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Abstract

Linear residualization is a common practice for
confounding adjustment in machine learning ap-
plications. Recently, causality-aware predictive
modeling has been proposed as an alternative
causality-inspired approach for adjusting for con-
founders. In this paper, we compare the linear
residualization approach against the causality-
aware confounding adjustment in anticausal pre-
diction tasks. Our comparisons include both the
settings where the training and test sets come from
the same distributions, as well as, when the train-
ing and test sets are shifted due to selection biases.
In the absence of dataset shifts, we show that
the causality-aware approach tends to (asymptoti-
cally) outperform the residualization adjustment
in terms of predictive performance in linear learn-
ers. Importantly, our results still holds even when
the true model generating the data is not linear.
We illustrate our results in both regression and
classification tasks. Furthermore, in the presence
of dataset shifts in the joint distribution of the
confounders and outcome variables, we show that
the causality-aware approach is more stable than
linear residualization.

1. Introduction

Linear residualization is a common technique for confound-
ing adjustment in applied machine learning (ML) work. The
basic idea is to regress the input data on the observed con-
founders and use the residuals of the regression fits as the
new inputs for ML algorithms. The technique is widely
used in applied fields such as social sciences, bioinformat-
ics/genomics, neuroimaging, and others. For instance, as
pointed by Snoek et al. (2019), linear residualization is per-
haps the most common confounding adjustment approach
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in neuroimage studies’.

In this paper, we focus on anticausal prediction tasks
(Scholkopf et al., 2012), namely, ML tasks where the out-
put variable has a causal influence on the inputs, and we
provide a “head-to-head” comparison between the ad hoc
linear residualization technique against the recently pro-
posed causality-aware adjustment (Chaibub Neto, 2020) -
which is implemented by regressing each input on both the
confounders and output, and then generating counterfactual
inputs by adding back the estimated residuals to a linear
predictor that no longer includes the confounder variables.
The new counterfactual inputs are then used as the inputs
for the ML algorithm.

We focus on anticausal prediction tasks because, from
a causality perspective, the residualization procedure
performs the wrong adjustment in this setting. By
failing to include the outcome variable as a covari-
ate in the regression models, the residualization ap-
proach removes not only the direct causal influence
of the confounders from the inputs, but also the indi-
rect influences that are mediated by the outcome vari-
able. In a sense, it goes too far and removes too much.
For example, consider

the toy model in Figure (a)
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represent, respectively, %@ %@

an input, the Outcomf.:, Figure 1. Anticausal
and a confounder vari- task

able, and v, ,, 7, .. and

Yxy» represent the causal effects among these variables.
We see that by regressing X on A alone the residualized
input X;, = X — wA is obtained by removing the total
effect w = v, + Vxy Yy Of A from X, whereas by re-
gressing X on both A and Y the causality-aware input,
Xe=79 Y +Wx =X —~,,Ais obtained by remov-

prediction

"Examples of works that either apply, discuss, or evaluate
linear residualization in neuroimage studies include Abdulkadir
et al (2014), Dubois et al (2017) Dukart et al (2011), Kostro et
al (2014), Rao et al (2017), Todd et al (2013), Greenstein et al
(2012), Doan et al (2017), Friston et al (1994), and Maglanoc et al
(2020). Also, note that the term “linear residualization” is similarly

denoted as “confounding regression”, “image correction”, or as
“regressing out” confounding effects in this applied literature.
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ing only the direct causal effect of A on X, as described
in Figure 1b%. (Note that we cannot even represent the
residualization input, X, in a causal graph, because the
conditional independence relations between X,., A, and Y’
are not faithful (Spirtes, Glymour, and Scheines, 2000) to
any causal graph representing an anticausal prediction task.
See Supplementary Section 1 for further details.)

In causal prediction (@)

(b)
tasks, on the other Ixa @ Yy A @ Yy a
o VAR N
hand, residualization ®_>® ®_>®
performs the correct Trx Trx
adjustment (from a Figure 2. Causal prediction task.
causal perspective)

and removes only the direct causal effect of A on X, as
described in Figure 2. (Note that, now, we can represent the
residualization input using the causal graph in Figure 2b.)

In this paper, we show how a more principled, causality-
inspired approach, can better handle confounding in an-
ticausal prediction task and generate substantial gains in
both predictive performance and stability, when compared
to a widely used ad hoc statistical adjustment approach.
While the subfield of causality-inspired machine learning
has raised awareness regarding the potential advantages of
using causality to inform learning approaches, there has
been few clear demonstrations of the concrete advantages
of leveraging the causal structure of the learning task. Our
work represents an important step in this direction®.

Moreover, the work has also important practical conse-
quences. Anticausal tasks are frequently found in real world
applications and notable examples include health related
diagnostic applications, where the goal is to classify dis-
ease status using disease symptoms as the inputs of the ML,
model. These applications are clearly anticausal since the
disease is a cause of the symptoms, and not the other way
around. We further illustrate this point with a real data illus-
tration comparing the causality-aware and residualization
approaches using data from a Parkinson’s disease (PD) mo-
bile health application (where we build classifies of PD vs
non-PD subjects using inputs extracted from accelerometer
data collected by smartphones). Other examples of anti-
causal prediction tasks include computer vision applications
where the goal is to classify different objects using their
images. (These tasks are also anticausal since the real world
objects cause the pixel patterns/intensities in their images,
and not the other way around).

In this paper, we compare the causality-aware and residu-

"Here, we assume that sample size converges to infinity, so
that the least squares estimates ¥ 4, ¥y 4> Yxy » and @ converge
to the true parameter values and vy ,, Yy 4> Vxy» and w, and
X, =X—-GAand X, = X —44, Aconvergeto X, = X —w A
and Xc = X — v, A

3We thank an anonymous reviewer for raising this point.

alization approaches in settings where the training and test
sets come from the same distributions, as well as, in situ-
ations where the training and test sets are different due to
dataset shifts (Quinonero-Candela et al., 2009) generated
by selection biases (Heckman, 1979; Hernan et al., 1979,
Bareinboim & Pearl, 2012). In real word applications, selec-
tion biases often lead to the collection of non-representative
training sets and represent an important challenge for ML.
Furthermore, because in many applications the target popu-
lations where the ML model will be deployed can be shifted
in unknown ways, researchers often prefer to perform con-
founding adjustment in the development data available to
train and evaluate their ML models, even when the con-
founding adjustment decreases the predictive performance
in the development data*.

In situations where the training and test sets come from
the same distribution (e.g., in development datasets where
the researcher splits the data into independent and identi-
cally distributed (i.i.d.) training and test sets), we prove
that the asymptotic expected mean squared error (MSE) of
regression models trained with residualized inputs is always
greater than or equal to the expected MSE of regression
models trained with causality-aware inputs, even when the
regression models are mispecified. We illustrate this result
in synthetic data experiments based on both correct and
mispecified models.

While we do not provide an analogous proof for classifi-
cation tasks, we, nonetheless, prove that the strength of
the covariance between the causality-aware counterfactual
features and the output variable is always asymptotically
stronger than the covariance between the residualized fea-
tures and the output (again even when the true data gener-
ating process is not linear). Intuitively, this result suggests
that, for linear classifiers such as logistic regression, the
causality-aware approach will tend to (asymptotically) out-
perform the linear residualization technique. We provide
empirical support for this conjecture using simulation exper-
iments based again on correct and mispecified models, as
well as, on real data illustrations.

In situations where the training and test sets are shifted due
to selection biases, we prove that while the causality-aware
approach is stable with respect to (w.r.t.) shifts in the as-
sociation between the outcome and the confounders, the
expected MSE of learners trained with residualized inputs
is still a function of this association. As a consequence, the
residualization approach is unstable w.r.t. dataset shifts gen-
erated by selection biases. We also illustrate this analytical
result using synthetic data experiments.

“This is also the reason why stable prediction approaches are
attractive in safety critical applications where the trade-off between
predictive performance and predictive stability tips in favor of
stability (Subbaswamy et al., 2019b).
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2. Related work

This work relies heavily on the causality-aware approach,
recently proposed by Chaibub Neto (2020). The basic idea
behind the causality-aware confounding adjustment is to
generate counterfactual data which is free from the spuri-
ous associations generated by the observed confounders.
The approach can be used to generate stable predictions
and is similar in spirit to invariant prediction approaches
(Peters et al., 2016; Ghassami et al., 2017; Heinze-Deml
et al., 2018; Rojas-Carulla et al., 2018; Magliacane et al.,
2018; Arjovsky et al., 2019) and other stable prediction
approaches (Kuang et al., 2018; Subbaswamy et al., 2018;
Subbaswamy et al., 2019a; Kuang et al., 2020) in the sense
that it can be used to generate predictions based on the stable
properties of the data, without absorbing unstable spurious
associations. Invariant prediction approaches, however, rely
on multiple training sets to learn invariances in the data
while the causality-aware approach only requires a single
training set, a characteristic that is also shared by the other
stable prediction methods listed above. Observe, however,
that some stable prediction approaches (Subbaswamy et
al., 2018; Subbaswamy et al., 2019a) require, nonetheless,
full knowledge about the data generation process, while
the causality-aware approach only requires partial domain
knowledge about which variables are confounders, with-
out requiring knowledge about how the inputs are causally
related (nor about how the confounders are related). Further-
more, the stable approaches proposed by Kuang et al. (2018;
2020) can only be applied to causal prediction tasks, while
the causality-aware adjustment is suited to anticausal tasks.
Finally, observe that while the causality-aware approach is
based on linear models, other stable and invariant prediction
approaches can handle non-linear data.

3. Background
3.1. Notation and causality definitions

Throughout the text, we let X, Y, and A represent, respec-
tively, the input, output and confounder variables. Sets of
random variables are represented in italic and boldface, and
we use the superscripts ¢r and ts to represent the training
and test sets, respectively. We adopt Pearl’s mechanism-
based approach to causation (Pearl, 2009) where the joint
distribution of a set of variables is accompanied by a di-
rected acyclic graph (DAG), also denoted as a causal dia-
gram/graph, representing our prior knowledge (or assump-
tions) about the causal relation between the variables. The
nodes on the causal graph represent the random variables,
and the directed edges represent causal influences of one
variable on another. In a DAG, a path corresponds to any
unbroken, nonintersecting sequence of edges in the DAG,
which may go along or against the direction of the arrows.
A path is d-separated or blocked by a set of nodes Z if and

only if: (i) the path contains a chain V; — V,,, — V}, or
a fork V; < V,,, — Vj such that the middle node V;;, is
in Z; or (ii) the path contains a collider V; — V;,, < V4
such that V,,, is not in Z and no descendant of V,, is in
Z. Otherwise, the path is d-connected or open. Following
Pearl (2009), we adopt a causal definition of confounding
where a variable A is a confounder of the relationship be-
tween variables X and Y, if there is an open path from A
to X that does not go through Y, and an open path from
A to Y that does not go through X. Throughout most
of the text we assume that X, Y, and A have been stan-
dardized to have mean 0 and variance 1°. In the context
of anticausal prediction tasks, the non-representativeness
of the development data often arises due to selection
mechanisms operating during the data collection phase.

As illustrated in Fig-
ure 3a, confounding can (a) @ (b) @
Ve PN
D) OO

be generated by selec-
tion mechanisms alone.

Figure 3. Confounding as a conse-
quence of selection biases.

Furthermore, even when
the confounder has (sta-
ble) causal effects on X
and on Y (Figure 3b), selection mechanisms can still con-
tribute to the association between A and Y, making the data
non-representative relative to target populations where this
association is shifted.’

3.2. The confounded anticausal prediction task

Figure 4 describes the
confounded anticausal
prediction task. Note

that the  variables
{Wx,,...,Wx,} and
{Wa,,...,Wa,} rep-

resent sets of correlated
error terms, and that the
causal model in Figure
4 might represent a
reparameterization of a

Figure 4. Confounded anticausal
prediction task.

>Note that any linear model V¢ = ps + YxsBsi Vi + W2,
where V,” represents the original data, can be reparameterized
into its equivalent standardized form Vs, = > s Ys; Vi + W,

where V, = (V2 — E(VY))/ Var(VS")% represent standard-
ized variables with E(V;) = 0 and Var(V;) = 1; Tvov, =

ﬁvsvj(Var(Vj")/Var(V;’))% represent the path coefficients

(Wright, 1934); and W, = W7/ Var(VS")% represent the stan-
dardized error terms.

SHere, S represents a binary variable which indicates whether
the sample was included or not in the dataset, and the square frame
around S indicates that our dataset is generated conditional on S
being set to 1. Note that conditional on S = 1, we have that the
path A — S <— Y is open, since S is a collider. This shows that
A satisfies the definition of a confounder even in Figure 3a, where
Aisnotacauseof Y.
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model with uncorrelated error terms and unknown causal
relations among the X inputs, as well as, among the A
confounders.

This point has been described in detail in Chaibub Neto
(2020), where it has been shown that, in the special case
where the true data generation process corresponds to lin-
ear structural causal models, we can always reparameterize
the original model in a way where the covariance struc-
ture among the input variables, as well as, the covariance
structure among the confounder variables is pushed towards
the respective error terms as illustrated in Figure 4. How-
ever, it is important to clarify, that even when the true data
generation process does not correspond to a set of linear
structural equations, we can still model the data according
to the diagram in Figure 4, with the understanding that we
are working with a mispecified model. In either way, we
model the input variables, X;, j = 1,...,p, according to
the linear structural equations,

k
Xj = Z’YXin A + ,‘YX]‘YY + WX_.j s (1

=1

which can be represented in matrix form by,

X1 Vx4, VX1 Ay Ay Tx1v Wx,
. = . . + . Y + .
Xp YXpAy TXxpAp Ag TXpY Wxp
—— ———
x Txa A Txy Wx

Similarly, we model the output variable, Y, as,

k A

Y = Yy, Aj+ Wy = <7YA1 ’YYAk)
j=1 Ak
Tya NI
A

+ Wy,

so that our inferences will be based on the potentially mis-
pecified models,

X=TxsA+TxyY+Wx, 2
Y =Tyis A+ Wy, 3)

where the variables X, A, and Y are scaled to have mean 0
and variance 1, and the error terms have mean 0 and finite
variance (but are not assumed to be Gaussian.)

3.3. Linear residualization adjustment

The linear residualization approach is implemented by re-
gressing each separate input variable X ; on the confounders,
and then using the residuals of the linear regression fits as
the new inputs for machine learning. Since the output vari-
able is not included as a covariate in the regression fits,
we have that the approach is actually based on the reduced

model obtained by replacing eq. (3) on eq. (2),

X=TxaA+Txy (Tya A+ Wy)+Wx
=Txa+TxyTya)A+ Txy Wy + Wk
=Qxa A+ Wx €]

where Qx4 = I'xa + Txy Tya, and W5 = Wx +
I'xy Wy. In practice, the residualized inputs, X, are

estimated as, R .
X, =X -Qx4A, )]

by regressing the train and test set inputs on the train and test
confounder data in order to estimate €2 x 4 via least squares.

A Ak
Note that X, corresponds to the estimated residuals, W .

3.4. Causality-aware counterfactual adjustment

The causality-aware counterfactual confounding adjustment
is implemented using a modification of Pearl’s three step
approach for the computation of deterministic counterfactu-
als (Pearl, 2009; Pearl et al., 2016)’, where we regress the
inputs on the confounders and output variable in order to
estimate the model residuals and regression coefficients, and
then simulate counterfactual data by adding back the model
residuals to a linear predictor that no longer contains the
confounder variables. Mechanistically, the causality-aware
inputs are calculated as follows:

1. Using the training set, estimate regression coefficients
and residuals from the linear regression model, X" =
T, A" + T, Y + W, using least squares, and
then estimate the counterfactual inputs,

~ tr ~tr

X, =Ty V" + Wy, ©)

where W'y = X" — Iy , A" — Iy, Y. (Note that

e Zr can also be computed as X ir = X"~ f‘; 4L AT

2. Using the test set, compute the counterfactual inputs,

X=Xt , A (7)

C

. . Nt . . ..
using the coefficients Iy 4 estimated in the training set.

. . ot
Once the training and test set counterfactual inputs, X CT

o ts o tr
and X _ , have been generated we can then use X . and Y'*"

"Pearl’s approach is comprised of the “abduction, action, pre-
diction” steps. In the context of linear models, they are imple-
mented as follows: (i) causal effects and residuals are estimated
in the “abduction” step; (ii) the causal graph is modified using an
atomic intervention of the type “do(Z = z)” in the “action” step;
and (iii) using the intervened graph and the quantities computed in
the abduction step, the new counterfactual variables are generated
in the “prediction” step. While the action step in Pearl’s approach
is enforced by an atomic intervention, in our approach it is based
on a soft intervention. The abduction and prediction steps are,
nonetheless, still the same.
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to train a linear learner, and then use X ZS to generate predic-
tions that are free from the influence, or at least impacted by
a lesser degree, by the observed confounders. Observe that
the calculation of the test set causality-aware inputs in eq.
(7) does not uses the test set output, Y'*s. Observe, as well,
that for large sample sizes, we have that the computation of
the test set inputs using eq. (7) is equivalent to computing

. g . ts < ts

the test set inputs using X :' =T ;Y Yis+ W ; since for
.t .t

large enough sample sizes we have that I’ ); a~T ; 4 (as-

suming that the effects are stable across the training and test
data) so that,

~ ts

s b s s ~ts s
X, =X" Ty A"~ X" T, A
=T, VW )

4. Results

Before we present the main results of this section (namely,
Theorems 2 and 3), we first present a few pre-requisite
results in Result 1 and Theorem 1. (The proofs of all results
are presented in Supplementary Section 2.)

Result 1. For centered data, the asymptotic MSE of (po-
tentially mispecified) regression models trained by least
squares is given by,

E[MSE] = Var(Y)—Cou(Y, X)Cov(X) 'Cov(X,Y).

Theorem 1. For an anticausal prediction task influenced
by a set of observed confounders A, the asymptotic cross-
covariances between Y and X ., X,., and A are given
respectively by,

CO’U(XC,Y) = FXY , (9)
Cov(X,,Y) = Txy(1—TysCov(A)TL,), (10)
Cov(A,Y) = T'yaCouv(A), (11)
while the covariances of X . and X, are given by,
Cov(X.) =Txy %y + Cov(Wx), (12)
Cov(X,) =Cov(X,)— (13)
—Txy TyaCov(A)T Ty .

Using Result 1 and Theorem 1 we can show the following.

Theorem 2. Let E[MSE,] and E[MSE,] represent the
expected MSE of (potentially mispecified) regression mod-
els trained with residualized and causality-aware adjusted
inputs, respectively. For an anticausal prediction task,
where training and test sets come from the same distri-

bution, and sample sizes tend to infinity we have that
E[MSE,] > E[MSE,).

The above result guarantees that the causality-aware ap-
proach dominates residualization under the particular con-
ditions described in Theorem 2. While we do not provide

analogous results for alternative metrics, models, or for clas-
sification tasks, the next result suggests that the causality-
aware approach will tend to outperform residualization for
linear learners outside the settings of Theorem 2.

Theorem 3. Under the conditions of Theorem 1, for each
element j of the vectors Cov(X ., Y) and Cov(X,,Y), we
have that |Cov(X, ;,Y)| > |Cov(X, ;,Y)|.

In the special case of a single confounder variable, A, equa-
tions (9) and (10) in Theorem 1 reduce to, Cov(X,,Y) =
Yxy and Cov(X,,Y) = 7., (1 —~+2 ), and the result in
Theorem 3 follows from,

|COU(X07Y)| = |’7Xy| > h’xy'(l_’y)%A) = ‘COU(XNYN )

since (1 — 73 ) < 1because v, , corresponds to the corre-

lation between the Y and A variables® and can only assume
values between -1 and 1.

Now, observe that under the assumption of the absence of
dataset shift between training and test sets, we conjecture
that the above result leads to a better performance by linear
learners trained with causality-aware inputs since Theorem
3 guarantees that for each input X, the linear association
between the counterfactual input, X. ;, and Y is always
stronger or equal than the linear association between the
residual input, X, ;, and Y. Since linear learners are only
able to leverage linear associations between the inputs and
the output for the predictions, it seems reasonable to expect
that a linear learner trained with causality-aware counter-
factual inputs will tend to outperform the respective learner
trained on the residualized inputs.

5. Synthetic data illustrations

Here, we present synthetic data illustrations of the points
in the previous section for both regression and classifica-
tion tasks. We evaluate predictive performance using mean
squared error (MSE) in the regression task experiments, and
accuracy (ACC) in the classification task experiments. We
first report in detail the results based on models containing
two inputs and 2 confounders, before presenting simulations
based on larger numbers of inputs. All experiments were
run in R (R Core Team, 2019).

5.1. Regression task experiments

To illustrate the regression tasks results we ran 2 experi-
ments, the first based on correctly specified models, and the
second based on mispecified models. In both experiments,

8Direct application of Wright’s method of path coefficients
(Wright, 1934) to the causal diagram A = X ==Y, shows
that the marginal correlations among these three variables can
be decomposed as Cor(A,Y) = v, ,, Cor(A, X) = v, +
Yy a Vxy> and Cor(X,Y) = vy, + Yy Yy in terms of path
coefficients.
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we simulated correlated error terms, W 4 and W x, from
bivariate normal distributions,

W%~Nz(<g) ’ <p1A plA)> ’
W3<~N2(<8) ’ (pi( plx)>'

In the first experiment, the confounders, output and input
variables were generated according to,

(14)

15)

A2 = jua, + WS, (16)
Y?=py + Bya, AT + Bya, A3+ Wy, (17)
X7 = px; + Bx;a, AT+ Bx;a, A3 + Bx,v YO+ Wx

(18)

while in the second (i.e., the mispecified case) they were
generated according to,

19)
(20)

Af =pa, + W3,
YO = py + Bya, AP + By a, ASZ+ WY,

X7 =px; + 5X;‘A1A(172 + ﬁXjAzAgz + BXJ‘YYOQ + W)ij

21

where j = 1,2 and W2 ~ N(0, 0%).

For each experiment, we performed 1,000 simulations as
follows:

1. Randomly sampled the simulation parameters from uni-
form distributions, with the intercept and slope param-
eters 1A, Ay Y > X By Ars By A5 Bx,vs Bx;Ars
and fx, 4, drawn from a U(—3,3) distribution; the
error variance, af,, drawn from a U(1, 3) distribution;
and the correlations p4 and px from a U(—0.8,0.8)
distribution.

2. Simulated the original data A°, Y°, and X ° using the
simulation parameters sampled in step 1, according to
the models in equations (16)-(18) in the first experi-
ment, and equations (19)-(21) in the second, and then
standardized the data to obtain A, Y, and X. (Each
simulated dataset was composed of 10,000 training and
10,000 test examples.)

3. For each simulated feature, X;, we generated the
respective residualized and causality-aware features
as described in Sections 3.3 and 3.4, and computed
Cov(X,;,Y) and Cov(X,;,Y).

4. Finally, we trained linear regression models using
the residualized and the causality-aware inputs, and
computed the respective test set mean squared errors,
MSE,. and MSE..

Figures 5 reports the results. Panels a and b illustrate the
result from Theorem 3, showing that |Cov(X,;,Y)| >
|Cov(X, ;,Y)| for both input variables X; and X5, while
panels d and e illustrate that the results still hold under model
mispecification. Panels ¢ and f show that MSE,. < MSE,,
illustrating the results from Theorem 2.
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Figure 5. Regression task experiments.

5.2. Classification task experiments

Similarly to in the previous subsection, we ran two exper-
iments. The first based on correctly specified models, and
the second based on mispecified models. In both experi-
ments, we simulated correlated input error terms, W x, as
described in eq. (15) and simulate correlated binary con-
founder variables from a bivariate Bernoulli distribution
(Dai et al., 2013), with probability density function,

al a a —a —ai)a —a l1—a
p(AT, A8) = pit ™ pi T ply
(22)
where p;; = P(A{ = i, A3 = j), and the covariance

between A and A is given by Cov( A9, A3) = p11poo —
Po1 P1o-

The binary output data Y ° was generated according to a lo-
gistic regression model where, P(Y° = 1| A = a1, A =
az) = 1/(1 + exp{—(py + Bya, a1 + By a, a2)}). For
the correctly specified experiments, the features X ?, j=
1,2, where generated according to X7 = ux; +08x;4, A7+
Bx;a, AS+ Bx;y YO+ W)"(j. For the incorrectly specified
experiments, on the other hand, the features were generated
as X7 = px; + Bx;va, YO AT + Bx,va, Y2 AS + Wg
containing only interaction terms between Af, and Y°.

As before each experiment was based on 1,000 replica-
tions with simulation parameters py, pix;, By a,» By A,»
Bx,v»> Bx;A,» Bx; 5> Bx;va,, and Bx;y 4, drawn from
a U(—3, 3) distribution; px ~ U(—0.8,0.8); and p11, p10,
po1, and pgo sampled by randomly splitting the interval
(0,1) into 4 pieces. For each simulated input we: gener-
ated the respective residualized and causality-aware inputs;
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trained logistic regression classifiers using the processed
features; and computed the respective test set classification
accuracies, ACC, and ACC..

Figure 6 reports the results. As before, panels a, b, d, and e
illustrate the result from Theorem 3. Panels ¢ and f provide
empirical evidence for our conjecture that the causality-
aware approach tends to outperform the residualization ad-
justment in classification tasks.

a) correct D)  correct C) correct
B B B B
°
_ o 0o _ o] o g o | 3
;t o °° ;t o o"o o
= °, [N o, o
< < o o]
o = o o« ~ L
<3 o] <3 o] <ol
o o
=] <] |
T LU ST T T T T 1 ST T I T T 1
00 Q4 0.8 0.0 Q4 0.8 05 07 0.9
[Cov(Xr,1,Y)| ICov(Xr2,Y)| ACC,
d) mispecified €) mispecified ) mispecified
- 2| = o : 2- 3
= [N K S
3 S
X X O °
o < o < ~
<§ ST <§ ER g < s e
=] <] v
° T USLEUNEL ST T T T T 1 ST T T T T 1
0.0 .4 0.8 0.0 4 0.8 0.5 0.7 0.9
ICov(Xr,1,Y)I ICov(Xr2,Y)| ACC,

Figure 6. Classification task experiments.

5.3. Simulation experiments on larger dimensions

Here, we present further simulation experiments based on
models trained with larger number of inputs. The synthetic
data was generated as described in the previous subsections,
except that the input error terms were sampled according
to W$ ~ N,(0,3X), where the ijth entry of X is given by
1 fori = j, and by pl*=7| fori # j,and p = 1,...,10
represents the number of inputs.

Figure 7 reports the results for both correctly specified and
mispecified regression and classification models. In all pan-
els, the x-axis represents the number of inputs, while the
y-axis represents AMSE = MSE, — MSE, in panels
aand b, and AACC = ACC, — ACC, in panels ¢ and
d. Note that positive AM ET RIC values indicates a bet-
ter performance of the causality-aware approach. The red
horizontal line is set at 0.

In accordance with Theorem 2, panels a and b show that the
causality-aware approach tended to dominated residualiza-
tion for regression tasks trained with regression models and
evaluated with the MSE metric. Panels c and d show that
while the residualization produced slightly higher ACCs
than the causality-aware adjustment on a small fraction of
the simulated data sets (note how some of that AACC val-
ues are slightly below the red line, especially in panel d),
the causality-aware approach outperformed the residualiza-
tion adjustment on the majority of the simulations. These
experiments again provide empirical evidence for the better

(&)  regression (correct)

1

T -7
Tffrf*frrf T T ‘r‘

ﬁﬁﬁﬁﬂ ﬁ

MSE, - MSE,
06 0
CI:J
CI:J
- L]
:I:J
CD
ED
-
CD
{:Ij
MSE, - MSE,
06 08

0.4
|
0.4

w \\\\ w \“
2] Vo @ o
B R | B b
Rt ln :
o II '!g l o L;t‘tilt‘t
T 1T 17T T T T 1T T T T T 1T 17T T T T
123 456 7 89 123456789

number of inputs number of inputs

(€) _classification (correct) (d)classification (mispecified)

0.30
0.30

° o
- o ° ° o - o 8

go o 8§ o ©° ; ° :: go . ;s ’ 8
N I R R R T R R R
(] ° s 8
€ 1 1“” TR '
bel i B 1[ bl l l

[SIpS [Ss Co v
3| 3| [ A
g DQQQQQQQQQ g lc
e T T T T T 1 © T T T T T T T T
1 2 3 4 5 6 7 8 9 1 2 3 456 7 8
number of inputs number of inputs

Figure 7. Results from additional experiments.

performance of the causality-aware adjustment.

Finally, observe that all simulations reported in this section
were based in large sample sizes. Supplementary Section 3
reports the results for the same experiments based on smaller
sample sizes (training and test sets containing 100 examples
each). The causality-aware approach still tended to outper-
form (although it no longer dominated) the residualization
approach in this setting too (see Supplement).

6. Real data illustrations

We also compared these approaches using real data from the
Parkinson’s Disease (PD) Digital Biomarker Dream Chal-
lenge (Sieberts et al, 2021). We build classifiers of disease
status (i.e., PD vs non-PD) adjusted for age confounding,
using 23 distinct feature datasets submitted by participants
of the challenge (these feature sets were extracted from raw
accelerometer data using distinct signal processing tech-
niques or deep learning models to automatically learn the
features from the raw data). Each available feature set was
processed using the causality-aware and residualization ad-
justments. Figure 8 reports the results from logistic regres-
sion classifiers trained on 100 distinct i.i.d. training/test data
splits (with 2,772 samples equally split between train/test
sets). In all 23 experiments, the causality-aware approach
outperformed residualization in terms of AUROC. See Sup-
plementary Section 4 for further details.



Causality-aware vs linear residualization in anticausal prediction tasks

09— 1 . . s
B= &= B
0.8 = & : .
Q P <
Qo7 ~ 'm=8, B 4!
B TTLoLE ot
2 iy
0.6 T M
i e
0.5 . o
residualization
4 causality—aware
’ rTrrr 717 17T T 1T T T T T T T T T T TTT
NANNDOONMNMEHOWDOOOOWITONNO
BN GnRINNESEERo BRGNS ISR
BB YY I I ITITINSIITIIIIFISS
€O O O O W WO O W WO WO W WO O W W W W W W W W WO
DO OO
feature sets submitted to the challenge
Figure 8. Real data illustrations.
7. Stability results

So far, our investigations have focused on the case where
there is no dataset shift between the training and test sets. In
this section, we show that the causality-aware approach is
more stable than residualization under dataset shifts of the
joint distribution of the confounders and outcome variables
generated by selection mechanisms. The stability prop-
erties of the causality-aware approach were presented in
(Chaibub Neto, 2020) where it was shown that the expected
MSE of the causality-aware approach does not depend on
Cov(A"™,Y"), and, therefore, is stable w.r.t. dataset shifts
in this quantity. The next result shows that this is not the
case for the residualization approach.

Theorem 4. For an anticausal prediction task influenced
by a set of observed confounders A, we have that, con-
trary to the causality-aware approach, the linear residual-
ization approach is not stable with respect to dataset shifts
in Cov( A" Y?®), when the predictive performance is mea-
sured by MSE.

See Supplementary Section 2 for the proof. Because dataset
shifts in Cov(A",Y**) caused by selection mechanisms
are commonly observed in real word applications, this ob-
servation has important practical implications.

Next, we illustrate this result in a couple of synthetic data
experiments. For simplicity, we generate data from the toy
model in Figure 9, where the double arrow represents an
association generated by a selection mechanism, and where
Cov(A,Y)=0ay,Var(A) =caa,and Var(Y) = oyy.
As shown in Supplementary Section 2, the expected MSE
for the residualization approach is given by,

E[MSE,] = Var(Y'") + (B2 Var(XL®)—
— 2B Cov(XE, V")

where both,
2 ts \2
Var(XE®) = % + fy ol — Xy (74v) (;’AY) , (23)
0AA
ts \2
Cov(X)°,Y") = Bxy 0¥y — W%Y) ;@
OAA

are still functions of oy, showing that the expected MSE
of the residualization approach will be unstable w.r.t. shifts
in Cov( A Y?)°.

In our experiments, we generated dataset shift in P(A4,Y")
by varying Cov(A,Y) = oay, Var(A) = oaa, and
Var(Y) = oyy between the training and test sets. We,
nonetheless, use the same values of 8x 4, Bxy, and ag( in
the generation of the training and test features, so that only
the joint distribution P(A,Y") differs between the training
and test sets (while P(X | A,Y) is stable).

We performed two stability ex-
periments. In the first we kept 5 @ oAy
Var(Y'*) constant across the test N4
sets, while in the second we let @ @
ts Bxy
Var(Y*®) vary across the test sets.
Each experiment was based in .
.. . Figure 9.
1,000 replications. In our first sim-

ulation experiment, for each replication we:

1. Sampled the causal effects Sxy and Sxa from a
U (-3, 3) distribution, and the training set covariance
o'fy from a U(—0.8, 0.8) distribution.

2. Generated training data (n = 10,000) by first sam-
pling,

Atr 1 tr
(Yt'r‘> NN2 ((8) 9 (O'ZY O-?Y)> ) (25)

and then generating X'" = Bx 4 A" +fxy Y"+UY
with U4 ~ N(0,1).

3. Generated 9 distinct test sets, where each test set
dataset (n = 10, 000) was generated by first sampling,

At 0 UtASA Uffy
()~ () - (e %)) o

and then generating X'* = Bx 4 A"+ fxy Y+ U¥
with U% ~ N(0,1). In order to generate dataset
shifts, the covariances between A*® and Y** and the
variances of A' were set, respectively, to o', =

For the causality-aware approach, on the other hand, we
have that Var(X!*) = 0% + Bxy 0%y and Cov(X 5 Y™) =
Bxy 0%y, so that the expected MSE, E[M SE.] = Var(Y"*) +
(BZT)QVar(XES) — 2BZTCOU(X§S,Y“) does not depend on
Cov(A™,Y").
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{-0.8,-0.6,-0.2,0,0.2,0.4,0.6,0.8} and o%, =
{1.00,1.25,1.50, 1.75, 2.00, 2.25, 2.50, 2.75, 3.00}
across the 9 distinct test sets, while the variance of Y},
was fixed at oyy = 1.

4. Processed the training and the test features as described
in Sections 3.3 and 3.4 to generate the residualized and
causality-aware inputs.

5. Trained regression models using the residualized and
causality-aware inputs and evaluated the performance
of each of the trained models on each of the 9 test sets.

Figure 10 reports the results and clearly shows that while
the predictive performance of the causality-aware approach
was stable across the test sets, the residualization approach
was fairly unstable. Panel b shows the results of the first 3
simulations in more detail. Each line presents the MSE of
the same trained model across the 9 distinct test sets, show-
ing that the residualization results (red lines) vary widely
across the test sets, while the causality-aware (blue lines)
are fairly stable. Panel c reports the distributions of stability
error (i.e., the standard deviation of the MSE scores across
the 9 test sets) for both approaches.

(a) residualization (b) —— example 1 8 — ©)
causality-aware ° !

15
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Figure 10. Stability illustrations, with fixed Var(Y**).

Because the expected MSE of any approach will, in general,
depend on the variance of Y'** we performed an additional
simulation study (Figure 11) where the data was gener-
ated as before except that we varied Var(Y**) according to
{1.00,1.25,1.50, 1.75, 2.00, 2.25, 2.50, 2.75, 3.00} across
the 9 test sets. The results show that, while M SE, also
changed across the test sets, the causality-aware approach is
still much more stable than residualization.

These observations suggest that, in safety-critical applica-
tions where large shifts in performance are concerning, and
where stability is a desirable property, the causality-aware
adjustment is again more appropriate than residualization'?.

00bserve that we do not compare the causality-aware approach
against alternative stable prediction approaches because the ap-
proaches proposed by Kuang et al. (2018; 2020) are tailored to
causal prediction tasks, rather than to anticausal ones. Note, as
well, that while counterfactual normalization (Subbaswamy et al.,
2018) can also be applied in anticausal tasks, we have that its
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Figure 11. Stability illustrations, with increasing Var(Y*).

8. Final remarks

In this paper, we compare linear residualization against
the causality-aware confounding adjustment. In situations
where the training and test sets come from the same distribu-
tion, our results suggest that the causality-aware approach
outperforms residualization. In situations where the training
and test sets are shifted due to selection biases, we show
that the causality-aware approach generates more stable
predictions than the linear residualization adjustment.

Our main goal in this paper was to show how a more prin-
cipled, causality-inspired approach, can better handle con-
founding in comparison with a widely used ad hoc statistical
adjustment approach. Given that confounding is a causal
concept, its is not really surprising that a causality-inspired
approach will outperform a purely statistical one. In any
case, we believe that this point is not well appreciated by
the larger ML community (outside causality experts) and by
researchers in applied fields, which still make use of linear
residualization. In anticausal ML applications where a lin-
ear model provides an adequate fit to the data, there is really
no good reason to keep using linear residualization (given
that the causality-aware approach does not require known-
ledge about how the input variables are causally related, and
that its implementation is as trivial as the implementation of
residualization).

Finally, we point out that even though the causality-aware
approach also outperforms the residualization technique
when the true data generation process for the inputs cannot
be adequately modeled by a linear model, the causality-
aware adjustment might still fail to fully deconfound the
predictions in applications for which linear models are not
really adequate. In Supplementary Section 5 we describe
a simple approach (Chaibub Neto et al., 2019) that can be
used to evaluate the adjustment’s effectiveness, and provides
an useful sanity check to determine if more sophisticated
adjustments are necessary.

application to the particular model used in our simulations would
produce identical results as the causality-aware adjustment (since
the counterfactual X (A = @), used by the counterfactual normal-
ization method as the stable set for predicting Y, corresponds to

causality-aware input X* = X — Bx 4 A in our example).
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