
Bayesian Algorithm Execution: Estimating Computable Properties of
Black-box Functions Using Mutual Information

Willie Neiswanger 1 Ke Alexander Wang 1 Stefano Ermon 1

Abstract
In many real world problems, we want to infer
some property of an expensive black-box function
f , given a budget of T function evaluations. One
example is budget constrained global optimization
of f , for which Bayesian optimization is a popular
method. Other properties of interest include local
optima, level sets, integrals, or graph-structured
information induced by f . Often, we can find an
algorithm A to compute the desired property, but
it may require far more than T queries to execute.
Given such an A, and a prior distribution over f ,
we refer to the problem of inferring the output of
A using T evaluations as Bayesian Algorithm Ex-
ecution (BAX). To tackle this problem, we present
a procedure, INFOBAX, that sequentially chooses
queries that maximize mutual information with
respect to the algorithm’s output. Applying this to
Dijkstra’s algorithm, for instance, we infer short-
est paths in synthetic and real-world graphs with
black-box edge costs. Using evolution strategies,
we yield variants of Bayesian optimization that
target local, rather than global, optima. On these
problems, INFOBAX uses up to 500 times fewer
queries to f than required by the original algo-
rithm. Our method is closely connected to other
Bayesian optimal experimental design procedures
such as entropy search methods and optimal sen-
sor placement using Gaussian processes.

1. Introduction
Many real-world problems can be described as inferring
properties of an expensive black-box function f , subject
to a computational budget of T function evaluations. This
class of problems includes global optimization, commonly

An extended version of this paper can be found on arXiv:
https://arxiv.org/abs/2104.09460

1Stanford University, Computer Science Department. Correspon-
dence to: Willie Neiswanger <neiswanger@cs.stanford.edu>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

tackled by Bayesian optimization methods (Shahriari et al.,
2015; Frazier, 2018), but it also encompasses many addi-
tional problems. For example, in materials science, f(x)
may measure the strength of a material with composition
specified by x ∈ X , and the goal is to find the set of mate-
rials with strength above a threshold C, without ever eval-
uating more than T materials, due to the cost of such ex-
periments (Zhong et al., 2020; Tran et al., 2021). Here, the
property of interest is a set of points, the superlevel set of f .

Often, there exist effective algorithms to compute our prop-
erty of interest in the absence of a budget constraint. We
call such a property a computable property of f , if it is the
output of an algorithm A that makes a finite sequence of
function evaluations during its execution. In the superlevel
set example, A might simply evaluate f at each x ∈ X
and output points with f(x) > C. Other examples include
using numerical quadrature to find integrals of f (Davis &
Rabinowitz, 2007), using Newton’s method to find roots
of f (Madsen, 1973), using evolution strategies or finite-
difference gradient descent to find local optima of f , and
using Dijkstra’s algorithm to find the shortest path between
nodes in a graph when the edge costs are given by f (Dijk-
stra et al., 1959). The property of interest in these examples
take different forms, such as a single value, a set of vectors,
or a sequence of edges in a graph. In each case, an algo-
rithm for computing the property exists, but executing that
algorithm on f may exceed our budget of T evaluations.

In this paper, we address the general problem of estimating a
computable propertyOA := OA(f) of a black-box function
f , under a budget constraint T , irrespective of the number
of evaluations required by the algorithm A. To do this, we
posit a probabilistic model for f , and use it to estimate OA
given data gathered via function evaluations. Our goal is to
make the best T evaluations to yield an accurate estimate.
We refer to this problem as Bayesian algorithm execution, or
BAX. Note that the probabilistic nature of BAX enables us
to work with noisy function evaluations, e.g. yx ∼ f(x) +
N (0, σ2), even if A is only designed for noiseless settings.

We develop an iterative procedure for BAX, called IN-
FOBAX, that sequentially evaluates the x ∈ X that maxi-
mizes the mutual information (MI) between f(x) and OA
under our probabilistic model. Each iteration of our proce-

https://arxiv.org/abs/2104.09460

Bayesian Algorithm Execution

dure can be seen as an instance of Bayesian optimal experi-
mental design (BOED) where we choose an input to make
an observation that maximally reduces the uncertainty in
the property of interest OA (Chaloner & Verdinelli, 1995).
However, unlike a typical BOED setting, here the random-
ness in OA comes completely from the uncertainty in f ,
and OA is generated by executing algorithm A on f . Thus,
we have neither access to a likelihood p(y|OA, x) nor prior
p(OA), as is usually assumed in BOED, leading to compu-
tational challenges that we address.

Our procedure relates to both BOED methods for Bayesian
optimization, such as entropy search methods (Hennig &
Schuler, 2012; Hernández-Lobato et al., 2014; Wang &
Jegelka, 2017), which leverage a global optimization algo-
rithm to compute a MI objective (our method can be viewed
as an extension of this branch of methods to computable
function properties, beyond global optima) and also to the
MI criterion for optimal sensor placement via Gaussian pro-
cesses (GPs) (Krause et al., 2008), which we can also view
as estimating a certain computable function property. We
discuss connections to these methods in Section 2.

All together, our method iteratively evaluates f at x ∈ X
that maximally reduces the uncertainty, measured by the
posterior entropy, of the function property at each step, and
can therefore be used to estimate this property using minimal
function evaluations. In summary, our contributions are:

• We introduce Bayesian algorithm execution (BAX),
the task of inferring a computable property OA of a
black-box function f given an algorithm A and a prior
distribution on f , as a general framework that encapsu-
lates many computational problems under uncertainty.

• We present an iterative, MI maximizing procedure for
BAX called INFOBAX, and present effective estima-
tors of the MI objective that rely only on the ability to
simulate A on posterior samples of f .

• We demonstrate the applicability of our methods in var-
ious settings, including for estimating graph properties
(such as shortest paths) via Dijkstra’s algorithm, and
local optima (for variants of Bayesian optimization)
via evolution strategies.

2. Related Work
Bayesian optimal experimental design In BOED, we
wish to estimate an unknown quantity or statistic ϕ through
an observation yx resulting from an action or design x. The
goal is to choose the design x that results in an observation
yx that is most informative about the quantity of interest
ϕ. Typically, in BOED we assume that we have access to
an observation likelihood p(yx|ϕ) and a prior p(ϕ). The
goal is to then maximize the expected information gain
(EIG) (Lindley, 1956) about ϕ from observing yx. This
is equivalent to the mutual information between ϕ and yx,

which can be written as

EIG(x) = I(yx, ϕ) = Ep(yx|ϕ)p(ϕ)

[
log

p(ϕ|yx)

p(ϕ)

]
. (1)

The Bayesian optimal design is then arg maxx EIG(x). In
practice, one often uses variational or Monte Carlo approx-
imations of this BOED objective (Chaloner & Verdinelli,
1995; Foster et al., 2019).

Our setting is similar in structure to sequential BOED but
differs in its assumptions of what is computationally avail-
able to the practitioner. For us, the unknown quantity ϕ is
the output of an algorithm OA, while yx are noisy observa-
tions of f at inputs x. We can neither compute the likelihood
p(yx|ϕ) = p(yx|OA) nor the prior p(ϕ) = p(OA), since
we allow for arbitrary algorithms A. Furthermore, we can-
not even sample from the likelihood for a given ϕ = OA,
as in likelihood-free BOED (Drovandi & Pettitt, 2013; Klei-
negesse & Gutmann, 2019; Kleinegesse et al., 2020).

BOED for function properties Prior works have pre-
sented BOED-based approaches for inferring specific func-
tion properties using a probabilistic model for f , such as a
Gaussian process. Here we focus on two examples which
relate closely to our framework: entropy search methods
and optimal sensor placement.

Entropy search (ES) methods (Hennig & Schuler, 2012;
Hernández-Lobato et al., 2014; Wang & Jegelka, 2017) are
Bayesian optimization procedures that can be viewed as
BOED, where the function property of interest is ϕ :=
x∗ := arg maxx∈X f(x), the global optimizer of f . Algo-
rithms for ES typically operate on samples from the pos-
terior distribution over x∗ (or its value, f∗ = f(x∗)). To
generate these samples, an optimization algorithm is run
on posterior samples of f , and the sampled outputs of this
algorithm allow for Monte Carlo estimates of the BOED MI
objective I(yx, x

∗) or I(yx, f
∗), which is used as an acqui-

sition function to choose subsequent xt to evaluate. Below
we will propose procedures for BAX that follow a similar
strategy, and can be viewed as extensions of ES methods to
computable function properties beyond global optima.

Another setting related to BOED is the sensor placement
problem (Caselton & Zidek, 1984). Given budget of T
sensors and a set of potential sensor locations X , we seek
to find X ⊆ X with |X| = T that is “most informative”
about the measurement of interest, f : X → R. When
we measure “informativeness” by the mutual information
between f(X) and f(X), the problem becomes NP-hard.
In this setting, Krause et al. (2008) proposed a 1 − 1/e
approximation algorithm that iteratively selects the sensor
that maximizes the gain in mutual information. The sensor
placement problem becomes a special case of BAX when
we seek to infer the value of f at fixed locations X ′ ⊆ X
and A is the algorithm that evaluates f on each x ∈ X ′.

Bayesian Algorithm Execution

3. Bayesian Algorithm Execution (BAX)
In Bayesian algorithm execution (BAX), our goal is to es-
timate OA := OA(f) ∈ O, the output of an algorithm A
run on a black-box function f : X → Y , by evaluating f on
carefully chosen inputs {xi}Ti=1 ⊆ X . We will leverage a
probabilistic model for f to guide our choice of x, in order
to estimate OA using a minimal number of evaluations.

We assume that our initial uncertainty about the true function
is captured by a prior distribution over f , denoted by p(f),
reflecting our prior beliefs about f . One notable example is
the case where p(f) is defined by a Gaussian process (GP).
Although not strictly necessary, we assume that each obser-
vation y of the true function fx := f(x) at input x is noisy,
with yx ∼ fx + ε where ε ∼ N (0, σ2). We denote a dataset
of t− 1 function observations as Dt = {(xi, yxi

)}t−1
i=1 , and

use p(f | Dt) to denote the posterior distribution over f
given observations Dt. Given this distribution over f , and
an algorithm A that returns as output the computable prop-
erty of interestOA, we use p(OA |Dt) to denote the induced
posterior distribution over the algorithm output.

Information-based BAX Under the above assumptions,
we propose a sequential procedure to choose inputs that are
most informative about the property of interest OA. At each
iteration t, we have a dataset of observations Dt, and we
choose an input x that maximizes the mutual information
betweenOA and the unrevealed observation yx. The mutual
information between two random variables A and B can be
interpreted as the expected information gain about A upon
observing B. In our case, we choose x to maximize this
expected information gain about OA given yx, conditioned
on our dataset Dt, written

EIGt(x) = H [OA | Dt]

−Ep(yx|Dt) [H [OA | Dt ∪ {(x, yx)}]] . (2)

Here, H [OA | Dt] = Ep(f | Dt) [− log p(OA | Dt)] is the
entropy of p(OA |Dt), and p(yx |Dt) = Ep(f | Dt)[p(yx |f)]
denotes the posterior predictive distribution at input x after
observing data Dt. In the following subsections, we will
focus on developing practical methods to estimate EIGt(x).

Similar to methods in Bayesian optimization and sequential
BOED, our full procedure is as follows. At each iteration t,
we use EIGt(x) as an acquisition function. We optimize this
acquisition function to choose the next input to query, i.e.
xt ← arg maxx∈X EIGt(x). We then evaluate the function
f at xt to observe a value yxt ∼ fxt + ε, and update our
dataset Dt+1 ← Dt ∪ {(xt, yxt)}, before continuing to
iteration t + 1. We refer to this procedure as INFOBAX
(Algorithm 1).

Algorithm execution path Suppose that when we ex-
ecute algorithm A on f to compute OA, there are S

Algorithm 1 INFOBAX
Input: dataset D1, distribution p(f), algorithm A

1: for t = 1, . . . , T do
2: xt ← arg maxx∈X EIGt(x) . Via (4), (8), or (9)
3: yxt

∼ f(xt) + ε . Evaluate f at xt
4: Dt+1 ← Dt ∪ {(xt, yxt

)} . Update dataset

Output: distribution p(OA(f) | DT+1)

function evaluations. We refer to the sequence of func-
tion inputs and outputs traversed during the execution of
the algorithm as the execution path of A on f , denoted
eA := eA(f) := (zs, fzs)Ss=1.

Note that each input zs in the execution path may de-
pend on all previous inputs and outputs, e.g. z2 :=
z2(z1, fz1), z3 := z3(z1, fz1 , z2, fz2), and in general, zs
:= z1(z1, fz1 , . . . , zs−1, fzs−1

). For example, algorithm A
may have specifically queried z2 during its execution be-
cause it observed the value f(z1) at z1. To highlight the
fact that inputs on the execution path have these dependen-
cies, we use the notation z, instead of x. Likewise, we note
that the output of A is a function of the execution path, i.e.
OA(f) := OA(eA(f)) = OA

(
(zs, fzs)Ss=1

)
.

We will make use of this notion of execution paths to define
procedures for computing EIGt(x). However, we empha-
size that our procedures will not runA on the true f . Instead,
we will only run A on function samples f̃ from p(f |Dt).

Example: top-k estimation Here we introduce a running
example that will be used to help illustrate our methods.
Suppose we have a finite collection of elements X ⊆ X ,
where each x ∈ X has an unknown value fx. For instance,
each x ∈ X could be a candidate formula for concrete with
tensile strength fx, and we wish to find the top k formulae
with the highest strengths, denoted as K∗ ⊆ X . Note that
if our budget of evaluations satisfies T ≥ |X|, we could run
the following top-k algorithmA: evaluate f on each x ∈ X ,
sort X in decreasing order, and return the first k elements.
In contrast, since T < |X|, our goal will be to choose the
best T inputs x1, . . . , xT to query, in order to infer K∗. For
full generality, assume that we can evaluate any xt ∈ X , so
we are not restricted to evaluating only inputs in X .

Under algorithm A, the execution path eA has a fixed se-
quence of inputs (z1, . . . , z|X|) equal to an arbitrary order-
ing of the x ∈ X . Given a distribution p(f | Dt) over the
function f conditioned on some observations Dt, we can
estimate the top-k elements by executing A on samples
f̃ ∼ p(f | Dt). We illustrate this procedure in Figure 1 for
k = 2. Here, the set X is shown as a set of short grey bars.
We also show the true function f (black line), six obser-
vations in Dt (black dots), posterior predictive distribution
p(yx | Dt) (tan band), and samples f̃ (red lines).

Bayesian Algorithm Execution

−5

0

5

y

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
x

�5

0

5

y

f

x 2 X

(x, yx) 2 Dt

p(yx|Dt)

ef ⇠ p(f |Dt)

eeA ⇠ p(eA|Dt)

eOA ⇠ p(OA|Dt)

EIGe
t (x)

EIGt(x)

EIGv
t (x)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
x

Figure 1. Illustrations of INFOBAX acquisition functions. Here,
A is the top-k algorithm, for k = 2 (see text for description).
We show the function f , set of elements X , observations Dt,
posterior predictive distribution p(yx | Dt), posterior samples (of
the function f̃ , execution path ẽA, and algorithm outputs ÕA), and
EIG acquisition functions (4), (8), and (9). The three vertical lines
denote the argmax of the acquisition functions.

Summary of acquisition functions In the following sec-
tions, we present three acquisition functions for INFOBAX,
which approximate Eq. (2). In Section 3.1, we introduce an
acquisition function which is in general suboptimal; how-
ever, it will help us define and describe how to compute
the latter acquisition functions. In Section 3.2, we present
an acquisition function which is the optimal quantity that
we want, but may be computationally costly to compute.
Finally, in Section 3.3, we present an acquisition function
that approximates the previous one and is much cheaper
to compute, but comes with some restrictions on settings
where it should be used.

3.1. EIG for the Execution Path

As a first step toward developing our method, we will show
how to compute a modified EIG objective. Note that the ex-
ecution path eA is a sequence of (zs, fzs) pairs which, taken
together, give complete information about the algorithm’s
output—meaning that if we knew the function value at each
point in eA, then we would know the function property OA
exactly. Consequently, one potential strategy for BAX is to,
at each iteration, choose to query the x ∈ X that gives most
information about the execution path (i.e. maximally reduce
the entropy of the distribution over eA).

We therefore first present a modified version of the acquisi-
tion function EIGt(x) in (2). Let EIGe

t (x) be the expected
gain in information on the execution path eA, written

EIGe
t (x) = H [eA | Dt]

−Ep(yx|Dt) [H [eA |Dt ∪ {(x, yx)}]] . (3)

In the case where the property OA = eA, this acquisition

function is equal to (2), i.e. EIGe
t (x) = EIGt(x). Other-

wise, the two acquisition functions are distinct in general.

There are a few difficulties in computing EIGe
t (x) as it is

written in (3). For the first term, we must estimate the en-
tropy of p(eA | Dt), which is analytically intractable and
potentially very high dimensional. If we did have a way to
estimate this entropy, we could do the following for the sec-
ond term for a given x ∈ X : sample a set of ỹx ∼ p(yx |Dt),
and for each ỹx sample, re-train our model onDt∪{(x, ỹx)}
and estimate the entropy H [eA | Dt ∪ {(x, ỹx)}] using the
same technique used for the first term. These steps are ex-
pensive, and would need to be repeated for each x ∈ X over
which we intend to optimize our acquisition function.

Instead, we follow an approach from prior work (Hernández-
Lobato et al., 2014; Houlsby et al., 2012). Since (3) is the
MI between eA and y (given Dt), and due to the symmetry
of MI, we can rewrite this acquisition function as

EIGe
t (x) = H [yx | Dt]

−Ep(eA|Dt) [H [yx | Dt, eA]] .
(4)

The first term is simply the entropy of the posterior predic-
tive distribution p(yx | Dt), which we can compute exactly
for certain probabilistic models such as GPs. For the second
term, inside the expectation, we have H [yx | Dt, eA], which
is the entropy of the posterior predictive distribution at input
x, given both the dataset Dt and the execution path eA.

Before explaining how to compute p (yx | Dt, eA) and its
entropy for a given eA, we first describe how to compute
the expectation of this entropy with respect p(eA | Dt). To
do this, we will compute a Monte Carlo estimate via a
Thompson sampling-like strategy, related to what has been
used by entropy search methods (Hennig & Schuler, 2012;
Hernández-Lobato et al., 2014; Wang & Jegelka, 2017). We
first draw f̃ ∼ p(f | Dt), and then run our algorithm A on
f̃ to produce a sample execution path ẽA = eA(f̃). Note
that this yields a sample ẽA ∼ p(eA | Dt). In Section A.4,
we give details on how we implement this procedure for GP
models in a computationally efficient manner.

We repeat this multiple times to generate a set of ` posterior
execution path samples {ẽ j

A}`j=1. Notably, unlike the pro-
cedure for Eq. (3), we only need to perform this sampling
procedure once, and then can use the same set of samples
to compute EIGe

t (x) for all x ∈ X . Concretely, to compute
EIGe

t (x), we compute H[yx | Dt, ẽ
j
A] for each sample ẽ j

A ,
and average these to form a Monte Carlo estimate of the
second term in Eq. (4), i.e. with 1

`

∑`
j=1 H[yx | Dt, ẽ

j
A].

We now describe how to compute H[yx|Dt, ẽA]. The key
idea is that, under our modeling assumptions, we can de-
rive a closed-form expression for p(yx|Dt, ẽA) in which
we can compute the entropy analytically. Let the posterior
execution path sample ẽA be comprised of the sequence

Bayesian Algorithm Execution

ẽA =
(
z̃s, f̃zs

)S
s=1

. We can then show that

p (yx | Dt, ẽA) = p
(
yx

∣∣∣ Dt,
{
f̃zs
}S
s=1

)
. (5)

This is equivalent to computing the posterior predictive
distribution, given observations with different noise levels,
where observations Dt are assumed to have noise given by
the likelihood, and variables f̃zs , are treated as noiseless
observations. Under our GP model, this can be computed
exactly in closed form (it is a Gaussian distribution), as can
H[yx|Dt, ẽA]. We show this and give the explicit formula
for the GP model in Section A.1.

In Figure 1, we show this acquisition function as the green
dashed line. We also show the execution path samples
ẽ j
A = eA(f̃ j), used to compute EIGe

t , as red dots over
posterior function samples f̃ j (red lines).

We note again that when OA 6= eA, using EIGe
t (x) in

Eq. (4) may be effective in practice, but is suboptimal. For
example, given an algorithm where a subsequence of the ex-
ecution path has no influence on later parts of the execution
path nor on the algorithm output, by following the above
procedure we may waste queries on estimating portions of
eA that do not give much information about OA.

3.2. EIG for the Algorithm Output

We next show how to use the equations derived above to
compute the expected information gain on the algorithm out-
put OA. First, we rewrite the acquisition function EIGt(x)
from Eq. (2) in a predictive entropy-based form (analogous
to what was done in Eq. (4)), i.e.

EIGt(x) = H [yx | Dt]

−Ep(OA|Dt) [H [yx | Dt, OA]] .
(6)

Unlike the previous strategy, it is difficult to compute
p(yx|Dt, OA) in Eq. (6), in general, for any algorithm A,
due to conditioning on the algorithm output OA. This distri-
bution is the posterior predictive at an input x given dataset
Dt, and also conditioned on the black-box function hav-
ing property OA. While we can compute p(yx|Dt, eA) in
closed form under certain models, since eA is a sequence
of inputs and function values, this is not the case when we
condition on OA, which can be an arbitrary property of
f . However, by using the execution path as an auxiliary
variable, we can equivalently write this posterior as

p(yx | Dt, OA) =

∫
p(yx, eA | Dt, OA) deA (7)

=

∫
p(yx|Dt, eA, OA)p(eA|OA,Dt) deA

= Ep(eA|OA,Dt) [p (yx | Dt, eA)] .

Here we use the fact that A defines an execution path that
specifies the algorithm output exactly, and thus y ⊥⊥ OA|eA.
We can therefore write Eq. (6) as

EIGt(x) = H [yx | Dt] (8)

−Ep(OA|Dt)

[
H
[
Ep(eA|OA,Dt) [p (yx | Dt, eA)]

]]
.

Given that we have p (yx | Dt, eA) in closed form, we can
estimate the expression Ep(eA |OA,Dt) [p (yx | Dt, eA)] us-

ing 1
`

∑`
k=1 p

(
yx | Dt, ẽ

k
A
)
, where ẽ k

A
iid∼ p(eA |OA,Dt).

By sampling from this, we can approximate the entropy
in Eq. (8) via a Monte Carlo estimate. Therefore, the key
question is how to draw samples from p(eA |OA,Dt).

Intuitively, a sample ẽ k
A ∼ p(eA | OA,Dt) is a plausible

execution path, given observations Dt, which also yields
output OA. At a given iteration of INFOBAX, suppose we
generate a set of samples from the posterior over algorithm
outputs, {Õ j

A }`j=1
iid∼ p(OA |Dt) by runningA on posterior

function samples f̃ j . Suppose also that we have defined a
distance d(·, ·) on our algorithm output space O. For each
Õ j
A , we could then define a set of similar outputs O̊ j

A to be

O̊ j
A =

{
Õ ∈ {Õ k

A }`k=1 : d(Õ, Õ k
A) < δ, k 6= j

}
,

i.e. all outputs within a ball of diameter δ centered at Õ j
A .

Intuitively, we can then compute the EIG on a ball of diam-
eter δ in the output space that contains the algorithm output,
rather than on the algorithm output directly.

More formally, this can be viewed as an instance of approx-
imate Bayesian computation (ABC) (Beaumont et al., 2002;
Csilléry et al., 2010), which is a technique for generating
posterior samples, given only a simulator for the likelihood.
In our case, by running A, we can simulate an output OA
given an execution path eA, and use this to produce approx-
imate posterior samples from p(eA |OA,Dt). Concretely,
suppose we’ve sampled a set of pairs P j := {(ẽ j

A , Õ
j
A)}

by running algorithmA on samples f̃ ∼ p(f |Dt). For each
Õ j
A , we can then treat e̊ j

A = {e ∈ P j : ÕA ∈ O̊ j
A } as ap-

proximate samples from p(eA | Õ j
A ,Dt). This is equivalent

to the ABC algorithm from Rubin (1984) and Beaumont
(2010). We then use the set of sample execution paths e̊ j

A
to construct the sample estimate of EIGt(x) in (8). We give
explicit formulae for (8) under GP models in Section A.2.

As INFOBAX progresses, and we have better estimates of
the algorithm output, we can reduce the diameter δ and
continue to yield large enough sample sets e̊ j

A to form
accurate Monte Carlo estimates of (8). In practice, we
choose δ to be the smallest value such that every e̊ j

A has
size greater than a fixed number (such as 30).

In Figure 1, we show this acquisition function as the yellow

Bayesian Algorithm Execution

dashed line. We also show samples of the algorithm output
Õ j
A (from which we then produce O̊ j

A) as magenta crosses.

3.3. EIG using an Execution Path Subsequence

One disadvantage of using EIGt(x) in Eq. (8) is that it may
require a large set of samples {ẽ j

A}`j=1
iid∼ p(eA |OA,Dt), in

order to compute an accurate Monte Carlo estimate. Instead,
one final strategy we can attempt is to determine a latent
variable v, in which

(i) we can draw samples ṽ ∼ p(v | Dt),
(ii) we can compute p (yx | Dt, ṽ), and

(iii) the EIG with respect to v, EIGv
t (x) ≈ EIGt(x).

One potential idea is to try and define a mapping from eA
to a v that best fits the above criteria. For example, consider
a subsequence of eA of length R, denoted sA := sA(f) :=
(zir , fzir)Rr=1. We can denote the function values for this
subsequence with vA := vA(f) := {fzr}Rr=1, and write

EIGv
t (x) = H [yx | Dt]

−Ep(f |Dt)

[
H
[
yx | Dt, {fzr}Rr=1

]]
.

(9)

Note that the posterior p (yx | Dt, sA) 6= p (yx | Dt, vA).
The former, in general, depends on unconditioned latent
variables in the execution path eA, and is intractable to
compute (this is not the case, however, when sA = eA, as
we show in (5)). On the other hand, for models such as
GPs, p (yx | Dt, vA) can indeed be computed exactly and
its entropy available in closed form. Hence, vA satisfies (ii).

Furthermore, to compute samples ṽA ∼ p(vA | Dt) we can
easily sample f̃ ∼ p(f | Dt), and then set ṽA = vA(f̃), so
vA satisfies (i) as well. Note that, since we can sample ṽA
and compute p (yx | Dt, ṽA), we can estimate EIGv

t (x) via
a Monte Carlo estimate similar to (4).

However, we still need to show that vA satisfies (iii). For
this, we focus on a special case of interest. In some prob-
lems, the function property OA exactly specifies some func-
tion values vA along a subsequence sA of the execution
path. A few examples of such properties include optima
(where sA consists of an optima x∗ and its value fx∗), level
sets (where sA is the set of (x, fx) pairs in a super/sublevel
set), function roots (where sA is a root of f), and phase
boundaries (where sA is a set of (x, fx) pairs that comprise
the phase boundary). In these cases, for a given sample
f̃ ∼ p(f |Dt) with associated ÕA and ṽA, we have that
p(yx|Dt, ÕA) = p(yx|Dt, ṽA, ÕA), and

p(yx | Dt, ṽA) = Ep(OA|ṽA,Dt) [p(yx|Dt, ṽA, OA)]

(see Section A.3 for details). EIGv
t (x) will thus serve as

a better approximation when H [OA|vA,Dt] is small, and
will be optimal when H [OA|vA,Dt] = 0, in which case
EIGv

t (x) = EIGt(x).

Empirically, we often observe this behavior. For example, in
Figure 1, we show EIGv

t (s) as the blue dashed line, which
closely approximates EIGt(x) (the yellow dashed line). In
cases such as those given above, where property OA speci-
fies some function values vA along a subsequence of eA, a
computationally attractive and practically effective strategy
is to use the acquisition function EIGv

t (x) in (9).

4. Experiments
We evaluate our proposed INFOBAX method for Bayesian
algorithm execution on two tasks in distinct domains. Our
experiments demonstrate the generality of the BAX frame-
work for inferring black-box function properties and the
effectiveness of INFOBAX for estimating both graph prop-
erties and local optima. In both problems, we use a property-
computing algorithm A that was not designed for settings
where we have a limited budget of function evaluations.
Nevertheless, our INFOBAX procedure lets us apply such
algorithms under a budget constraint, allowing us to infer
the true algorithm output using significantly fewer queries
than the algorithm alone would have required.

We use Gaussian processes as our prior distribution p(f)
for both tasks. To reduce computation time of posterior
sampling, we use the sampling method proposed by (Wilson
et al., 2020) implemented in GPFlow (Matthews et al., 2017)
with GPU acceleration. We refer the reader to Section A.5
for additional details on our experimental setup as well as
empirical comparisons of our proposed MI objectives.

4.1. Estimating Shortest Paths in Graphs
Finding the shortest path between two vertices in a graph
is crucial in routing problems, such as minimizing trans-
portation costs, reducing latency when sending packets over
the internet, and more. Dijkstra’s algorithm (Dijkstra et al.,
1959) provably recovers shortest paths by iteratively query-
ing edge costs as it searches a graph. However, in some
applications, querying edge costs is expensive. For example,
when edge costs represent the time required to traverse unfa-
miliar terrain, it would be costly to survey each location in
the order given by Dijkstra’s algorithm. Instead, we may try
to survey a small set of locations that provide us with just
enough information to map out the shortest path through the
terrain, avoiding the full evaluation cost of Dijkstra’s.

As our first task, we use INFOBAX to infer the shortest path
between two vertices in a graph where the edge costs are
represented by a black-box function. We use two synthetic
graphs and one real-world graph for our experiments. Our
two synthetic graphs (V,E) are grid-shaped with (|V | =
10× 10, |E| = 684) and (|V | = 20× 10, |E| = 2736). We
use the 2D Rosenbrock function rescaled by 10−2 as the
edge cost function for the synthetic graphs. Our real-world
graph is a cropped version of the California roads network

Bayesian Algorithm Execution

0 50 100 150
Iteration

0.00

0.05

0.10

0.15

0.20

0.25

E
rr

or
of

In
fe

rr
ed

S
h

or
te

st
P

at
h

10× 10 Grid with 684 Edges

305 20 70 120 170 220 270 320 370
Iteration

0.00

0.05

0.10

0.15

E
rr

or
of

In
fe

rr
ed

S
h

or
te

st
P

at
h

20× 20 Grid with 2,736 Edges

Random Search

Uncertainty Sampling

InfoBAX

Dijkstra’s

915 0 5 10 15 20 25 30 35 40 45
Iteration

0.000

0.025

0.050

0.075

0.100

0.125

E
rr

or
of

In
fe

rr
ed

S
h

or
te

st
P

at
h

California roads with 4,322 Edges

8215

Random Search Uncertainty Sampling InfoBAX Dijkstra’s (Full)

0

4

8

12

16

20

24

28

Figure 2. Estimating shortest paths in graphs: (Top) The error (sum of normalized polygonal areas between the inferred shortest path
and the ground truth shortest path), averaged over five trials. (Bottom left three figures) Visualization of sample shortest paths (blue lines)
produced by running Dijkstra’s algorithm on p(f |DT+1) for each method, given a budget of T = 70 queries. Black circles are queries,
purple squares are starting vertices, yellow squares are destination vertices, pink circles are the next queries, ground truth shortest
path is black dashed line. (Bottom right) Visualization of the 305 queries required by the full Dijkstra’s algorithm.

graph from (Li et al., 2005) and we use the elevation of
vertex midpoints from the Open-Elevation API as the edge
cost function. Within this graph, we seek to travel from
Santa Cruz to Lake Tahoe.

We compare to baseline methods RANDOMSEARCH and
UNCERTAINTYSAMPLING , which choose Dt differently.
RANDOMSEARCH forms Dt by random queries, while UN-
CERTAINTYSAMPLING iteratively queries f at x that max-
imize the variance of p(yx|Dt). All three methods sample
from p(OA |Dt) by executing algorithmA on samples from
p(f |Dt). Since paths in our experiment consist of points in
X , we use the aquisition function from Eq. (9), choosing
the points along sampled shortests paths as our execution
path subset. To evaluate the error between inferred shortest
path and the true shortest path in our planar graph, we use
the polygonal area enclosed between the inferred path and
the true path. This geometrically captures deviations in the
structure of the inferred path from the true path. Notably, an
inferred path recovers the ground truth if and only if their
enclosed area is zero. We normalize this error metric by the
area of the overall graph.

Figure 2 (Top) shows this error metric between the inferred
shortest paths and the ground truth, averaged over inferred
paths, with one standard error, in three experiments. In all
cases, INFOBAX recovers the ground truth shortest path
using 5 to 547 times fewer queries than would have been re-
quired to run Dijkstra’s algorithm by itself. INFOBAX also
outperforms the baseline methods which fail to to recover

Figure 3. California roads network: Inferences (blue lines) of
the minimum-cost path (black dashed line) given by UNCERTAIN-
TYSAMPLING (Left) and INFOBAX (Right) after T = 10 queries.

the ground truth even with significantly more queries.

Figure 2 (Bottom) compares samples from the posterior dis-
tribution p(OA | Dt) given by RANDOMSEARCH, UNCER-
TAINTYSAMPLING, and INFOBAX queries. We see that
INFOBAX spends its query budget around points that are
most informative about the shortest path, as expected. On
the other hand, UNCERTAINTYSAMPLING queries points
that are informative about the overall function f but less
informative about the property OA. This behavior can also
be seen in Figure 3 on the California roads network.

4.2. Bayesian Local Optimization
Bayesian optimization is a popular method for probabilistic
model-based global optimization (Shahriari et al., 2015; Fra-
zier, 2018), that aims to determine global optima of a black-
box f in a query-efficient manner. There also exist many
local optimization algorithms, such as evolution strategies

Bayesian Algorithm Execution

−5 0 5 10
x

0

2

4

6

8

10

12

14
y

Random Search

−5 0 5 10
x

0

2

4

6

8

10

12

14

y

Max-value Entropy Search

−5 0 5 10
x

0

2

4

6

8

10

12

14

y

InfoBAX

−5 0 5 10
x

0

2

4

6

8

10

12

14

y

Evolution Strategy (Full)

100 101 102

Iteration

10−1

100

S
im

p
le

R
eg

re
t

t = 80 t = 500
(Full A)

Hartmann 6 Dimensions

Random Search

Evolution Strategy

MV Entropy Search

InfoBAX

101 102 103

Iteration

101

2× 100

3× 100

4× 100

6× 100

S
im

p
le

R
eg

re
t

t = 200 t = 2000
(Full A)

Ackley 10 Dimensions

Figure 4. Bayesian local optimization: (Top left three figures) Visualization of function queries and estimated optima for each method,
given a budget of T = 18 queries. Black circles are function queries, pink stars F are estimated optima, and yellow squares are
the true optima. (Top right) Queries made by the full EVOLUTIONSTRATEGY algorithm (T = 208) without INFOBAX. (Bottom) The
difference between the value f(x̂) at an estimated optimum x̂ and the true optimal value f(x∗), versus iteration, on two benchmarks.

(Back, 1996), the Nelder-Mead algorithm (Nelder & Mead,
1965), COBYLA (Powell, 1994), and finite-difference gra-
dient descent procedures (Richardson, 1911; Spall et al.,
1992), for optimizing a black-box f . In certain settings
these algorithms have shown very strong performance, such
as when X is high-dimensional, and when function evalua-
tions are cheap and many queries of f can be made (Rios
& Sahinidis, 2013). This is potentially because they do not
explore as broadly to explicitly try and find a global optima
and instead greedily optimize to nearby local optima, or po-
tentially due to other aspects of their updates and how they
traverse the space. Regardless, under the right conditions,
these algorithms can often be applied to great effect.

However, when function evaluations are expensive, local
optimization methods can suffer: these algorithms are of-
ten query-inefficient, and may perform a large number of
similar evaluations, which hurts performance significantly.
Here, Bayesian optimization methods tend to show better
performance (Eriksson et al., 2019; Letham et al., 2020).
Furthermore, these local methods may not be suited for set-
tings with certain function noise which can be handled more
easily in Bayesian optimization via a custom model.

Ideally, we would like the best of both worlds: a proce-
dure that incorporates the model-induced query-efficiency
of Bayesian optimization, and also takes advantage of the
greedy optimization strategies provided by various local
optimization algorithms (which are effective if only they
were applied directly to a cheap, noiseless f).

We therefore propose running INFOBAX on a local op-

timization algorithm A to produce a variant of Bayesian
optimization that we refer to as Bayesian local optimiza-
tion. Here, the main idea is that we approach Bayesian
optimization as the task of inferring the output OA of a lo-
cal optimization algorithm run on f—rather than estimating
a global optima of f—using as few queries as possible.

We demonstrate this procedure by implementing A as
an evolution strategy, where a population of vectors are
randomly mutated and pruned based on their objective
values (details given in Section A.5). We compare IN-
FOBAX against this EVOLUTIONSTRATEGY, and also
against both RANDOMSEARCH and MAXVALUEENTROPY-
SEARCH (Wang & Jegelka, 2017), which is a popular
information-based Bayesian optimization method that aims
to efficiently infer a global optima of f .

We show results on black-box function optimization bench-
marks task. Figure 4 (Top) compares evaluations chosen by
the four methods, where the first three plots show results at
T = 18 iterations, while the rightmost plot shows the full
EVOLUTIONSTRATEGY (T = 208). INFOBAX is able to
estimate OA (pink star) using only a fraction of the queries.

Figure 4 (Bottom) shows the difference between the value
of f(x̂) at an estimated optimum x̂ versus the true optimal
value f(x∗) (over five trials, showing one standard error),
on two benchmark functions with domains X in six and
ten dimensions. In both cases, INFOBAX outperforms the
baselines and is able to match the eventual performance
of the EVOLUTIONSTRATEGY using 8 to 20 times fewer
function evaluations.

Bayesian Algorithm Execution

−10 −5 0 5 10
−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0
Random Search

−10 −5 0 5 10
−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0
Uncertainty Sampling

−10 −5 0 5 10
−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0
EIGv

t (x), Eq. (9)

10 50 100 150
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Ja
cc

ar
d

D
is

ta
n

ce
fo

r
T

op
-k

Top-k

Random Search

Uncertainty Sampling

EIGe
t(x), Eq. (4)

EIGt(x), Eq. (8)

EIGv
t (x), Eq. (9)

Top-k algorithm (full)

Figure 5. Top-k estimation results: (Left three) Visualization of methods, where light grey dots • are the 150 elements X ⊂ X which
comprise the execution path eA, black circles are function evaluations, gold stars F are the true top k = 10 elements with highest
value fx, pink circles are the next evaluation chosen, and blue squares are posterior samples of the output (top-k elements). For each
method, T = 70 evaluations are shown. (Right) The error in Jaccard distance vs. iteration, with error bars showing one standard error.

4.3. Top-k Estimation
In Section 3, we describe the task of top-k estimation, which
we summarize here. Suppose we have a finite collection
of elements X ⊆ X , where each x ∈ X has an unknown
value fx. There are many applications where we care about
estimating the top-k elements of X with the highest values,
denoted K∗ ⊆ X . Given a budget T , our goal will be to
choose T inputs x1, . . . , xT to query, in order to best infer
K∗. For full generality, assume that we can evaluate any
xt ∈ X , so we are not restricted to evaluating only inputs in
X . This problem can be viewed as a type of active search,
which extends optimization to estimating the top-k, rather
than top-1, element in a discrete set. It also has relations
to level set estimation, where the goal is to estimate all
elements x ∈ X with a value fx above some threshold C.

To run INFOBAX for this problem, we make use of the
following top-k algorithm A: evaluate fx for each x ∈ X ,
sort X in decreasing order, and return the first k elements.
This algorithm makes exactly |X| evaluations of f . In Fig-
ure 1, we illustate the top-k algorithmA, as well as the three
acquisition functions in Eqs. (4), (8), and (9).

We carry out a top-k estimation experiment on a two dimen-
sional domain X ⊂ R2. From this domain, we draw a set
of 150 elements X uniformly at random, and choose to esti-
mate the top k = 10 elements. For this experiment, we use
the (multimodal) skewed sinusoidal function g : X → R,
defined as g(x) =

∑d
i=1 2|xi| sin(xi).

Our goal is then to infer K∗ ⊆ X , the top-k elements of
X , using as few queries of f as possible. We compare the
performance of our three INFOBAX acquisition functions
(EIGe

t (x) (4), EIGt(x) (8), and EIGv
t (x) (9)), along with

RANDOMSEARCH and UNCERTAINTYSAMPLING (both
decribed in Section 4.1), as well as the full top-k algorithm
that scans through each point in X .

In Figure 5 (Right) we show these results, plotting the Jac-
card distance for each method at each iteration, which, for a
given estimate K̂ of the top-k elements of X , is defined as

Jaccard distance(K̂,K∗) = 1− |K̂ ∩K∗|/|K̂ ∪K∗|.

For each method, we average this metric over five trials and
show one standard error. The INFOBAX acquisition func-
tions EIGv

t (x) and EIGt(x) accurately infer the true top-k
set in the fewest iterations (using roughly 2 times fewer
function evaluations than the full top-k algorithm), followed
by INFOBAX using EIGe

t (x), UNCERTAINTYSAMPLING,
and finally RANDOMSEARCH.

In Figure 5 (Left) we show the set of function evaluations
and posterior samples of the inferred top-k sets K̂ for each
method. We see that INFOBAX, using EIGv

t (x), is able
to determine and spend its query budget around the true
top-k elements K∗ (denoted by gold stars). Note that UN-
CERTAINTYSAMPLING spends its budget on points that are
informative about the full function f , as opposed to the
execution path eA or top-k property OA. We show visual-
izations for the other acquisition functions in Appendix A.5.

5. Conclusion
The BAX framework unifies problems in disparate domains
that seek to estimate properties of black-box functions given
limited function evaluations. For a property-computing algo-
rithm A, our proposed method, INFOBAX, is able to make
targeted queries that can reduce function evaluations by up
to hundreds of times without modifying A to respect the
budget constraint. However, INFOBAX also has its limita-
tions. For example, it may be difficult to find an appropriate
model p(f), such as when X is high dimensional. Never-
theless, when we have an accurate function prior, we can
dramatically offload the cost of function evaluations to the
cost of parallelizable computations. In the future, we hope
this branch of methods could potentially aid in custom opti-
mization tasks in the sciences (Char et al., 2019), interactive
human-in-the-loop methods (Boecking et al., 2020), and
fields such as drug and materials discovery, where function
evaluations may be highly expensive or time consuming.

Acknowledgments
This research was partially supported by AFOSR (FA9550-
19-1-0024), NSF (#1651565, #1522054, #1733686), DOE
(DE-AC02-76SF00515), and SAIL.

Bayesian Algorithm Execution

References
Back, T. Evolutionary algorithms in theory and practice:

evolution strategies, evolutionary programming, genetic
algorithms. Oxford university press, 1996.

Beaumont, M. A. Approximate bayesian computation in
evolution and ecology. Annual review of ecology, evolu-
tion, and systematics, 41:379–406, 2010.

Beaumont, M. A., Zhang, W., and Balding, D. J. Approxi-
mate bayesian computation in population genetics. Ge-
netics, 162(4):2025–2035, 2002.

Boecking, B., Neiswanger, W., Xing, E., and Dubrawski, A.
Interactive weak supervision: Learning useful heuristics
for data labeling. arXiv preprint arXiv:2012.06046, 2020.

Caselton, W. F. and Zidek, J. V. Optimal monitoring network
designs. Statistics & Probability Letters, 2(4):223–227,
1984.

Chaloner, K. and Verdinelli, I. Bayesian experimental de-
sign: A review. Stat. Sci., 10(3):273–304, 1995.

Char, I., Chung, Y., Neiswanger, W., Kandasamy, K., Nel-
son, A. O., Boyer, M., Kolemen, E., and Schneider, J.
Offline contextual bayesian optimization. Advances in
Neural Information Processing Systems, 32:4627–4638,
2019.

Csilléry, K., Blum, M. G., Gaggiotti, O. E., and François,
O. Approximate bayesian computation (abc) in practice.
Trends in ecology & evolution, 25(7):410–418, 2010.

Davis, P. J. and Rabinowitz, P. Methods of numerical inte-
gration. Courier Corporation, 2007.

Dijkstra, E. W. et al. A note on two problems in connex-
ion with graphs. Numerische mathematik, 1(1):269–271,
1959.

Drovandi, C. C. and Pettitt, A. N. Bayesian experimental de-
sign for models with intractable likelihoods. Biometrics,
69(4):937–948, 2013.

Eriksson, D., Pearce, M., Gardner, J. R., Turner, R., and
Poloczek, M. Scalable global optimization via local
bayesian optimization. arXiv preprint arXiv:1910.01739,
2019.

Foster, A., Jankowiak, M., Bingham, E., Horsfall, P., Teh,
Y. W., Rainforth, T., and Goodman, N. Variational
bayesian optimal experimental design. March 2019.

Frazier, P. I. A tutorial on bayesian optimization. July 2018.

Hennig, P. and Schuler, C. J. Entropy search for Information-
Efficient global optimization. J. Mach. Learn. Res., 13
(57):1809–1837, 2012.

Hernández-Lobato, J. M., Hoffman, M. W., and Ghahra-
mani, Z. Predictive entropy search for efficient global
optimization of black-box functions. June 2014.

Houlsby, N., Huszar, F., Ghahramani, Z., and Hernández-
lobato, J. M. Collaborative gaussian processes for prefer-
ence learning. In Pereira, F., Burges, C. J. C., Bottou, L.,
and Weinberger, K. Q. (eds.), Advances in Neural Infor-
mation Processing Systems 25, pp. 2096–2104. Curran
Associates, Inc., 2012.

Kleinegesse, S. and Gutmann, M. U. Efficient bayesian ex-
perimental design for implicit models. In Chaudhuri, K.
and Sugiyama, M. (eds.), Proceedings of the Twenty Sec-
ond International Conference on Artificial Intelligence
and Statistics, volume 89 of Proceedings of Machine
Learning Research, pp. 476–485. PMLR, 2019.

Kleinegesse, S., Drovandi, C., and Gutmann, M. U. Sequen-
tial bayesian experimental design for implicit models via
mutual information. March 2020.

Krause, A., Singh, A., and Guestrin, C. Near-Optimal sen-
sor placements in gaussian processes: Theory, efficient
algorithms and empirical studies. J. Mach. Learn. Res., 9
(8):235–284, 2008.

Letham, B., Calandra, R., Rai, A., and Bakshy, E.
Re-examining linear embeddings for high-dimensional
bayesian optimization. Advances in Neural Information
Processing Systems, 33, 2020.

Li, F., Cheng, D., Hadjieleftheriou, M., Kollios, G., and
Teng, S.-H. On trip planning queries in spatial databases.
In International symposium on spatial and temporal
databases, pp. 273–290. Springer, 2005.

Lindley, D. V. On a measure of the information provided
by an experiment. The Annals of Mathematical Statistics,
pp. 986–1005, 1956.

Madsen, K. A root-finding algorithm based on newton’s
method. BIT Numerical Mathematics, 13(1):71–75, 1973.

Matthews, A. G. d. G., Van Der Wilk, M., Nickson, T., Fujii,
K., Boukouvalas, A., León-Villagrá, P., Ghahramani, Z.,
and Hensman, J. Gpflow: A gaussian process library
using tensorflow. J. Mach. Learn. Res., 18(40):1–6, 2017.

Nelder, J. A. and Mead, R. A simplex method for func-
tion minimization. The computer journal, 7(4):308–313,
1965.

Pleiss, G., Gardner, J., Weinberger, K., and Wilson, A. G.
Constant-time predictive distributions for gaussian pro-
cesses. In International Conference on Machine Learning,
pp. 4114–4123. PMLR, 2018.

Bayesian Algorithm Execution

Pleiss, G., Jankowiak, M., Eriksson, D., Damle, A., and
Gardner, J. R. Fast matrix square roots with applica-
tions to gaussian processes and bayesian optimization. In
Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., and
Lin, H. (eds.), Advances in Neural Information Process-
ing Systems 33: Annual Conference on Neural Informa-
tion Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual, 2020.

Powell, M. J. A direct search optimization method that
models the objective and constraint functions by linear
interpolation. In Advances in optimization and numerical
analysis, pp. 51–67. Springer, 1994.

Richardson, L. F. Ix. the approximate arithmetical solu-
tion by finite differences of physical problems involving
differential equations, with an application to the stresses
in a masonry dam. Philosophical Transactions of the
Royal Society of London. Series A, Containing Papers
of a Mathematical or Physical Character, 210(459-470):
307–357, 1911.

Rios, L. M. and Sahinidis, N. V. Derivative-free optimiza-
tion: a review of algorithms and comparison of software
implementations. Journal of Global Optimization, 56(3):
1247–1293, 2013.

Rosenbrock, H. An automatic method for finding the great-
est or least value of a function. The Computer Journal, 3
(3):175–184, 1960.

Rubin, D. B. Bayesianly justifiable and relevant frequency
calculations for the applies statistician. The Annals of
Statistics, pp. 1151–1172, 1984.

Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., and
De Freitas, N. Taking the human out of the loop: A review
of bayesian optimization. Proceedings of the IEEE, 104
(1):148–175, 2015.

Spall, J. C. et al. Multivariate stochastic approximation
using a simultaneous perturbation gradient approximation.
IEEE transactions on automatic control, 37(3):332–341,
1992.

Tran, K., Neiswanger, W., Broderick, K., Xing, E., Schnei-
der, J., and Ulissi, Z. W. Computational catalyst dis-
covery: Active classification through myopic multiscale
sampling. The Journal of Chemical Physics, 154(12):
124118, 2021.

Wang, Z. and Jegelka, S. Max-value entropy search for
efficient bayesian optimization. March 2017.

Williams, C. K. and Rasmussen, C. E. Gaussian processes
for machine learning, volume 2. MIT press Cambridge,
MA, 2006.

Wilson, J., Borovitskiy, V., Terenin, A., Mostowsky, P.,
and Deisenroth, M. Efficiently sampling functions from
gaussian process posteriors. In International Conference
on Machine Learning, pp. 10292–10302. PMLR, 2020.

Zhong, M., Tran, K., Min, Y., Wang, C., Wang, Z., Dinh,
C.-T., De Luna, P., Yu, Z., Rasouli, A. S., Brodersen, P.,
et al. Accelerated discovery of co 2 electrocatalysts using
active machine learning. Nature, 581(7807):178–183,
2020.

Bayesian Algorithm Execution

A. Appendix
In this appendix, we give additional details about the acquisition functions (EIGe

t (x) (4), EIGt(x) (8), and
EIGv

t (x) (9)), discuss the computational cost of INFOBAX, and provide additional experimental details and
results.

A.1. EIG for the Execution Path

Details on equation (5) Here, we justify more formally the statement given in Eq. (5), used to compute
EIGe

t (x), that for an execution path sample ẽA ∼ p(eA | Dt), where ẽA = (z̃s, f̃zs)Ss=1, then

p (yx | Dt, ẽA) = p
(
yx

∣∣∣ Dt,
{
f̃zs
}S
s=1

)
.

The posterior predictive distribution conditioned on a posterior execution path sample ẽA can be written

p (yx | Dt, ẽA) = p
(
yx | Dt, z̃1, f̃z1 , z̃2, f̃z2 , . . . , z̃S , f̃zS

)

= p
(
yx | Dt, z̃1, f̃z1 , z̃2(z̃1, f̃z1), f̃z2(z̃1,f̃z1), . . .

)

= p
(
yx | Dt, f̃z1 , f̃z2(z̃1,f̃z1), . . .

)
(10)

where the third equality holds because each z̃s = z̃s(z̃1, f̃z1 , . . .) is a deterministic function of previous
function evaluations f̃z1 , . . . , f̃zs−1 in the sequence, as well as the initial z̃1 (which is assumed to be a
determinstic quantity specified by algorithm A), so each z̃s can be dropped from the conditioning. Note also
that the final line can be written equivalently as p

(
yx | Dt, f̃z1 , f̃z2 , . . . f̃zS

)
= p

(
yx

∣∣∣ Dt,
{
f̃zs
}S
s=1

)
.

Background on Gaussian processes Gaussian processes (GPs) are popular models that are commonly
used in Bayesian optimization. In order to give details on Eq. (5) for a Gaussian process model, we first give
background on GPs here.

A GP over the input space X is a random process characterized by a mean function µ : X → R and a
covariance function (i.e. kernel) κ : X 2 → R. If f ∼ GP(µ, κ), then for all x ∈ X , we can write the
distribution over f at x as fx ∼ N (µ(x), κ(x, x)). Suppose that we are given a dataset of t observations
Dt = {(xi, yxi)}ti=1, where

yxi = fxi + εi ∈ R and εi ∼ N (0, σ2). (11)

Then the posterior process given Dt is also a GP, with mean function µt and covariance function κt, which
we describe as follows. Let Y , k, k′ ∈ Rt be vectors where Yi = yxi

, ki = κ(x, xi), and k′i = κ(x′, xi). Let
It ∈ Rt×t be the identity matrix and let K ∈ Rt×t be the Gram matrix with Ki,j = κ(xi, xj). Then

µt(x) = k>(K + σ2It)
−1Y, (12)

κt(x, x
′) = κ(x, x′)− k>(K + σ2It)

−1k′. (13)

Given Dt, the posterior predictive distribution for a given x ∈ X , is p(yx | Dt) = N (yx | µx, σ
2
x), where

µx = µt(x) and σ2
x = κt(x, x) + σ2. (14)

For additional background on GPs, see Williams & Rasmussen (2006).

Equation (5) for Gaussian processes Under a GP model, we can derive a closed-form expression for
Eq. (5), given dataset Dt = {(xi, yxi)}ti=1, and execution path sample ẽA = (z̃s, f̃zs)Ss=1. Intuitively, Eq. (5)
is the posterior predictive distribution for a GP with two types of observations: noisy observations yxi

and
noiseless observations fzs . This can be written as

p (yx | Dt, ẽA) = p
(
yx

∣∣∣ Dt,
{
f̃zs
}S
s=1

)
= N

(
yx | µ̃x, σ̃

2
x

)
, (15)

Bayesian Algorithm Execution

where we describe the two parameters µ̃x and σ̃2
x as follows. Let u = t+ S. Let Ỹ ∈ Ru be a vector where

Ỹi =

{
yxi , if i ∈ {1, . . . , t}
f̃zi−t if i ∈ {t+ 1, . . . , u}. (16)

Let k̃ ∈ Ru be a vector where

k̃i =

{
κ(x, xi), if i ∈ {1, . . . , t}
κ(x, f̃zi−t) if i ∈ {t+ 1, . . . , u}, (17)

and define k̃′ similarly. Let I(σ) ∈ Ru×u be a diagonal matrix, where

I(σ)i,i =

{
σ, if i ∈ {1, . . . , t}
0 if i ∈ {t+ 1, . . . , u}. (18)

Let K̃ ∈ Ru×u be an extended Gram matrix, where

K̃i,j =





κ(xi, xj), if i, j ∈ {1, . . . , t}
κ(xi, z̃j−t), if i ∈ {1, . . . , t}, j ∈ {t+ 1, . . . , u}
κ(z̃i−t, xj), if i ∈ {t+ 1, . . . , u}, j ∈ {1, . . . , t}
κ(z̃i−t, z̃j−t), if i, j ∈ {t+ 1, . . . , u}.

(19)

Then

µ̃x = k̃>(K̃ + I(σ))−1Ỹ , (20)

σ̃2
x = κ(x, x)− k̃>(K̃ + I(σ))−1k̃′ + σ2. (21)

A.2. EIG for the Algorithm Output

In Eq. (8), the EIGt(x) acquisition function is written

EIGt(x) = H [yx | Dt]− Ep(OA|Dt)

[
H
[
Ep(eA|OA,Dt) [p (yx | Dt, eA)]

]]
.

Here we describe details on how we estimate this acquisition function under a GP model. In Section 3.2,
we describe the general procedure: we first draw a set of sample pairs P j := {(ẽ j

A , Õ
j
A)}, consisting of an

execution path and algorithm output, by running algorithm A on samples f̃ ∼ p(f | Dt). For a given output
sample Õ j

A , we then carry out an approximate Bayesian computation (ABC) -like procedure to produce a set
of execution path samples

e̊ j
A = {e ∈ P j : ÕA ∈ O̊ j

A },

where O̊ j
A is a set of similar outputs defined as

O̊ j
A =

{
Õ ∈ {Õ k

A }`k=1 : d(Õ, Õ k
A) < δ, k 6= j

}
,

and where d(·, ·) is some distance function defined on the algorithm output space O. Note that, for a given
e ∈ e̊ j

A , we can compute p(yx | Dt, e) in closed form as described in Section A.1. We can therefore estimate
Ep(eA|OA,Dt) [p (yx | Dt, eA)] as a mixture density 1

|̊e j
A |

∑
e∈e̊ j
A
p(yx | Dt, e), which in the case of GPs, will

be a uniformly weighted mixture of Gaussians. We can easily draw a set of H samples from this mixture of
Gaussians to produce a set of one-dimensional samples {ỹ j

x,1, . . . , ỹ
j
x,H} ⊂ R, and then construct a Monte

Carlo estimate of the entropy via − 1
H

∑H
h=1 log

(
1

|̊e j
A |

∑
e∈e̊ j
A
p(ỹ j

x,h | Dt, e)
)

.

By following these steps, we produce an estimate of H
[
Ep(eA|Õ j

A ,Dt)
[p (yx | Dt, eA)]

]
for Õ j

A ∼ p(OA|Dt),
and then can follow the same procedure outlined in Section 3.1 to estimate the full EIGt(x).

Bayesian Algorithm Execution

A.3. EIG using an Execution Path Subsequence

Here, we give details on the acquisition function EIGv
t (x) in Eq. (9), which is based on using a set of function

values vA from a subsequence of the execution path. To summarize, let the execution path eA = (zs, fzs)Ss=1

have a subsequence of length R, denoted sA := sA(f) := (zir , fzir)Rr=1. We can denote the function values
for this subsequence with vA := vA(f) := {fzir }Rr=1.

We focus on the special case where the algorithm output OA exactly specifies this subsequence sA, as well as
its function values vA (i.e. sA and vA are both a deterministic function ofOA, and are not random conditioned
on OA). There are a number of common applications where we can find such a subsequence, such as in
optimization (where sA consists of an optima x∗ and its value fx∗), level set estimation (where sA is the set
of (x, fx) pairs in a super/sublevel set), root finding (where sA is a root of f), and phase mapping (where sA
is a set of (x, fx) pairs that comprise a phase boundary). Additionally, the two applications that we show in
Section 4—estimating shortest paths in graphs and Bayesian local optimization—also fall into this setting. In
the former case, the subsequence is the sequence of edges and edge-costs that comprise the minimum-cost
path in a graph, and in the latter case, the subsequence is the optima and its function value.

Given this subsequence sA, and its corresponding function values vA, we then propose using the following
acquisition function:

EIGv
t (x) = H [yx | Dt]− Ep(f |Dt) [H [yx | Dt, vA]] .

= H [yx | Dt]− Ep(f |Dt)

[
H
[
yx | Dt, {fzir }Rr=1

]]
.

Under a GP model, we can compute this acquisition function in closed form, using Eq. (5), originally derived
for the EIGe

t (x) acquisition function (note that this fact is not true if we want to compute the EIG with respect
to the subsequence sA, and that, in general, the posterior predictive p (yx | Dt, sA) 6= p (yx | Dt, vA)).

Next we discuss why this acquisition function shows strong performance in practice. Ideally, we would like to
determine vA such that EIGv

t (x) best approximates EIGt(x). We can see that

EIGv
t (x)− EIGt(x) = Ep(f | Dt) [H [yx | Dt, vA]− H [yx | Dt, OA]] . (22)

So it is sufficient for us to determine a vA(f) such that |H[yx | Dt, vA(f̃)] − H[yx | Dt, OA(f̃)]| is small for
all f̃ . Note also that

p(yx | Dt, ṽA) = Ep(OA|ṽA,Dt) [p(yx | Dt, ṽA, OA)] , and (23)

p(yx | Dt, ÕA) = Ep(vA|ÕA,Dt)

[
p(yx | Dt, vA, ÕA)

]
. (24)

Intuitively, we would like a vA(f) such that H [vA |OA,Dt] and H [OA | vA,Dt] are both zero, in which case
p(yx | Dt, ṽA) = p(yx | Dt, ṽA, ÕA) = p(yx | Dt, ÕA), and therefore EIGv

t (x) = EIGt(x). Interestingly, in
our special case setting, for a given sample f̃ ∼ p(f |Dt) with associated ÕA = OA(f̃) and ṽA = vA(f̃), we
find that

p(yx | Dt, ÕA) = Ep(vA|ÕA,Dt)
[p(yx | Dt, ṽA, OA)] = p(yx | Dt, ṽA, ÕA)

because the sample ÕA deterministically specifies the execution path subsequence ṽA. Thus, EIGv
t (x)

will serve as a good approximation to EIGt(x) when H [OA|vA,Dt] is small, and will be optimal when
H [OA|vA,Dt] = 0, in which case EIGv

t (x) = EIGt(x).

A.4. Computational Considerations

Our sampling-based approximation of the EIG objectives from Eqs. (4), (8), and (9) require drawing posterior
samples from p(fx|Dt) and p(fx|Dt, eA). For Gaussian processes, posterior sampling takes cubic time in the
length of vector we condition on. Thus this cost can be prohibitive for algorithms with long execution paths.

However, in our experiments, we rely on an implementation of GPU-accelerated, approximate posterior sam-
pling by the authors of (Wilson et al., 2020), which can be found at https://github.com/j-wilson/

https://github.com/j-wilson/GPflowSampling
https://github.com/j-wilson/GPflowSampling
https://github.com/j-wilson/GPflowSampling

Bayesian Algorithm Execution

GPflowSampling, which reduces the sampling complexity to being linear in the length of the vector we
condition on. Alternate methods for drawing fast approximate GP posterior samples include (Pleiss et al.,
2018) and (Pleiss et al., 2020). In our implementation, on a NVIDIA 1080ti GPU, drawing all samples from
p(fx|Dt) and p(fx|Dt, eA) takes only a few seconds at most, for each iteration of INFOBAX, even when the
execution path eA exceeds 8000 points, as in the case of Dijkstra’s algorithm.

A.5. Additional Experimental Details and Results

In this section, we describe experimental details for the applications given in Section 4, and show additional
experimental results, including on a comparison of proposed acquisition functions and on a top-k estimation
problem. Note that we use a Gaussian processes as our prior p(f) for all experiments.

Comparison of Acquisition Functions In Figure 6 we show the results of experiments where we compare
the three estimators we proposed in Eqs. (4), (8), and (9), on shortest path estimation, Bayesian local
optimization, and top-k estimation. Each plot shows a measure of error on the y-axis, and number of iterations
(i.e. queries) on the x-axis. In all three cases, we see that INFOBAX using EIGv

t (x) and EIGt(x) tend to
perform best, followed closely by INFOBAX using EIGe

t (x), and afterwards by the baseline methods. In the
shortest path and top-k estimation plots, we have also included an additional baseline, denoted MIf , which
sequentially chooses queries that maximize the expected information gain about the function f (which has
similarities with the UNCERTAINTYSAMPLING baseline).

Details on Estimating Shortest Paths Here, we give details about our first experimental application, on
estimating shortest paths in graphs (Section 4). For the grid-shaped graph, to define edge costs, we use a
rescaled Rosenbrock function (Rosenbrock, 1960) for X ⊂ R2, defined as

f(x) = 10−2[((a− x2)2 + b(x2 − x2
1)2)] (25)

with a = 1, b = 100 within the domain−2 ≤ x1 ≤ 2,−1 ≤ x2 ≤ 4. Each vertex within the grid is connected
to its closest neighbors, corresponding to the ordinal and cardinal directions as shown in Figure 2.

We create our California graph from a subset of the graph network provided by (Li et al., 2005), corresponding
to the region within 36.7◦N and 39.3◦N and 122.5◦W and 119.5◦W. We use the vertex at 36.1494◦N,
122.045158◦W as our start vertex and the vertex at 38.913666◦N, 120◦W as our destination vertex. These
two positions correspond to roughly Santa Cruz and Lake Tahoe, respectively. To obtain the ground truth
edge cost function, we take the average of the cooridinates of the two vertices at each end of the edge and
query its elevation from the OpenElevation dataset. To ensure that the edge costs are non-negative, we first
rescale all edge costs by the max edge cost, i.e. max elevation, and add an offset of 0.1 to each edge cost.

To ensure that our distribution p(f) is supported on only non-negative functions, we transform the edge costs
through the inverse of the softplus function and fit our Gaussian process on these transformed edge costs
which can take on negative values. In all cases, when running INFOBAX , we draw 20 posterior samples of
the shortest path. We found that drawing more samples did not speed up convergence to the true shortest path.

We compute the EIGv
t (x) acquisition function in Eq. (9), with respect to an execution path subsequence. In

this case, the algorithm output is a sequence of edges and their respective edge costs, where each edge is
associated with a point in X , i.e. the average position between the two vertex positions. We therefore use the
costs of the edges along a shortest path sample output as a ṽA in this acquisition function.

To evaluate the quality of each inferred shortest path, we use the 2D polygonal area between the inferred path
and the truth shortest path. To do this, we decompose the area into a set of disjoint 2D polygons, and compute
the area of each polygon using the shoelace algorithm (i.e. Gauss’s area formula).

Details on Bayesian Local Optimization Here, we give details about our second experimental application,
on Bayesian local optimization (Section 4). In this application, we demonstrate the use of INFOBAX
for the task of black-box optimization, where the algorithm A is a local optimization algorithm—i.e. an
algorithm consisting (typically) of an iterative procedure that returns some local optima with respect to a given
initialization. Intuitively, the goal is to perform black-box optimization by choosing a sequence of function
evaluations which efficiently yield a good estimate of the output of A (rather than, for example, choosing
evaluations to directly infer a global optima of the function).

https://github.com/j-wilson/GPflowSampling
https://github.com/j-wilson/GPflowSampling
https://github.com/j-wilson/GPflowSampling

Bayesian Algorithm Execution

0 50 100 150
Iteration

0.00

0.05

0.10

0.15

0.20

0.25

E
rr

or
of

In
fe

rr
ed

S
h

or
te

st
P

at
h

Shortest path estimation (684 edges)

Random Search

Uncertainty Sampling

EIGe
t(x), Eq. (4)

EIGt(x), Eq. (8)

EIGv
t (x), Eq. (9)

MIf

Dijkstra’s

305 100 101 102 103

Iteration

101

2× 100

3× 100

4× 100

6× 100

S
im

p
le

R
eg

re
t

t = 200 t = 2000

(Full A)

Bayesian local optimization (D = 10)

Random Search

Evolution Strategy

MV Entropy Search

EIGe
t(x), Eq. (4)

EIGt(x), Eq. (8)

EIGv
t (x), Eq. (9)

10 50 100 150
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

1−
Ja

cc
ar

d
In

d
ex

fo
r

T
op

-k

Top-k estimation (k = 10)

Random Search

Uncertainty Sampling

EIGe
t(x), Eq. (4)

EIGt(x), Eq. (8)

EIGv
t (x), Eq. (9)

MIf

Top-k algorithm (full)

−10 −5 0 5 10
−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0
EIGe

t(x), Eq. (4)

−10 −5 0 5 10
−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0
EIGt(x), Eq. (8)

−10 −5 0 5 10
−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0
EIGv

t (x), Eq. (9)

−10 −5 0 5 10
−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0
Random Search

−10 −5 0 5 10
−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0
Uncertainty Sampling

Figure 6. Comparison of acquisition functions: (Top) Comparison of INFOBAX using the three proposed acquisition functions EIGe
t

(4), EIGt (8), and EIGv
t (9), along with baseline methods, on the applications of shortest path estimation, Bayesian local optimization,

and top-k estimation. Top-k estimation results: (Bottom) Visualizations of queries and inferred results given by different acquisition
functions. Light grey dots • are the 150 points X ⊂ X which comprise the execution path eA, black circles are function evaluations,
gold stars F are the true top k = 10 elements with highest value fx, pink circles are the next evaluation selected, and blue squares are
posterior samples of the output (i.e. samples of the inferred top-k elements). For each method, T = 70 evaluations are shown.

Bayesian Algorithm Execution

For our local optimization algorithm A, we use a mutation-based evolution strategy. In this algorithm, we
first initialize a population of p vectors V p = {vj}pj=1 (where vj ∈ X) all to the same point, which is
drawn uniformly at random from X . The algorithm then proceeds over a sequence of g generations. At each
generation, we mutate each vector in this population via a normal proposal, i.e. draw ṽj ∼ N (vj , σ

2
pr) and

set vj ← ṽj , for all vj ∈ V p. We then query the function f(vj), for each vj ∈ V p, and discard the bottom
(1− e)% (where e ∈ [0, 1]) of vectors in V p based on their function values, before proceeding on to the next
generation. After g generations, we return the vector v∗j that achieved the best queried function value over the
course of the full algorithm (i.e. over all generations), and it’s observed function value f(v∗j). We refer to this
algorithm as EVOLUTIONSTRATEGY.

We show experimental results on minimization of three standard benchmark functions: Branin (X ⊂ R2),
Hartmann-6 (X ⊂ R6), and Ackley-10 (X ⊂ R10), defined as

Branin: f(x) =

(
x2 −

5.1

(4π)2
x2

1 +
5

π
x1 − 6

)2

+ 10

(
1− 1

8π

)
cos(x1) + 10

Hartmann-6: f(x) = −
4∑

i=1

αi exp


−

6∑

j=1

Aij(xj −Bij)
2




Ackley-10: f(x) = −20 exp


−1

5

√√√√ 1

10

10∑

i=1

x2
i


− exp

(
1

10

10∑

i=1

cos(2πxi)

)
+ 20 + exp(1),

where, in Hartmann-6,

α = (1.0, 1.2, 3.0, 3.2)> (26)

A =




10 3 17 3.5 1.7 8
0.05 10 17 0.1 8 14

3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14




B =




1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381


× 10−4.

We compare the performance of four methods: INFOBAX, RANDOMSEARCH (described in Section 4),
EVOLUTIONSTATEGY, and MAXVALUEENTROPYSEARCH (Wang & Jegelka, 2017), which is a popular
information-based Bayesian optimization method that aims to efficiently infer a global optima of f .

In INFOBAX, we draw 100 samples of f̃ ∼ p(f |Dt) and runA on these, in order to produce the execution path
samples ẽA. We then use the EIGv

t (x) acquisition function from Eq. (9). Since the algorithm output consists
of a vector v∗j ∈ X , and its value f(v∗j), we use this tuple, (v∗j , f(v∗j)), as the execution path subsequence
in EIGv

t (x). For acquisition optimization in both INFOBAX and MAXVALUEENTROPYSEARCH, we run
a high-iteration random search algorithm. In MAXVALUEENTROPYSEARCH, for our global optimization
procedure, we also run a high-iteration random search algorithm.

As an error metric, for each method we compute the Simple Regret, defined as the difference between the
function value f(x̂) at an estimated minimum x̂ and the true minimal value f(x∗). For each method, we
therefore need to produce an estimated minimum x̂. For EVOLUTIONSTRATEGY, the estimated minimum is
chosen to be the output of the algorithm (described above). For RANDOMSEARCH, the estimated minimum
is chosen to be the input with lowest queried value, i.e. x̂ := arg maxx∈Dt

f(x). For both INFOBAX
and MAXVALUEENTROPYSEARCH, the estimated minimum is chosen to be the estimated local or global
optimum (respectively) of the GP posterior mean Ep(f |Dt) [f] (x) = µT (x).

Details on top-k Estimation Here we give additional experimental results and details on our third applica-
tion of top-k estimation. In Section 4.3, we describe the task of top-k estimation, which we copy in part here

Bayesian Algorithm Execution

for context. Suppose we have a finite collection of elements X ⊆ X , where each x ∈ X has an unknown
value fx. There are many applications where we care about estimating the top-k elements of X with the
highest values, denoted K∗ ⊆ X . Given a budget T , our goal will be to choose the best T inputs x1, . . . , xT
to query, in order to infer K∗. For full generality, assume that we can evaluate any xt ∈ X , so we are not
restricted to evaluating only inputs in X . This problem can be viewed as a type of active search, which
extends optimization to estimating the top-k, rather than top-1, element in a discrete set. It also has relations
to level set estimation, where the goal is to estimate all elements x ∈ X with a value fx above some threshold
C. To run INFOBAX for this problem, we make use of the following top-k algorithm A: evaluate fx for
each x ∈ X , sort X in decreasing order, and return the first k elements. This algorithm makes exactly |X|
evaluations of f .

We carry out a top-k estimation experiment on a two dimensional domain X ∈ R2, where for each x ∈ X ,
−10 < x1 < 10, and −10 < x2 < 10. From this domain, we draw a set of 150 elements X uniformly at
random, and choose to estimate the top k = 10 elements. For this experiment, we use the skewed sinusoidal
function g : X → R, defined as g(x) =

∑d
i=1 2|xi| sin(xi), which has a multimodal landscape.

Our goal is then to infer K∗ ⊆ X , the top-k elements of X , using as few queries of f as possible. We
compare the performance of our three INFOBAX acquisition functions (EIGe

t (x), EIGt(x), and EIGv
t (x)),

along with RANDOMSEARCH and UNCERTAINTYSAMPLING (both decribed in Section 4), as well as the
full top-k algorithm that scans through each point in X . For INFOBAX methods, we draw 100 samples of
f̃ ∼ p(f | Dt) and run the top-k algorithm A on these, in order to produce the execution path samples ẽA, or
algorithm output samples ÕA.

In Figure 6 (Top Right) we show these results, plotting the metric Jaccard distance (i.e. the 1−Jaccard Index
for Top-k) for each method at each iteration, which, for a given estimate K̂ of the top-k elements of X , is
defined as

Jaccard distance(K̂,K∗) = 1− Jaccard Index for Top-k(K̂,K∗) = 1− |K̂ ∩K
∗|

|K̂ ∪K∗|
. (27)

For each method, we average this metric over five trials and show one standard error. In Figure 6 (Bottom)
we show the set of function evaluations and posterior samples of the inferred top-k sets K̂ for each method.
We see that INFOBAX, using EIGv

t (x) and EIGt(x), is able to determine and spend its query budget around
the true top-k elements K∗ (denoted by gold stars). Note also that INFOBAX using EIGe

t (x) focuses
its query budget on the execution path eA (or, equivalently, the set X), shown as light grey dots, while
UNCERTAINTYSAMPLING spends its budget on points that are informative about the full function f , as
opposed to the execution path eA or top-k property OA.

	Introduction
	Related Work
	Bayesian Algorithm Execution (BAX)
	EIG for the Execution Path
	EIG for the Algorithm Output
	EIG using an Execution Path Subsequence

	Experiments
	Estimating Shortest Paths in Graphs
	Bayesian Local Optimization
	Top-k Estimation

	Conclusion
	Appendix
	EIG for the Execution Path
	EIG for the Algorithm Output
	EIG using an Execution Path Subsequence
	Computational Considerations
	Additional Experimental Details and Results

