, 0.1). Assume that

the agent has not yet learned to navigate to the goal, and

has received zero rewards so far during training. Therefore,

when the agent observes the experience (s, a, r = 0, s′), the

Q-learning objective is:

J(θ) = (r + γmax
a′

Q(s′, a′)−Q(s, a))2 (5)

= (0 + γǫ1 − ǫ2)
2 (6)

In effect, this induces a correlation between Q(s′, a′) and

Q(s, a), and consequently fθ(s
′) and fθ(s), as a result of

observing the state transition s → s′. However, as the agent

continues to receive zero reward, all Q-values will be driven

toward zero. Once this occurs, even if the agent observes a

useful novel state such as s̃, our equation becomes:

(r + γmax
a′

Q(s′, a′)−Q(s̃, a))2 = (0−Q(s̃, a))2 (7)

such that the objective forces the value of Q(s̃, a) to be zero.

In this case, modeling transitions into or out of state s̃ is

not required in order to produce an output of zero, since all

other Q-values are already zero.

7.6. Environment details

The environments used in this paper were originally based

on Minigrid (Chevalier-Boisvert et al., 2018). The partial

states constituting agent observations are 27×27 RGB im-

ages corresponding to 7×7 grid tiles. There are 7 possible

actions, though only three actions (rotate left, rotate right,

move forward) are relevant in the experiments discussed in

this paper. Agents are unable to see or move through the ob-

structive tiles that clutter their environments, and obstructed

regions of their partial views appear as purple. However,

agents can both see and move through goal tiles as well as

other agents.

Figure 12. We use a penalty curriculum to obtain experts in en-

vironments where exploration is expensive. In the scenario visu-

alized here, an agent trained for 81920 episodes in Goal Cycle

environments with penalty of 0.5, then continued with a penalty of

1.0

Figure 13. Sample 19x19 maze environment.

When the penalty for individual exploration in Goal Cycle

environments is large, agents are unable to learn effective

strategies. We used a penalty curriculum to obtain experts

for such tasks as shown in Figure 12.

7.7. Network architecture details

The value, policy, and auxiliary task networks share three

convolution layers, a fully connected layer, and an LSTM

layer. Values and policies are computed with two fully con-

nected layers, and the prediction-based auxiliary branch has

a fully connected layer followed by transposed convolution

layers that mirror the input convolution layers. The convolu-

tion and transposed convolution use leaky ReLU activation

functions; all other layers use tanh activation functions.
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• Shared input layers:

– Conv (3, 32) 3x3 filters, stride 3, padding 0,

– Conv (32, 64) 3x3 filters, stride 1, padding 0,

– Conv (64, 64) 3x3 filters, stride 1, padding 0,

– FC (576, 192),

– LSTM (192, 192)

• Value MLP:

– FC (192, 64),

– FC (64, 64),

– FC (64, 1)

• Policy MLP:

– FC (192, 64),

– FC (64, 64),

– FC (64, 7)

• Auxiliary state prediction layers:

– FC (192 + 7, 576),

– DeConv (64, 64) 3x3 filters, stride 1, padding 0,

– DeConv (64, 32) 3x3 filters, stride 1, padding 0,

– DeConv (32, 3) 3x3 filters, stride 3, padding 0

Altogether there are 668555 parameters. We experimented

with smaller (357291-parameter) networks but did not ob-

serve a significant performance difference. The networks

were sized to roughly saturate the available (desktop) com-

pute resources.

7.8. Hyperparameters

Each agent uses a single Adam optimizer (Kingma & Ba,

2014) to update its parameters. Each of the novice agents

was trained with a learning rate of 1e− 4. For SociAPL, the

expert agents were trained with a learning rate of 1e − 5.

Weights for all agents in the generalization experiments

as well as the imperfect experts in SociAPL-IE were kept

frozen and not updated.

Each parameter update consists of 20 sequential mini-batch

updates with the same batch of rollouts (128 episodes). Each

mini-batch consists of a uniform random sample of trajec-

tories from that batch. Hidden states are stored alongside

the trajectories, and the initial hidden state for each mini-

batch trajectory is retrieved from these stored values. Hid-

den states and advantage values for the entire batch are

re-calculated every 2 mini-batches. The mini-batch iteration

ceases if KL(π, πrollout) exceeds a target of 0.01. If for any

mini-batch the estimated divergence exceeds a hard limit of

0.03, the update terminates and all changes to the network

parameters and optimizer state are reverted.

batch size 128 episodes

mini-batches per batch 20

mini-batch num trajectories 512

mini-batch trajectory length 16

hidden state/advantage update interval 2 minibatches

return discount γ 0.993

GAE-λ 0.97

PPO clip ratio 0.2

KL target 0.01

KL hard limit 0.03

For each mini-batch iteration, the loss used to update agent

parameters is

Ltotal = Lπ(θ)+ cV ·LV (θ)+ caux ·L
aux(θ)− cent ·L

ent(θ),

where the policy loss Lπ is computed with PPO-clip (Schul-

man et al., 2017) and GAE (Schulman et al., 2016), the value

loss LV is the mean squared error of the values estimated

for each step in the trajectory, Lent(θ) is the policy entropy

bonus, and Laux(θ) is the auxiliary prediction loss (Equation

3). The loss scaling coefficients used in our experiments are

cV = 0.1, cent = 1e− 5, and caux = 3.

The prestige decay constant αc used for the Goal Cycle

environments (i.e. Equation 4) was 0.99.

In general we sought hyperparameters that enable stable

training. We experimented with mini-batch sizes varying

from 32 to 1025 trajectories and found training to be more

stable with larger mini-batches. Training was less stable

with learning rates higher than 1e− 4.

We randomized seeds for both the network parameter ini-

tialization and environment generation for each trial of each

experiment.

7.9. Compute

The experiments in this paper were performed primarily on

a desktop computer with an AMD Ryzen 3950x CPU and

two Nvidia GTX 1080TI GPUs, as well as g4dn.8xlarge in-

stances provisioned on Amazon AWS. Either system can run

two or three trials simultaneously, each consisting of three

agents training together in a shared environment. Collecting

experience and updating parameters were comparably time

consuming, and a single 1.5M episode (375M step) 3-agent

training run took about 30 hours. We used Ubuntu 18.04

with python3.8 and all neural networks are implemented in

PyTorch v1.6 (Paszke et al., 2019). Training metrics were

logged with Weights and Biases (Biewald, 2020).
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