
Incentivizing Compliance with Algorithmic Instruments

A. Theorems and Lemmas
Theorem A.1. (Chernoff Bound for unbounded sub-Gaussian random variables) Let X1, . . . , Xn be independent sub-
Gaussian random variables with parameter σ. Let X = 1

n

∑n
i=1Xi. For all ε > 0,

P
[∣∣X∣∣ ≥ ε] ≤ exp

{
−nε2

2σ2

}
.

Corollary A.2. (High probability bound on the sum of unbounded sub-Gaussian random variables) For any δ ∈ (0, 1),
with probability at least 1− δ, ∣∣X∣∣ < σ

√
2 log(1/δ)

n
Theorem A.3. (Chernoff/Hoeffding’s inequality) Let X1, . . . , Xn be independent and bounded random variables such that
a ≤ Xi ≤ b for all i. Then

P

[
1

n

n∑
i=1

Xi − E[Xi] ≥ ε

]
≤ exp

(
−2nε2

(b− a)2

)
Corollary A.4. (High probability upper bound on the sum of bounded random variables) For any δ ∈ (0, 1), with probability
at least 1− δ,

E[X]− 1

n

n∑
i=1

Xi ≤ (b− a)

√
log(1/δ)

2n
,

where Xi ∈ [a, b] for all i from 1 to n.
Lemma A.5. (Cauchy-Schwarz Inequality) For any n-dimensional vectors u, v ∈ Rn, the L2−norm of the inner product of
u and v is less than or equal to the L2−norm of u times the L2−norm of v, i.e.

‖〈u, v〉‖2 ≤ ‖u‖2 · ‖v‖2 .

Alternatively, for any m× n-dimensional matrices A ∈ Rm×n and n-dimensional vector v ∈ Rn, the L2−norm of the dot
product of A and v is less than or equal to the spectral norm of A times the L2−norm of v, i.e.

‖Av‖2 ≤ ‖A‖2 · ‖v‖2 .

Theorem A.6. (Matrix Chernoff) Consider a finite sequenceXk of independent, random, self-adjoint matrices with common
dimension d. Assume that:

0 ≤ λmin(Xk) and λmax(Xk) ≤ ω for each index k.

Introduce the random matrix Y =
∑
kXk. Define the minimum eigenvalue µmin and maximum eigenvalue µmax of the

expectation E[Y ].

µmin = λmin {E[Y ]} = λmin

{∑
k

E[Xk]

}
, and

µmax = λmax {E[Y ]} = λmax

{∑
k

E[Xk]

}
Then, for θ > 0,

E[λmin(Y )] ≥ 1− e−θ

θ
µmin −

1

θ
L log d, and

E[λmax(Y )] ≤ eθ − 1

θ
µmax +

1

θ
L log d

Furthermore,

P[λmin(Y ) ≤ (1− ε)µmin] ≤ d
[

e−ε

(1− ε)1−ε

]µmin/ω

for ε ∈ [0, 1)

P[λmax(Y ) ≤ (1 + ε)µmax] ≤ d
[

eε

(1 + ε)1+ε

]µmax/ω

for ε ≥ 0
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Theorem A.7. (Union bound): For a countable set of events A1, A2, . . . , we have

P

[⋃
i

Ai

]
≤
∑
i

P(Ai)

B. IV Estimator Proof for Control-Treatment Setting
Recall that our reward model can be stated as the following equation:

yi = θxi + g
(ui)
i (13)

To analyze the Wald estimator, we introduce two conditional probabilities that an agent chooses the treatment given a
recommendation γ̂0 and γ̂1, given as proportions over a set of n samples (xi, zi)

n
i=1 and formally defined as

γ̂0 = P̂
(xi,zi)ni=1

[xi = 1|zi = 0] =

∑n
i=1 xi(1− zi)∑n
i=1(1− zi)2

and γ̂1 = P̂
(xi,zi)ni=1

[xi = 1|zi = 1] =

∑n
i=1 xizi∑n
i=1 z

2
i

Then, we can write the action choice xi as such:

xi = γ̂1zi + γ̂0(1− zi) + ηi

= γ̂zi + γ̂0 + ηi

where ηi = xi − γ̂1zi − γ̂0(1 − zi) and γ̂ = γ̂1 − γ̂0 is the in-sample compliance coefficient. Now, we can rewrite the
reward yi as

yi = θ (γ̂zi + γ̂0 + ηi) + g
(ui)
i

= θ γ̂︸︷︷︸
β

zi + θγ̂0 + θηi + g
(ui)
i

Let operator ·̄ denote the sample mean, e.g. ȳ := 1
n

∑n
i=1 yi and ḡ := 1

n

∑n
i=1 g

(ui)
i . η̄ = 1

n

∑n
i=1 ηi = 0, by definition.

Then,

ȳ = βz̄ + θγ̂0 + θη̄ + ḡ + ε̄

Thus, the centered reward and treatment choice at round i are given as:
yi − ȳ = θ(xi − x̄) + g

(ui)
i − ḡ

yi − ȳ = β(zi − z̄) + θ(ηi − η̄) + g
(ui)
i − ḡ

xi − x̄i = γ̂(zi − z̄) + ηi − η̄
(14)

This formulation of the centered reward yi − ȳ allows us to express and bound the error between the treatment effect θ and
its instrumental variable estimate θ̂S , which we show in the following Theorem 2.1.

Theorem 2.1 (Finite-sample error bound for Wald estimator). Let z1, z2, . . . , zn ∈ {0, 1} be a sequence of instru-
ments. Suppose there is a sequence of n agents such that each agent i has their private type ui drawn indepen-
dently from U , selects action xi under instrument zi, and receives reward yi. Let sample set S = (xi, yi, zi)

n
i=1. Let

A : ({0, 1}n × {0, 1}n × Rn)→ R denote the approximation bound for set S, such that

A(S, δ) :=
2σg
√

2n log(2/δ)

|
∑n
i=1(xi − x̄)(zi − z̄)|

and the Wald estimator given by (3) satisfies ∣∣∣θ̂S − θ∣∣∣ ≤ A(S, δ)

with probability at least 1− δ, for any δ ∈ (0, 1).
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Proof. Given a sample set S = (xi, yi, zi)
n
i=1 of size n, we form an estimate of the treatment effect θ̂S via a Two-Stage

Least Squares (2SLS). In the first stage, we regress yi − ȳ onto zi − z̄ to get the empirical estimate β̂S and xi − x̄ onto
zi − z̄ to get γ̂S as such:

β̂S :=

∑n
i=1(yi − ȳ)(zi − z̄)∑n

i=1(zi − z̄)2
and γ̂S :=

∑n
i=1(xi − x̄)(zi − z̄)∑n

i=1(zi − z̄)2
(15)

In the second stage, we take the quotient of these two empirical estimates as the predicted treatment effect θ̂S , i.e.

θ̂S =
β̂S
γ̂S

=

(∑n
i=1(yi − ȳ)(zi − z̄)∑n

i=1(zi − z̄)2

)( ∑n
i=1(zi − z̄)2∑n

i=1(xi − x̄)(zi − z̄)

)
=

∑n
i=1(yi − ȳ)(zi − z̄)∑n
i=1(xi − x̄)(zi − z̄)

(16)

Next, we can express the absolute value of the difference between the true treatment effect θ and the IV estimate of the
treatment effect θ̂S given a sample set S of size n as such:

∣∣∣θ̂S − θ∣∣∣ =

∣∣∣∣∑n
i=1(yi − ȳ)(zi − z̄)∑n
i=1(xi − x̄)(zi − z̄)

− θ
∣∣∣∣

=

∣∣∣∣∣∣
∑n
i=1

(
θ(xi − x̄) + g

(ui)
i − ḡ

)
(zi − z̄)∑n

i=1(xi − x̄)(zi − z̄)
− θ

∣∣∣∣∣∣ (by Equation (14))

=

∣∣∣∣∣∣θ +

∑n
i=1

(
g

(ui)
i − ḡ

)
(zi − z̄)∑n

i=1(xi − x̄)(zi − z̄)
− θ

∣∣∣∣∣∣
=

∣∣∣∑n
i=1

(
g

(ui)
i − ḡ

)
(zi − z̄)

∣∣∣
|
∑n
i=1(xi − x̄)(zi − z̄)|

(17)

In order to complete our proof, we demonstrate an upper bound on the numerator

∣∣∣∣∣
n∑
i=1

(
g

(ui)
i − ḡ

)
(zi − z̄)

∣∣∣∣∣ of Equation (17)

in the last line above. We do so in Lemma B.1.

Lemma B.1. For all δ ∈ (0, 1), with probability at least 1− δ, we have

∣∣∣∣∣
n∑
i=1

(
g

(ui)
i − ḡ

)
(zi − z̄)

∣∣∣∣∣ ≤ 2σg
√

2n log(2/δ) (18)

if the set of g(ui)
i are i.i.d. sub-Gaussian random variables with sub-Gaussian norm σg .
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Proof. We can rewrite the left hand side as follows∣∣∣∣∣
n∑
i=1

(
g

(ui)
i − ḡ

)
(zi − z̄)

∣∣∣∣∣
=

∣∣∣∣∣
n∑
i=1

(
g

(ui)
i − E[g(u)] + E[g(u)]− ḡ

)
(zi − z̄)

∣∣∣∣∣
=

∣∣∣∣∣
n∑
i=1

(
g

(ui)
i − E[g(u)]

)
zi −

n∑
i=1

(
g

(ui)
i − E[g(u)]

)
z̄ +

n∑
i=1

(
E[g(u)]− ḡ

)
(zi − z̄)

∣∣∣∣∣
=

∣∣∣∣∣
n∑
i=1

(
g

(ui)
i − E[g(u)]

)
zi −

n∑
i=1

(
g

(ui)
i − E[g(u)]

)
z̄

∣∣∣∣∣ (since
∑n
i=1(zi − z̄) = 0)

≤

∣∣∣∣∣
n∑
i=1

(
g

(ui)
i − E[g(u)]

)
zi

∣∣∣∣∣+

∣∣∣∣∣
n∑
i=1

(
g

(ui)
i − E[g(u)]

)∣∣∣∣∣ (by the triangle inequality and |z̄| ≤ 1)

Now, if g(ui)
i is sub-Gaussian, then the last line in the system of inequalities above is given as:∣∣∣∣∣

n∑
i=1

(
g

(ui)
i − E[g(u)]

)
zi

∣∣∣∣∣+

∣∣∣∣∣
n∑
i=1

(
g

(ui)
i − E[g(u)]

)∣∣∣∣∣
≤
∣∣∣σg√2n1 log(1/δ1)

∣∣∣+
∣∣∣σg√2n log(1/δ2)

∣∣∣ (by Corollary A.2, where n1 :=
∑n
i=1 zi)

≤ 2σg
√

2n log(2/δ) (since n1 ≤ n and by Theorem A.7, where δ1 = δ2 = δ/2)

This recovers the stated bound and finishes the proof for Theorem 2.1.

Next, we demonstrate a lower bound on the denominator of Theorem 2.1, in terms of the level of compliance at each phase
of Algorithms 1 and 2.

Theorem B.2 (Lower bound on |
∑n
i=1(xi − x̄)(zi − z̄)| for a type 0 compliant sample set). Let S = (xi, yi, zi)

n
i=1 denote

a sample set which satisfies the conditions of Theorem 2.1. Furthermore, assume that there are pc fraction of agents in
the population who would be compliant. Recall that z̄ = 1

n

∑n
i=1 zi and x̄ = 1

n

∑n
i=1 xi. Then, the denominator of the

approximation bound A(S, δ) (from Theorem 2.1) is lower bounded as such:∣∣∣∣∣
n∑
i=1

(xi − x̄)(zi − z̄)

∣∣∣∣∣ ≥
{
nz̄(1− z̄) if pc = 1 (i.e. if all agents are compliant);

nz̄(1− z̄)pc − (3− z̄)
√

nz̄ log(3/δ)
2(1−z̄) with probability at least 1− δ for any δ ∈ (0, 1) otherwise.

Proof. In this theorem, we formulate the denominator of the approximation bound in Theorem 2.1 in terms of z̄, since z̄
is determined by the social planner. For any type u, let u ∈ Uc denote that agents of type u comply; let u ∈ U0 denote
that agents of type u are never-takers (agents which prefer control, according to their prior); and let u ∈ U1 denote that
agents of type u are always-takers (agents which prefer treatment, according to their prior). Let p0 and p1 be the fractions of
never-takers and always-takers, respectively.

Next, we expand the binomial in the denominator and arrive at the following simplified form:

∣∣∣∣∣
n∑
i=1

(xi − x̄)(zi − z̄)

∣∣∣∣∣ =

∣∣∣∣∣
n∑
i=1

xizi − z̄
n∑
i=1

xi − x̄
n∑
i=1

zi + z̄x̄

∣∣∣∣∣ =

∣∣∣∣∣
n∑
i=1

xizi − nz̄x̄

∣∣∣∣∣ (19)

First, observe that at any round i, the product xi = 1 only when agent i is a non-compliant always-taker or when zi = 1 and
agent i is compliant. Formally, for any agent i, action choice xi = 1 is equivalent to the following:

xi = 1 ≡ (zi = 1 ∧ ui ∈ Uc) ∨ (ui ∈ U1 ∧ ui 6∈ Uc) (20)
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Then, the sum
∑n
i=1 xi can be expressed as follows:

n∑
i=1

xi =

n∑
i=1

1 [(zi = 1 ∧ ui ∈ Uc) ∨ (ui ∈ U1 ∧ ui 6∈ Uc)]

=

n∑
i=1

1 [(zi = 1 ∧ ui ∈ Uc] +

n∑
i=1

1 [ui ∈ U1 ∧ ui 6∈ Uc]

=

(
n∑
i=1

zi

)
(p̂c:zi=1 + np̂nc1)

= n (z̄p̂c:zi=1 + p̂nc1) (21)

where we define p̂c:zi=1 as the empirical proportion of agents with types in Uc when the recommendation z = 1 and
p̂nc1 as the empirical proportion of non-compliant always-takers. Formally, p̂c:zi=1 = 1

n

∑n
i=1 1[ui ∈ Uc, zi = 1] and

p̂nc1 = 1
n

∑n
i=1 1[ui ∈ U1 ∧ ui 6∈ Uc]. Define pnc1 to be the proportion of non-compliant always-takers in the population

of agents. Then, in expectation over the randomness of how agents arrive, E[p̂c:zi=1] = pc and E[p̂nc1] = pnc1.

Next, we rewrite the sum
∑n
i=1 xizi in terms of z̄ and some population constants. Observe that at any round i, the product

xizi = 1 only when both xi = 1 and zi = 1. Thus, by Equation (20), for any agent i, the event xizi = 1 is equivalent to the
following:

xizi = 1 ≡ zi = 1 ∧ ((zi = 1 ∧ ui ∈ Uc) ∨ (ui ∈ U1 ∧ ui 6∈ Uc))
≡ zi = 1 ∧ (ui ∈ Uc ∨ (ui ∈ U1 ∧ ui 6∈ Uc))

Then, the sum
∑n
i=1 xizi can be expressed as follows:

n∑
i=1

xizi =

n∑
i=1

1 [zi = 1 ∧ (ui ∈ Uc ∨ (ui ∈ U1 ∧ ui 6∈ Uc))]

=

(
n∑
i=1

1[zi = 1]

)
(p̂c|zi=1 + p̂nc1|zi=1)

= nz̄ (p̂c:zi=1 + p̂nc1:zi=1) (22)

where we define p̂nc1:zi=1 as the empirical proportions of non-compliant always-takers who arrive when zi = 1 —
i.e. p̂nc1:zi=1 = 1

n

∑n
i=1 1[ui ∈ U1 ∧ ui 6∈ Uc, zi = 1]. In expectation over the randomness of how agents arrive,

E[p̂nc1:zi=1] = pnc1.
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Finally, by Equations (19), (21) and (22), we can provide a high probability lower bound on the denominator as such:∣∣∣∣∣
n∑
i=1

(xi − x̄)(zi − z̄)

∣∣∣∣∣ =

∣∣∣∣∣
n∑
i=1

xizi − nz̄x̄

∣∣∣∣∣ (by Equation (19))

=

∣∣∣∣∣
n∑
i=1

xizi − nz̄x̄

∣∣∣∣∣ (by Equation (19))

= |nz̄ (p̂c:zi=1 + p̂nc1:zi=1)− nz̄ (z̄p̂c:zi=1 + p̂nc1)| (by Equations (21) and (22))
= |nz̄ ((1− z̄)p̂c:zi=1 + p̂nc1:zi=1 − p̂nc1)|

≥

∣∣∣∣∣nz̄
(

(1− z̄)

(
pc −

√
log(1/δ1)

2nz̄

)
+ pnc1 −

√
log(1/δ2)

2nz̄
−

(
pnc1 +

√
log(1/δ3)

2n

))∣∣∣∣∣
(by Theorem A.3)

≥

∣∣∣∣∣nz̄
(

(1− z̄)pc − (1− z̄)
√

log(3/δ)

2nz̄
−
√

log(3/δ)

2nz̄
−
√

log(3/δ)

2n

)∣∣∣∣∣
(by Theorem A.7 where δ1 = δ2 = δ3 = δ/3)

≥

∣∣∣∣∣nz̄
(

(1− z̄)pc − (3− z̄)
√

log(3/δ)

2nz̄

)∣∣∣∣∣
= nz̄(1− z̄)pc − (3− z̄)

√
nz̄ log(3/δ)

2(1− z̄)

with probability at least 1− δ for any δ ∈ (0, 1).

C. Missing Proofs for Section 3
Claim C.1. For any agent t at round t with recommendation policy πt with a positive probability of recommending either
control or treatment, according to the prior P(ut), i.e. Pπt,P(ut) [zt = 0] > 0 and Pπt,P(ut) [zt = 1] > 0. Furthermore,
a(u) and b(u) denote the initially preferred and unpreferred actions for any type u, i.e. a(u) := 1[EP(u) [θ] ≥ 0] and
b(u) := 1[EP(u) [θ] < 0]. Formally, the following holds:{

(−1)a
(ut)

E
πt,P(ut)

[θ|zt = b(ut)] P
πt,P(ut)

[zt = b(ut)] ≥ 0

}
⇒

{
(−1)b

(ut)

E
πt,P(ut)

[θ|zt = a(ut)] P
πt,P(ut)

[zt = a(ut)] < 0

}

Proof. Note that a(u) is defined in such a way that (−1)a
(u)

EP(u) [θ] < 0 always: if agents of type u prefer initially control,
then a(u) = 0 and (−1)a

(u)

EP(u) [θ] = EP(u) [θ] < 0; if agents of type u initially prefer treatment, then a(u) = 1 and
(−1)a

(u)

EP(u) [θ] = −EP(u) [θ] < 0. Then,

Recall that we assume that type 0 agents prefer the control, i.e. the expected treatment effect E
P(0)

[θ] < 0. Then:

(−1)a
(ut)

E
πt,P(ut)

[θ|zt = b(ut)] P
πt,P(ut)

[zt = b(ut)]− (−1)b
(ut)

E
πt,P(ut)

[θ|zt = a(ut)] P
πt,P(ut)

[zt = a(ut)]

= (−1)a
(ut)

E
πt,P(ut)

[θ|zt = b(ut)] P
πt,P(ut)

[zt = b(ut)] + (−1)a
(ut)

E
πt,P(ut)

[θ|zt = a(ut)] P
πt,P(ut)

[zt = a(ut)]

= (−1)a
(ut)

E
πt,P(ut)

[θ] < 0.

Therefore, given that both Pπt,P(ut) [zt = 0] > 0 and Pπt,P(ut) [zt = 1] > 0 and, by assumption, (−1)a
(ut) Eπt,P(ut) [θ|zt =

b(ut)]Pπt,P(ut) [zt = b(ut)] ≥ 0, then it must be that (−1)b
(ut) Eπt,P(ut) [θ|zt = a(ut)]Pπt,P(ut) [zt = a(ut)] < 0.
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C.1. Algorithm 1 Proofs and Extension 1

Lemma 3.2 (Type 0 compliance with Algorithm 1). Under Assumption 3.1, any type 0 agent who arrives in the last `
rounds of Algorithm 1 is compliant with any recommendation, as long as the exploration probability ρ satisfies

ρ ≤ 1 +
4µ(0)

PP(0) [ξ]− 4µ(0)
(5)

where the event ξ is defined above in Equation (4).

Proof. Let the event ξ = ξ(0) (as given by Definition C.2). By Lemma C.3, if ρ satisfies the following condition, then any
type 0 agent will comply with any recommendation of the last ` rounds of Algorithm 1:

ρ ≤ 1 +
4µ(0)

PP(0) [ξ(0)]− 4µ(0)
(23)

Definition C.2 (Extension 1 of Algorithm 1). Here, we formalize the recommendation policy of Extension 1 in Section 3.1,
which modifies Algorithm 1 in two ways:

1. We redefine event ξ as ξ(u) such that it is relative to any type u, defined as follows:

ξ(u) =

ȳ1 > ȳ0 + σg

√2 log(2/δ)

`0
+

√
2 log(2/δ)

`1

+G(ut) +
1

2

 , (24)

where G(ut) is an upper bound on the difference between the prior mean of the treatment versus the control according
to type u, i.e. G(ut) > EP(u) [g1 − g0], and where EP(u) [g0] and EP(u) [g1] are the expected baseline rewards for initial
never-takers and always-takers.

2. If we are trying to incentivize compliance for always-takers, then those agents in the exploration setE are recommended
control (rather than treatment, as described in the pseudocode for Algorithm 1).

Lemma C.3 (Arbitrary Type Compliance with Extension 1 of Algorithm 1). Under Assumption 3.1, any type ut agent
who arrives at round t in the last ` rounds of Extension 1 of Algorithm 1 (given in Definition C.2) is compliant with any
recommendation zt, as long as the exploration probability ρ satisfies:

ρ ≤ 1 +
4µ(ut)

Pπt,P(ut) [ξ(ut)]− 4µ(ut)
(25)

where the event ξ(ut) is defined in Definition C.2.

Proof. This proof follows a similar structure to the Sampling Stage BIC proof in (Mansour et al., 2015).

We will prove compliance for any type u in the more general Extension 1 of Algorithm 1, as given in Definition C.2, which
admits arbitrarily many types and the option to incentivize initial always-takers, instead of initial never-takers, to comply.

Let recommendation policy π be that described in Definition C.2, i.e. Extension 1 of Algorithm 1 which admits arbitrarily
many types and allows for the exploration recommendations to be given in order to incentivize initial always-takers, instead
of initial never-takers, to comply. Throughout this proof, we will assume that the exploration set E is defined relative to the
initial preference of any agent of type ut, who we are proving compliance for.

According to the selection function in Equation (2), if any agent t expects the treatment effect θ to be positive, they will
select the treatment xt = 1. Conversely, if they expect the treatment effect θ to be negative, they will select control xt = 0.
Thus, for any agent of type ut at round t, proving compliance entails the expected treatment effect θ over the prior of type
ut and policy πt is positive given that the recommendation zt = 1 and negative given that the recommendation zt = 0, i.e.

E
πt,P(ut)

[θ|zt = 1] ≥ 0 and E
πt,P(ut)

[θ|zt = 0] < 0.
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Next, we show that we can reduce our proof to demonstrating only one of the above statements, depending on the
prior preference of type u. Let a(u) and b(u) denote the prior preferred and unpreferred actions for any type u, i.e.
a(u) := 1[EP(u) [θ] ≥ 0] and b(u) := 1[EP(u) [θ] < 0]. Because policy π (Algorithm 1 extension) is designed in a such
way that at any round t in the last ` rounds, treatment or control is recommended each with positive probability —i.e.
Pπt,P(ut) [zt = 1] > 0 and Pπt,P(ut) [zt = 0] > 0,— Claim C.1 applies and the following holds:

{
(−1)a

(ut)

E
πt,P(ut)

[θ|zt = b(ut)] P
πt,P(ut)

[zt = b(ut)] ≥ 0

}
⇒

{
(−1)b

(ut)

E
πt,P(ut)

[θ|zt = a(ut)] P
πt,P(ut)

[zt = a(ut)] < 0

}
.

Thus, at round t, in order to prove compliance for agents of type ut with prior preferred and unpreferred actions a(ut)

and b(ut), respectively, it suffices to demonstrate that (−1)a
(ut) Eπt,P(ut) [θ|zt = b(ut)]Pπt,P(ut) [zt = b(ut)] ≥ 0. The

remainder of the proof is devoted to demonstrating this.

We first rewrite E
πt,P(ut)

[θ|zt = b(ut)] P
πt,P(ut)

[zt = b(ut)] in terms of the event ξ(ut):

E
πt,P(ut)

[θ|zt = b(ut)] P
πt,P(ut)

[zt = b(ut)]

= E
πt,P(ut)

[θ|zt = b(ut) & t 6∈ E] P
πt,P(ut)

[zt = b(ut) & t 6∈ E] + E
πt,P(ut)

[θ|zt = b(ut) & t ∈ E] P
πt,P(ut)

[zt = b(ut) & t ∈ E]

(for explore set E defined to recommend action b(ut))

= E
πt,P(ut)

[θ|ξ & t 6∈ E] P
πt,P(ut)

[ξ & t 6∈ E] + E
πt,P(ut)

[θ|zt = b(ut) & t ∈ E] P
πt,P(ut)

[zt = b(ut) & t ∈ E]

(since the only way zt = b(ut) when exploiting (i.e. when t 6∈ E) is when event ξ occurs)

= E
πt,P(ut)

[θ|ξ & t 6∈ E] P
πt,P(ut)

[ξ & t 6∈ E] + E
πt,P(ut)

[θ|t ∈ E] P
πt,P(ut)

[t ∈ E], (t ∈ E ⇒ zt = 1 by definition of E)

= E
πt,P(ut)

[θ|ξ] P
πt,P(ut)

[ξ] P
πt,P(ut)

[t 6∈ E] + E
πt,P(ut)

[θ] P
πt,P(ut)

[t ∈ E] (since θ ⊥ t ∈ E and ξ ⊥ t 6∈ E)

= (1− ρ) E
πt,P(ut)

[θ|ξ] P
πt,P(ut)

[ξ] + ρ E
πt,P(ut)

[θ] (since agent t ∈ E with probability ρ)

= (1− ρ) E
πt,P(ut)

[θ|ξ] P
πt,P(ut)

[ξ] + ρµ(u) (by definition, E
πt,P(ut)

[θ] = E
P(ut)

[θ] = µ(u)) (26)

Now, we can rewrite our compliance condition as such:

(−1)a
(ut)

E
πt,P(ut)

[θ|zt = b(ut)] P
πt,P(ut)

[zt = b(ut)] ≥ 0 ≡ (−1)a
(ut)

(
(1− ρ) E

πt,P(ut)

[θ|ξ] P
πt,P(ut)

[ξ] + ρµ(u)

)
≥ 0.

Now, we rewrite this compliance condition strictly in terms of the exploration probability ρ and relative to a number of
constants which depend on the prior P(ut). Thus, if we set ρ to satisfy the following condition (in Equation (27)), then all
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agents of type u will comply with recommendations from policy π (Algorithm 1 extension):

(−1)a
(ut)

E
πt,P(ut)

[θ|zt = b(ut)] P
πt,P(ut)

[zt = b(ut)] ≥ 0

(−1)a
(ut)

(
(1− ρ) E

πt,P(ut)

[θ|ξ(ut)] P
πt,P(ut)

[ξ(ut)] + ρµ(ut)

)
≥ 0 (by Equation (26))

(−1)a
(ut)

(
E

πt,P(ut)

[θ|ξ(ut)] P
πt,P(ut)

[ξ(ut)]− ρ E
πt,P(ut)

[θ|ξ(ut)] P
πt,P(ut)

[ξ(ut)] + ρµ(ut)

)
≥ 0

(−1)a
(ut)+1

ρ

(
E

πt,P(ut)

[θ|ξ(ut)] P
πt,P(ut)

[ξ(ut)]− µ(ut)

)
≥ (−1)a

(ut)+1

E
πt,P(ut)

[θ|ξ(ut)] P
πt,P(ut)

[ξ(ut)]

ρ ≤ Eπt,P(ut) [θ|ξ(ut)]Pπt,P(ut) [ξ
(ut)]

Eπt,P(ut) [θ|ξ(ut)]Pπt,P(ut) [ξ(ut)]− µ(0)

(since (−1)a
(ut)+1

ρ
(
Eπt,P(ut) [θ|ξ(ut)]Pπt,P(ut) [ξ

(ut)]− µ(ut)
)
< 0 for any ut17)

ρ ≤ 1 +
µ(ut)

Eπt,P(ut) [θ|ξ(ut)]Pπt,P(ut) [ξ(ut)]− µ(ut)
(27)

Finally, we can further simplify the upper bound on ρ given in Equation (27) above by showing that Eπt,P(ut) [θ|ξ(ut)]
satisfies some constant lower bound. This will complete our proof.

For any type u, the baseline reward g(u) is a random variable independently distributed according to a sub-Gaussian
distribution with variance σ(u) which is bounded above by σg, i.e. σ(u) < σg for any u. Furthermore, recall that
G(ut) > EPut [g1 − g0], where EPut [g1] and EPut [g0] are the expected value of the baseline rewards of always-takers and
never-takers over the prior of type ut, respectively.

Now, we define 3 clean events: C0 and C1 pertain to these baseline reward random variables, and C2 occurs when the first
stage of Algorithm 1 generates at least `0 control samples and at least `1 treatment samples:

C0 :=

ȳ0 =
1∑`

t=1 1[µ(ut) < 0]

∑̀
t=1

g(ut)1[µ(ut) < 0] ≤ σg

√
2 log(1/δ0)

`0
− E
πt,P(ut)

[g0]

 (28)

C1 :=

ȳ1 =
1∑`

t=1 1[µ(ut) > 0]

∑̀
t=1

g(ut)1[µ(ut) > 0] ≥ −σg

√
2 log(1/δ1)

`1
− E
πt,P(ut)

[g1]

 (29)

C2 :=

`1 ≤
`′∑
i=1

xi ≤ `′ − `0

 (30)

where `′ = 2 max(`0/p0, `1/p1) is the number of rounds in the first stage of Algorithm 1. Let δ0 = δ1 = Pπt,P(ut) [ξ
(ut)]/24.

Furthermore, event C2 occurs when the binomial random variable with success ut = xt = 1 (since xt = ut in the first stage of
Algorithm 1) and success probability p1 is lower bounded by `1 and upper bounded by `′−`0. For `′ = 2 max(`0/p0, `1/p1)
total trials, the probability of this event is less than Pπt,P(ut) [ξ

(ut)]/24.

Now, define another clean event C where all C0, C1, and C2 happen simultaneously. Letting δ = δ0 + δ1 + δ2, the event C
occurs with probability at least 1− δ where δ < P

πt,P(ut)

[ξ(ut)]/8. We can now rewrite Eπt,P(ut) [θ|ξ(ut)]Pπt,P(ut) [ξ
(ut)] in

17This point is not entirely obvious: If a(ut) = 0, then (−1)a
(ut)+1

< 0 and Eπt,P(ut) [θ|ξ(ut)] − µ(ut) > 0, since

Eπt,P(ut) [θ|ξ(ut)] > 0 and µ(ut) < 0. If a(ut) = 1, then (−1)a
(ut)+1

> 0 and Eπt,P(ut) [θ|ξ(ut)] − µ(ut) < 0, since

Eπt,P(ut) [θ|ξ(ut)] < 0 and µ(ut) > 0.



Incentivizing Compliance with Algorithmic Instruments

terms of event C:

E
πt,P(ut)

[θ|ξ(ut)] P
πt,P(ut)

[ξ(ut)] = E
πt,P(ut)

[θ|ξ(ut), C] P
πt,P(ut)

[ξ(ut), C] + E
πt,P(ut)

[θ|ξ(ut),¬C] P
πt,P(ut)

[ξ(ut),¬C]

≥ E
πt,P(ut)

[θ|ξ(ut), C] P
πt,P(ut)

[ξ(ut), C]− δ

(since Pπt,P(ut) [¬C] < δ and θ ≥ −1 by definition)

≥ E
πt,P(ut)

[θ|ξ(ut), C]

(
P

πt,P(ut)

[ξ(ut)]− P
πt,P(ut)

[¬C]

)
− δ

≥ E
πt,P(ut)

[θ|ξ(ut), C]

(
P

πt,P(ut)

[ξ(ut)]− δ

)
− δ

= E
πt,P(ut)

[θ|ξ(ut), C] P
πt,P(ut)

[ξ(ut)]− δ

(
1 + E

πt,P(ut)

[θ|ξ(ut), C]

)
≥ E
πt,P(ut)

[θ|ξ(ut), C] P
πt,P(ut)

[ξ(ut)]− 2δ (since E
πt,P(ut)

[θ|ξ(ut), C] ≤ 1) (31)

This comes down to finding a lower bound on the denominator of the expression above. We can reduce the dependency of
the denominator to a single prior-dependent constant Pπt,P(ut) [ξ

(ut)] if we lower bound the prior-dependent expected value
Eπt,P(ut) [θ|ξ(ut)]. That way, assuming we know the prior and can calculate the probability of event ξ(ut), we can pick an
appropriate exploration probability ρ to satisfy the compliance condition for all agents of type 0. Then:

E
πt,P(ut)

[θ|ξ(ut), C]

= E
πt,P(ut)

θ
∣∣∣∣∣∣ȳ1 > ȳ0 + σg

√2 log(1/δ)

`0
+

√
2 log(1/δ)

`1

+G(ut) +
1

2
, C


≥ E
πt,P(ut)

θ
∣∣∣∣∣∣θ > 1

`0

`0∑
t=1

g0 − 1

`1

`1∑
t=1

θ + σg

√2 log(1/δ)

`0
+

√
2 log(1/δ)

`1

+G(ut) +
1

2
, C


= E
πt,P(ut)

θ
∣∣∣∣∣∣θ > −

(
E

πt,P(ut)

[g0]− σg

√
2 log(1/δ1)

`0

)
+ E
πt,P(ut)

[g1]− σg

√
2 log(1/δ2)

`1

+ σg

√2 log(1/δ)

`0
+

√
2 log(1/δ)

`1

+G(ut) +
1

2
, C

 (by event C)

= E
πt,P(ut)

θ
∣∣∣∣∣∣θ > −σg

√2 log(2/δ)

`0
−

√
2 log(2/δ)

`1

+ E
πt,P(ut)

[g1 − g0] + σg

√2 log(2/δ)

`0
+

√
2 log(2/δ)

`1

+G(ut) +
1

2
, C


(by Theorem A.7, where δ1 = δ2 = δ/2)

> E
πt,P(ut)

[
θ

∣∣∣∣∣θ > E
πt,P(ut)

[g1 − g0]− E
πt,P(ut)

[g1 − g0] +
1

2

]
(by definition of G(ut))

>
1

2
(32)
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Hence, the term Eπt,P(ut) [θ|ξ(ut)]Pπt,P(ut) [ξ
(ut)] satisfies the following lower bound:

E
πt,P(ut)

[θ|ξ(ut)] P
πt,P(ut)

[ξ(ut)] ≥ E
πt,P(ut)

[θ|ξ(ut), C] P
πt,P(ut)

[ξ(ut)]− 2δ (by Equation (31))

>
1

2
P

πt,P(ut)

[ξ(ut)]− 2δ (by Equation (32))

=
Pπt,P(ut) [ξ

(ut)]

4
+

Pπt,P(ut) [ξ
(ut)]

4
− 2δ

>
Pπt,P(ut) [ξ

(ut)]

4
(since δ < Pπt,P(ut) [ξ

(ut)]/8)

Substituting this into Equation (27), we arrive at a lower bound to set the exploration probability ρ for the agent any round t
with type ut to comply with recommendation policy πt (extension of Algorithm 1):

ρ ≤ 1 +
4µ(ut)

Pπt,P(ut) [ξ(ut)]− 4µ(ut)

Theorem 3.3 (Treatment Effect Confidence Interval after Algorithm 1). With sample set S` = (xi, yi, zi)
`
i=1 of ` samples

collected from the second stage of Algorithm 1 —run with exploration probability ρ small enough so that type 0 agents are
compliant (see Lemma 3.2),— approximation bound A(S`, δ) satisfies the following, with probability at least 1− δ:

A(S`, δ) ≤
2σg
√

2 log(5/δ)

ρ(1− ρ)p0

√
`− (3− ρ)

√
ρ log(5/δ)

2(1−ρ)

for any δ ∈ (0, 1). Recall σg is the variance of g(ui), p0 is the fraction of compliant never-takers in the population of
agents,18and A(S`, δ) is defined as in Theorem 2.1.

Proof. First, Theorem 2.1 demonstrates, for any δ1 ∈ (0, 1), with probability at least 1− δ1 that the approximation bound

|θ − θ̂S` | ≤ A(S`, δ) =
2σg
√

2` log(2/δ1)∣∣∣∑`
i=1(xi − x̄)(zi − z̄)

∣∣∣ . (33)

Next, recall that the mean recommendation z̄ = ρ for exploration probability ρ in the second stage of Algorithm 1. We
assume Algorithm 1 to be initialized with parameters (see Lemma 3.2 for details) such that its recommendations are
compliant for agents of type 0. In the worst case, only type 0 agents are compliant. Therefore, Theorem B.2 implies that, for
any δ2 ∈ (0, 1), with probability at least 1− δ2 that∣∣∣∣∣∑̀

i=1

(xi − x̄)(zi − z̄)

∣∣∣∣∣ ≥ ρ`
(
p0(1− ρ)−

√
(1− ρ) log(1/δ2)

2`

)
. (34)

With a union bound over Equations (33) and (34) while letting δ1 = δ2 = δ
3 for any δ ∈ (0, 1), we conclude: with probability

at least 1− δ,

A(S`, δ) ≤
2σg
√

2` log(3/δ)

ρ`

(
p0(1− ρ)−

√
(1−ρ) log(3/δ)

2`

) =
2σg
√

2 log(3/δ)

ρ

(
p0(1− ρ)

√
`−

√
(1−ρ) log(3/δ)

2

)
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D. Missing Proofs for Section 4
D.1. Algorithm 2 Proofs

Lemma 4.2 (Algorithm 2 Partial Compliance). Recall that Algorithm 2 is initialized with input samples S0 = (xi, yi, zi)
|S0|
i=1 .

For any type u with the following prior preference (control or treatment), if S0 satisfies the following condition, with
probability at least 1− δ, then all agents of type u will comply with recommendations of Algorithm 2:

A(S0, δ) ≤

{
τ PP(u) [θ > τ ]/4 if EP(u) [θ] < 0;

τ PP(u) [θ < −τ ]/4 if EP(u) [θ] ≥ 0,

for some τ ∈ (0, 1), where A(S0, δ) is the approximation bound for S0 and any δ ∈ (0, 1) (see Theorem 2.1).

Proof. Just as in the proof for Lemma C.3, let a(u) and b(u) denote the prior preferred and unpreferred actions for agents of
any type u, i.e. a(u) := 1[EP(u) [θ] ≥ 0] and b(u) := 1[EP(u) [θ] < 0]. Let π denote the recommendation policy defined by
Algorithm 2. At any round t of Algorithm 2, recommendation policy πt has a positive probability of recommending either
control or treatment, according to the prior P(ut) for type ut, i.e. Pπt,P(ut) [zt = 0] > 0 and Pπt,P(ut) [zt = 1] > 0. Thus,
by Claim C.1, the following holds:{

(−1)a
(ut)

E
πt,P(ut)

[θ|zt = b(ut)] P
πt,P(ut)

[zt = b(ut)] ≥ 0

}
⇒

{
(−1)b

(ut)

E
πt,P(ut)

[θ|zt = a(ut)] P
πt,P(ut)

[zt = a(ut)] < 0

}

and it suffices to prove the premise (−1)a
(ut) EP(ut),πt [θ|zt = b(ut)]PP(ut),πt [zt = b(ut)] ≥ 0 in order to prove that agent t

of type ut complies with recommendation zt.

Recall that the sample set SBEST
q is made up of the best samples up until phase q of Algorithm 2, i.e. the samples which

produce the smallest approximation bound Aq. The treatment effect estimate derived from set SBEST
q is denoted θ̂q. We

define the event C as the event that the treatment effect estimate θ̂q satisfies the approximation bound Aq at every phase q
throughout Algorithm 2:

C :=
{
∀q ≥ 0 : |θ − θ̂q| < Aq

}
. (35)

By Theorem 2.1, for event C, the failure probability P[¬C] ≤ δ. Furthermore, we assume here that

δ ≤


τ P

πt,P(ut)
[θ≥τ ]

2(τ P
πt,P(ut)

[θ≥τ ]+1) if µ(ut) < 0;

τ P
πt,P(ut)

[θ<−τ ]

2(τ P
πt,P(ut)

[θ<−τ ]+1) if µ(ut) ≥ 0.

Therefore, since |θ| ≤ 1, we have:

(−1)a
(ut)

E
P(ut),πt

[θ|zt = b(ut)] P
P(ut),πt

[zt = b(ut)]

= (−1)a
(ut)

(
E

P(ut),πt

[θ|zt = b(ut), C] P
P(ut),πt

[zt = b(ut), C] + E
P(ut),πt

[θ|zt = b(ut),¬C] P
P(ut),πt

[zt = b(ut),¬C]

)

≥ (−1)a
(ut)

(
E

P(ut),πt

[θ|zt = b(ut), C] P
P(ut),πt

[zt = b(ut), C]− (−1)a
(ut)

δ

)

≥ (−1)a
(ut)

(
E

P(ut),πt

[θ|zt = b(ut), C] P
P(ut),πt

[zt = b(ut), C]

)
−

τ Pπt,P(ut) [θ ≥ τ ]

2τ Pπt,P(ut) [θ ≥ τ ] + 2

In order to lower bound the last line above, we marginalize EP(ut),πt [θ|zt = b(ut), C]PP(ut),πt [zt = b(ut), C] based on four
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possible ranges which θ lies on:

E
P(ut),πt

[θ|zt = b(ut), C] P
P(ut),πt

[zt = b(ut), C]

= E
πt,P(ut)

[θ|zt = b(ut), C, (−1)a
(ut)

θ ≥ τ ] P
πt,P(ut)

[zt = b(ut), C, (−1)a
(ut)

θ ≥ τ ]

+ E
πt,P(ut)

[θ|zt = b(ut), C, 0 ≤ (−1)a
(ut)

θ < τ ] P
πt,P(ut)

[zt = b(ut), C, 0 ≤ (−1)a
(ut)

θ < τ ]

+ E
πt,P(ut)

[θ|zt = b(ut), C,−2Aq < (−1)a
(ut)

θ < 0] P
πt,P(ut)

[zt = b(ut), C,−2Aq < (−1)a
(ut)

θ < 0]

+ E
πt,P(ut)

[θ|zt = b(ut), C, (−1)a
(ut)

θ ≤ −2Aq] P
πt,P(ut)

[zt = b(ut), C, (−1)a
(ut)

θ ≤ −2Aq]

(36)

Because Aq is the smallest approximation bound derived from samples collected over any phase q of Algorithm 2 (including
the initial sample set S0), the following holds:

2Aq ≤ 2A(S0, δ)

≤
τ Pπt,P(ut) [(−1)a

(ut)

θ ≥ τ ]

2
(by assumption A(S0, δ) ≤ τ Pπt,P(ut) [(−1)a

(ut)

θ ≥ τ ]/4)

≤ τ

Conditional on C, |θ − θ̂q| < Aq. Thus, if (−1)a
(ut)

θ ≥ τ ≥ 2Aq, then (−1)a
(ut)

θ̂q ≥ τ − Aq ≥ Aq, which invokes the
stopping criterion for the while loop in Algorithm 2. Thus, type ut’s preferred action a(ut) must have been eliminated
from the race before phase q = 1 and the unpreferred action b(ut) is recommended almost surely throughout Algorithm 2,
i.e. Pπt,P(ut) [zt = b(ut), C, (−1)a

(ut)

θ ≥ τ ] = Pπt,P(ut) [C, (−1)a
(ut)

θ ≥ τ ]. Similarly, if (−1)a
(ut)

θ ≤ −2Aq, then

(−1)a
(ut)

θ̂q ≤ −Aq by phase q = 1 and the unpreferred action b(ut) is recommended almost never, i.e. Pπt,P(ut) [zt =
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b(ut), C, (−1)a
(ut)

θ < −2Aq] = 0. Substituting in these probabilities, we proceed:

(−1)a
(ut)

E
P(ut),πt

[θ|zt = b(ut), C] P
P(ut),πt

[zt = b(ut), C]

=(−1)a
(ut)

(
E

πt,P(ut)

[θ|C, (−1)a
(ut)

θ ≥ τ ] P
πt,P(ut)

[C, (−1)a
(ut)

θ ≥ τ ]

+ E
πt,P(ut)

[θ|zt = b(ut), C, 0 ≤ (−1)a
(ut)

θ < τ ] P
πt,P(ut)

[zt = b(ut), C, 0 ≤ (−1)a
(ut)

θ < τ ]

+ E
πt,P(ut)

[θ|zt = b(ut), C,−2Aq < (−1)a
(ut)

θ < 0] P
πt,P(ut)

[zt = b(ut), C,−2Aq < (−1)a
(ut)

θ < 0]

)

≥ (−1)a
(ut)

(
(−1)a

(ut)

τ P
πt,P(ut)

[C, (−1)a
(ut)

θ ≥ τ ] + 0 · P
πt,P(ut)

[zt = b(ut), C, 0 ≤ (−1)a
(ut)

θ < τ ]

−(−1)a
(ut)

2Aq P
πt,P(ut)

[zt = b(ut), C,−2Aq < (−1)a
(ut)

θ < 0]

)

≥ (−1)a
(ut)

(
(−1)a

(ut)

τ P
πt,P(ut)

[C, (−1)a
(ut)

θ ≥ τ ]− (−1)a
(ut)

2Aq

)

≥ τ P
πt,P(ut)

[C, (−1)a
(ut)

θ ≥ τ ]−
τ Pπt,P(ut) [(−1)a

(ut)

θ ≥ τ ]

2

≥ τ P
πt,P(ut)

[C|(−1)a
(ut)

θ ≥ τ ] P
πt,P(ut)

[(−1)a
(ut)

θ ≥ τ ]−
τ Pπt,P(ut) [(−1)a

(ut)

θ ≥ τ ]

2

≥ (1− δ)τ P
πt,P(ut)

[(−1)a
(ut)

θ ≥ τ ]−
τ Pπt,P(ut) [(−1)a

(ut)

θ ≥ τ ]

2

=

(
1

2
− δ
)
τ P
πt,P(ut)

[(−1)a
(ut)

θ ≥ τ ]

≥

(
1

2
−

τ Pπt,P(ut) [(−1)a
(ut)

θ ≥ τ ]

2τ Pπt,P(ut) [(−1)a(ut)θ ≥ τ ] + 2

)
τ P
πt,P(ut)

[(−1)a
(ut)

θ ≥ τ ]

=
τ Pπt,P(ut) [(−1)a

(ut)

θ ≥ τ ]

2τ Pπt,P(ut) [(−1)a(ut)θ ≥ τ ] + 2

Putting everything together, we get that

(−1)a
(ut)

E
P(ut),πt

[θ|zt = b(ut)] P
P(ut),πt

[zt = b(ut)]

≥ (−1)a
(ut)

(
E

P(ut),πt

[θ|zt = b(ut), C] P
P(ut),πt

[zt = b(ut), C] + E
P(ut),πt

[θ|zt = b(ut),¬C] P
P(ut),πt

[zt = b(ut),¬C]

)

≥
τ Pπt,P(ut) [(−1)a

(ut)

θ ≥ τ ]

2τ Pπt,P(ut) [(−1)a(ut)θ ≥ τ ] + 2
−

τ Pπt,P(ut) [(−1)a
(ut)

θ ≥ τ ]

2τ Pπt,P(ut) [(−1)a(ut)θ ≥ τ ] + 2

= 0

Therefore, so long as A(S0, δ) ≤ τ Pπt,P(ut) [(−1)a
(ut)

θ ≥ τ ]/4 and δ < τ Pπt,P(ut) [(−1)a
(ut)

θ ≥ τ ]/2, any agent of type
ut will comply with recommendations from Algorithm 2.



Incentivizing Compliance with Algorithmic Instruments

D.2. Lemma D.1 and Theorem D.2: Full Compliance and Subsequent Estimation Bound

Lemma D.1 (Algorithm 2 Full Compliance). Suppose that some fraction pc > 0 of agents is compliant from the beginning
of Algorithm 2 and assume that pc < 1. Of all types u which were not compliant from the beginning, let type u∗ agents be
the most resistant to compliance. Suppose that phase q satisfies one of the following bounds (depending on whether type u∗

agents prefer control or treatment):

q ≥


(

1
2hpc

(
(32σg
√

2 log(5/δ)

τ PP(u∗) [θ>τ ] +
√

50 log(5/δ)

))2

if EP(u∗) [θ] < 0(
1

2hpc

(
(32σg
√

2 log(5/δ)

τ PP(u∗) [θ<−τ ] +
√

50 log(5/δ)

))2

if EP(u∗) [θ] ≥ 0,

for some τ ∈ (0, 1) and any δ ∈ (0, 1). Then, with probability at least 1 − δ, for any phase q greater or equal to the
following lower bound all agents will comply with recommendations from Algorithm 2.

Proof. First, recall that the set Sq is made up of the input samples S0 plus samples collected following Algorithm 2 over all
phases up to q. Let Sq−0 = (xi, yi, zi)

2hq
i=1 denote Sq sans S0 (i.e. just samples collected following Algorithm 2 up to phase

q). Note that for any δ ∈ (0, 1), the approximation bound Aq ≤ A(Sq−0, δ).

We want to prove that type u∗ is compliant by and beyond phase q. By Lemma 4.2, it suffices to prove that the approximation
bound Aq satisfies the following upper bound with probability at least 1− δ:19{

Aq ≤ τ PP(u∗) [θ > τ ]/4 if EP(u∗) [θ] < 0;

Aq ≤ τ PP(u∗) [θ < −τ ]/4 if EP(u∗) [θ] ≥ 0,

for any δ ∈ (0, 1) and some τ ∈ (0, 1).

In order to prove this, recall that each phase q of Algorithm 2 is 2hq rounds long and the mean recommendation z̄ = 1
2 . By

assumption, pc proportion of agents are compliant. Thus, by Theorem B.2, with probability 1− δ for any δ ∈ (0, 1), the set
Sq−0 satisfies:

A(Sq−0, δ) ≤
8σg
√

2 log(3/δ)

pc
√
|Sq−0| −

√
log(3/δ)

By assumption, q satisfies the following lower bound for some τ ∈ (0, 1):

q ≥


(

1
2hpc

(
(32σg
√

2 log(5/δ)

τ PP(u∗) [θ>τ ] +
√

50 log(5/δ)

))2

if EP(u∗) [θ] < 0(
1

2hpc

(
(32σg
√

2 log(5/δ)

τ PP(u∗) [θ<−τ ] +
√

50 log(5/δ)

))2

if EP(u∗) [θ] ≥ 0,

Substituting these lower bound values for q in A(Sq−0, δ), we get that the approximation bound Aq satisfies the following
inequalities (since Aq ≤ A(Sq−0, δ)):

Aq ≤ A(Sq−0, δ) ≤

{
τ PP(u∗) [θ > τ ]/4 if EP(u∗) [θ] < 0;

τ PP(u∗) [θ < −τ ]/4 if EP(u∗) [θ] ≥ 0.

Finally, after Algorithm 2 has become compliant for both types of agents, we achieve the following accuracy guarantee for
the final treatment estimate θ̂S .

19Lemma 4.2 doesn’t exactly state this: it states that any type u will be compliant if the input samples S0 satisfy the above bounds. Yet,
we can simply imagine that phase q is . Proving compliance starting from any phase q > 0 is just the same as proving compliance from
phase 0. Intuitively, you can imagine we simply run Algorithm 2 starting at phase q initialized with the samples collected up until phase q.
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Theorem D.2 (Treatment Effect Confidence Interval from Algorithm 2 with Full Compliance). Suppose sample set
S = (xi, yi, zi)

|S|
i=1 is collected from Algorithm 2 during |S| rounds when all agents comply. We form estimate θ̂S of the

treatment effect θ. For any δ ∈ (0, 1), with probability at least 1− δ,∣∣∣θ̂S − θ∣∣∣ ≤ 8σg

√
2 log(2/δ)

|S|

Proof. We assume Algorithm 2 is initialized and allowed to run long enough such that both types 0 and 1 become compliant
at some point. From samples S = (xi, yi, zi)

|S|
i=1 collected during these rounds (from i to |S|)), we form an estimate θ̂S of

the treatment effect θ. By Theorem 2.1, this estimate satisfies the following bound with probability at least 1− δ for any
δ ∈ (0, 1):

|θ̂S − θ| ≤ A(S, δ) =
2σg
√

2|S| log(2/δ)∣∣∣∑|S|i=1(xi − x̄)(zi − z̄)
∣∣∣ . (37)

Recall that z̄ = 1
2 throughout Algorithm 2. Then, by Theorem B.2, the denominator of the bound in Equation (37) above

satisfies the following bound: ∣∣∣∣∣∣
|S|∑
i=1

(xi − x̄)(zi − z̄)

∣∣∣∣∣∣ ≥ |S|4 . (38)

Therefore, by Equations (37) and (38), the confidence interval |θ̂S − θ| satisfies the following upper bound:

|θ̂S − θ| ≤ 8σg

√
2 log(2/δ)

|S|

D.3. Proof of Lemma 5.2

Lemma 5.2 (Lower bound on ` for Type u Compliance in Algorithm 2). Recall that S` denotes the samples collected from
the second stage of Algorithm 1. Let S` be the input samples S0 in Algorithm 2. Assume that pc1 proportion of agents in the
population are compliant with recommendations of Algorithm 1 and length ` satisfies:

` ≥


(

κ1
τ PP(u) [θ>τ ]

+ κ2

)2
if E
P(u)

[θ] < 0(
κ1

τ PP(u) [θ<−τ ]
+ κ2

)2
if E
P(u)

[θ] ≥ 0
(6)

for some τ ∈ (0, 1) and where κ1 :=
8σg
√

2 log(5/δ)

pc1ρ(1−ρ)
and κ2 := (3− ρ)

√
ρ log(5/δ)

2(1−ρ) for any δ ∈ (0, 1). Then any agent of
type u will comply with recommendations of Algorithm 2.

Proof. By assumption, Algorithm 1 is initialized so that agents of type 0 comply and we collect S` samples from the second
stage. Then, for any δ ∈ (0, 1) and some τ ∈ (0, 1), approximation bound A(S`, δ) satisfies:

A(S`, δ) ≤
2σg
√

2 log(3/δ)

ρ

(
p0(1− ρ)

√
`−

√
(1−ρ) log(3/δ)

2

) (by Theorem 3.3)

≤
2σg
√

2 log(3/δ)

ρ

(
p0(1− ρ)

(
8σg
√

2 log(3/δ)

p0ρ(1−ρ)τ PP(0) [θ>τ ] +

√
(1−ρ) log(3/δ)

2p0(1−ρ)

)
−
√

(1−ρ) log(3/δ)
2

) (by Equation (6))

≤ τ PP(0) [θ > τ ]

4

Thus, by Lemma 4.2, if we let the samples S` collected from the second stage of Algorithm 1 be the input samples S0 in
Algorithm 2, i.e. S0 = S`, then that agents of type 0 will comply with recommendations of Algorithm 2.
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D.3.1. RACING STAGE FIRST PART ESTIMATION BOUND

Theorem 4.3 (Treatment Effect Confidence Interval from Algorithm 2 with Partial Compliance). With set S = (xi, yi, zi)
|S|
i=1

of |S| samples collected from Algorithm 2 where pc is the fraction of compliant agents in the population, we form an estimate
θ̂S of the treatment effect θ. With probability at least 1− δ,∣∣∣θ̂S − θ∣∣∣ ≤ 8σg

√
2 log(5/δ)

pc
√
|S| −

√
50 log(5/δ)

for any δ ∈ (0, 1), where σg is the variance of g(ui).

Proof. First, Theorem 2.1 demonstrates, for any δ1 ∈ (0, 1), with probability at least 1− δ1 that the approximation bound

|θ − θ̂S | ≤ A(S, δ) =
2σg
√

2|S| log(2/δ1)∣∣∣∑`
i=1(xi − x̄)(zi − z̄)

∣∣∣ . (39)

Next, recall that the mean recommendation z̄ = 1
2 throughout Algorithm 2. We assume Algorithm 2 to be initialized with

parameters such that its recommendations are compliant for agents of type 0. In the worst case, only type 0 agents are
compliant. Therefore, Theorem B.2 implies that, for any δ2 ∈ (0, 1), with probability at least 1− δ2 that∣∣∣∣∣∣

|S|∑
i=1

(xi − x̄)(zi − z̄)

∣∣∣∣∣∣ ≥ |S|4
(
p0 −

√
log(1/δ2)

|S|

)
. (40)

With a union bound over Equations (39) and (40) while letting δ1 = δ2 = δ
3 for any δ ∈ (0, 1), we conclude: with probability

at least 1− δ,

A(S, δ) ≤
8σg
√

2 log(3/δ)

p0

√
|S| −

√
log(3/δ)

E. Missing Regret Proofs for Section 5
E.1. Pseudo-regret Proof

Lemma 5.4 (Pseudo-regret). The pseudo-regret accumulated from policy πc is bounded for any θ ∈ [−1, 1] as follows, with
probability at least 1− δ for any δ ∈ (0, 1):

Rθ(T ) ≤ L1 +O(
√
T log(T/δ)) (8)

for sufficiently large time horizon T , where the length of Algorithm 1 is L1 = `+ 2 max
(
`0
p0
, `1p1

)
.

Proof. Recall that the clean event C, as defined in the proof of Lemma 4.2, entails that the approximation bound over all
rounds. If event C fails (i.e. ¬C holds), then the pseudo-regret may only be bounded by the maximum possible value, which
is at most T |θ|.

Assume now that C holds for every round L2 in Algorithm 2. Then, the absolute value of the treatment |θ| ≤ |θ̂SL2
| +

A(SL2
, δ) where A(SL2

, δ) is the approximation bound based on the samples SL2
collected from L2 rounds of Algorithm 2.

Before the stopping criterion of Algorithm 2 is invoked, we also have |θ̂SL2
| ≤ A(SL2

, δ). Hence, the treatment effect
absolute value satisfies the following inequalities:

|θ| ≤ 2A(SL2
, δ) ≤

16σg
√

2 log(5T/δ)

pc2
√
L2 −

√
50 log(5T/δ)
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Assuming that L2 ≥ 200 log(5T/δ)
p2c2

, then pc2
√
L2 −

√
50 log(5T/δ) ≥ pc2

√
L2

2 and, to carry on:

|θ| ≤
32σg

√
2 log(5T/δ)

pc2
√
L2

⇒ L2 ≤
2048σ2

g log(5T/δ)

p2
c2 |θ|2

Therefore, a winner is declared —i.e. the treatment effect is definitively either positive or not— by the following round of
Algorithm 2:

L∗2 =
2048σ2

g log(5T/δ)

p2
c2 |θ|2

After this, the winner is recommended for the remainder of the rounds and (because we assume event C holds) no regret is
accumulated for the remaining rounds (until time horizon T ).

Note that, by the length the assumption that L2 ≥ 200 log(5T/δ)
p2c2

holds trivially for L∗2 if |θ| ≤ 16σg
5 . Otherwise, we simply

assume that L2 ≥ 200 log(5T/δ)
p2c2

holds. We may incorporate this bound into a necessary lower bound on the time horizon T ,

such that we assume T ≥ L1 + L2 ≥ L1 + 200 log(5T/δ)
p2c2

.

Now, we demonstrate the amount of regret accumulated during these n∗ rounds of Algorithm 2 before a winner is declared.
During each phase Algorithm 2, each control and treatment each get recommended n∗/2 times.

Furthermore, recall that pc2 fraction of agents are compliant throughout all rounds of Algorithm 2. Without loss of generality,
assume that these agents initially prefer control and the rest of the 1− pc2 fraction of agents prefer treatment (and do not
comply). Then, if the treatment θ < 0, then in expectation over the randomness of the arrival of agents, the regret is on
average (1− pc2/2)|θ|. Then, the total accumulated regret throughout Algorithm 2 in policy πc is given as such:

R2(T ) ≤
2048(1− pc2/2)σ2

g log(5T/δ)

p2
c2 |θ|

(41)

On the other hand, if treatment θ ≥ 0, then on average, the regret for each phase is pc2 |θ|/2, then the total accumulated
regret for Algorithm 2 is given:

R2(T ) ≤
1024σ2

g log(5T/δ)

pc2 |θ|
(42)

Observe that the pseudo-regret for each round t of the policy πc over the entire T rounds is at most that of Algorithm 2 plus
|θ| per round of Algorithm 1. Recall that, by policy πc, there are L1 total rounds of Algorithm 1. Alternatively, we can also
upper bound the total pseudo-regret by |θ| per each round. Therefore, the total accumulated pseudo-regret for policy πc once
we reach the time horizon T is bounded as follows.

If the treatment effect θ ≥ 0, then the total regret of policy πc satisfies the following bound with probability at least 1− δ,

for any δ ∈ (0, 1) which satisfies the condition that L1 ≥
2
√

log(5T/δ)

pc2
:

R(T ) ≤ min

{
L1ρ|θ|+

1024σ2
g log(5T/δ)

pc2 |θ|
, T |θ|

}
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We can solve for |θ| in terms of T at the point when T |θ| is the better regret:

T |θ| =
1024σ2

g log(5T/δ)

pc2 |θ|

⇒ |θ|2 =
1024σ2

g log(5T/δ)

pc2T

⇒ |θ| = 32σg

√
log(5T/δ)

pc2T

Substituting this expression for |θ| back into our expression for the total pseudo-regret, we get the following:

R(T ) ≤ min

{
L1ρ|θ|+

1024σ2
g log(5T/δ)

32σgpc2

√
log(5T/δ)
pc2T

, 32σgT

√
log(5T/δ)

pc2T

}

= min

{
L1ρ|θ|+ 32σg

√
T log(5T/δ)

pc2
, 32σg

√
T log(5T/δ)

pc2

}
≤ L1ρ+O(

√
T log(T/δ))

The L1ρ regret for Algorithm 1 in the last line above is given because |θ| ≤ 1.

Following a similar analysis, if the treatment effect θ < 0, then the total pseudo-regret accumulated following policy
πc satisfies the following bound with probability at least 1 − δ for any δ ∈ (0, 1) which satisfies the condition that

L1 ≥
2
√

log(5T/δ)

pc2
:

R(T ) ≤ min

{
L1|θ|+

2048(1− pc2/2)σ2
g log(5T/δ)

p2
c2 |θ|

, T |θ|

}
(43)

≤ L1 +O(
√
T log(T/δ)) (44)

Note that (as stated above) this regret holds only if the time horizon T is sufficiently large such that T ≥ L1 + 200 log(5T/δ)
p2c2

.

E.2. Regret Proof

Lemma 5.5 (Regret). Policy πc achieves regret as follows:

E[R(T )] = O(
√
T log(T )) (9)

for sufficiently large time horizon T .

Proof. We can set parameters δ, `0, `1, `, and ρ in terms of the time horizon T , in order to both guarantee compliance
throughout policy πc and to obtain sublinear (expected) regret bound relative to T .

First, to guarantee sublinear expected regret, we must guarantee that δ = 1/T 2. To meet our compliance conditions for
Algorithm 2, we must set

δ ≤ τ PP(u) [|θ| ≥ τ ]

2 (τ PP(u) [|θ| ≥ τ ] + 1)
,

for some τ . These may be expressed as conditions on the time horizon T : for any δ ∈ (0, 1) which satisfies the above
compliance conditions, we set T sufficiently large to satisfy the following condition:

T ≥ 1√
δ
≥

√
2 (τ PP(u) [|θ| ≥ τ ] + 1)

τ PP(u) [|θ| ≥ τ ]
(45)
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Second, recall that p0 and p1 denote the fractions in the population of agents who are never-takers and always-takers,
respectively. Furthermore, recall that pc1 and pc2 denote the fractions of agents who comply with Algorithm 1 and
Algorithm 2, respectively. Assume that the length of the first stage of Algorithm 1 is non-zero and the exploration probability
ρ is set to be small enough in order to guarantee compliance throughout Algorithm 1. The length L1 of Algorithm 1 must be
sufficiently large so that pc fraction of agents comply in Algorithm 2, as well. However, in order to guarantee sublinear
regret, we also need that

T ≥ L2
1 = (2 max(`0/p0, `1/p1) + `)2 (46)

Recall that the clean event C, as defined in the proof of Lemma 4.2, entails that the approximation bound over all
rounds. This event C holds with probability at least 1− δ for any δ ∈ (0, 1). Conditional on the failure event ¬C, policy
πc accumulates at most linear pseudo-regret in terms of T , i.e. T |θ|. Thus, in expectation it accumulates at most T |θ|δ regret.

Then, with the above assumptions on T in mind, the expected regret of policy πc is:

E
P(u)

[R(T )] = E[R(T )|¬C] P
P(u)

[¬C] + E[R(T )|C] P
P(u)

[C]

≤ Tδ +
(
L1 +O

(√
T log(T/δ)

))
=

1

T
+
(√

T +O
(√

T log(T 3)
))

=
1

T
+O

(√
T log(T )

)
= O

(√
T log(T )

)
Therefore, assuming that all hyperparameters δ, `0, `1, `, and ρ are set to incentivize compliance of some nonzero proportion
of agents throughout πc and assuming that T is sufficiently large so as to satisfy both Equations (45) and (46) above, policy
πc achieves sublinear regret.
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F. General Setting: Many Arms & Many Types
F.1. Model

We now consider a general setting for the sequential game between a social planner and a sequence of agents over T rounds,
as first mentioned in Section 2. In this setting, there are k treatments of interest, each with unknown treatment effect. In
each round t, a new agent indexed by t arrives with their private type ut drawn independently from a distribution U over the
set of all private types U . Each agent t has k actions to choose from, numbered 1 to k. Let xt ∈ Rk be a one-hot encoding
of the action choice at round t, i.e. a k-dimensional unit vector in the direction of the action. For example, if the agent at
round t chooses action 2, then xt = e2 = (0, 1, 0, · · · , 0) ∈ Rk. Additionally, agent t receives an action recommendation
zt ∈ Rk from the planner upon arrival. After selecting action xt ∈ Rk, agent t receives a reward yt ∈ R, given by

yt = 〈θ, xt〉+ g
(ut)
t (47)

where g(ut)
t denotes the confounding baseline reward which depends on the agent’s private type ut. Each g(ut)

t is drawn
from a sub-Gaussian distribution with a sub-Gaussian norm of σg. The social planner’s goal is to estimate the treatment
effect vector θ ∈ Rk and maximize the total expected reward of all T agents.

History, beliefs, and action choice. As in the body of the paper, the history Ht is made up of all tuples (zi, xi, yi) over
all rounds from i = 1 to t. Additionally, before the game starts, the social planner commits to recommendation policy π,
which is known to all agents. Each agent also knows the number of the round t when they arrive. Their private type ut maps
to their prior belief P(ut), which is a joint distribution over the treatment effect θ and noisy error term g(u). With all this
information, the agent t selects the action xt which they expect to produce the most reward:

xt := eat where at := argmax
1≤j≤k

E
P(ut),πt

[
θj | zt, t

]
. (48)

F.2. Instrumental Variable Estimate and Finite Sample Approximation Bound

As in the body of the paper, we view the planner’s recommendations as instruments and perform instrumental variable (IV)
regression to estimate θ.

IV Estimator for k > 1 Treatments Our mechanism periodically solves the following IV regression problem: given a set
S of n observations (xi, yi, zi)

n
i=1, compute an estimate θ̂S of θ. We consider the following two-stage least square (2SLS)

estimator:

θ̂S =

(
n∑
i=1

zix
ᵀ
i

)−1 n∑
i=1

ziyi, (49)

where (·)−1 denotes the pseudoinverse.

To analyze the 2SLS estimator, we introduce a compliance matrix of conditional probabilities that an agent chooses some
treatment given a recommendation Γ̂, given as proportions over a set of n samples S = (xi, zi)

n
i=1, where any entry in Γ̂ is

given as such:

Γ̂ab(S) = P̂S [x = ea|z = eb] =

∑n
i=1 1[x = ea, z = eb]∑n

i=1 1[z = eb]
(50)

Then, we can write the action choice xi as such:
xi = Γ̂zi + ηi, (51)

where ηi = xi − Γ̂zi. Now, we can rewrite the reward yi at round i as such:

yi =
〈
θ, (Γ̂zi + ηi)

〉
+ g

(ui)
i

= 〈 θ Γ̂︸︷︷︸
β

, zi〉+ 〈θ, ηi〉+ g
(ui)
i

= 〈β, zi〉+ 〈θ, ηi〉+ g
(ui)
i .

This formulation allows us to express and bound the error between the treatment effect θ and its IV estimate θ̂ in Theorem 6.1.
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F.3. Proof of Theorem 6.1

Theorem 6.1 (Many Treatments Effect Approximation Bound). Let z1, . . . , zn ∈ {0, 1}k be a sequence of instruments.
Suppose there is a sequence of n agents such that each agent i has private type ui drawn independently from U , selects xi
under instrument zi and receives reward yi. Let sample set S = (xi, yi, zi)

n
i=1. The approximation bound A(S, δ) is given

as such:20

A(S, δ) =
σg
√

2nk log(k/δ)

σmin (
∑n
i=1 zix

ᵀ
i )
,

and the IV estimator given by Equation (11) satisfies∥∥∥θ̂S − θ∥∥∥
2
≤ A(S, δ)

with probability at least 1− δ for any δ ∈ (0, 1).

Proof. Given a sample set S = (xi, yi, zi)
n
i=1 of size n, we form an estimate of the treatment effect θ̂S via Two-Stage Least

Squares regression (2SLS). In the first stage, we regress yi onto zi to get the empirical estimate β̂S and xi onto zi to get Γ̂S
as such:

β̂S :=

(
n∑
i=1

ziz
ᵀ
i

)−1( n∑
i=1

ziyi

)
and Γ̂S :=

(
n∑
i=1

ziz
ᵀ
i

)−1( n∑
i=1

zix
ᵀ
i

)
(52)

Now, note that by definition θ = (Γ̂)−1β. In the second stage, we take the inverse of Γ̂ times β̂ as the predicted causal effect
vector θ̂S , i.e.

θ̂S = Γ̂−1
S β̂S

=

( n∑
i=1

zix
ᵀ
i

)−1( n∑
i=1

ziz
ᵀ
i

)( n∑
i=1

ziz
ᵀ
i

)−1 n∑
i=1

ziyi

=

( n∑
i=1

zix
ᵀ
i

)−1 n∑
i=1

ziyi

Hence, the L2-norm of the difference between θ and θ̂S is given as:∥∥∥θ̂S − θ∥∥∥
2

=

∥∥∥∥∥
( n∑
i=1

zix
ᵀ
i

)−1 n∑
i=1

ziyi − θ

∥∥∥∥∥
2

=

∥∥∥∥∥
( n∑
i=1

zix
ᵀ
i

)−1 n∑
i=1

zi

(
〈θ, xi〉+ g

(ui)
i

)ᵀ
− θ

∥∥∥∥∥
2

=

∥∥∥∥∥
( n∑
i=1

zix
ᵀ
i

)−1( n∑
i=1

zix
ᵀ
i θ +

n∑
i=1

zig
(ui)
i

)
− θ

∥∥∥∥∥
2

=

∥∥∥∥∥θ +

( n∑
i=1

zix
ᵀ
i

)−1 n∑
i=1

zig
(ui)
i − θ

∥∥∥∥∥
2

=

∥∥∥∥∥
( n∑
i=1

zix
ᵀ
i

)−1 n∑
i=1

zig
(ui)
i

∥∥∥∥∥
2

≤

∥∥∥∥∥
( n∑
i=1

zix
ᵀ
i

)−1
∥∥∥∥∥

2

∥∥∥∥∥
n∑
i=1

zig
(ui)
i

∥∥∥∥∥
2

(by Lemma A.5)

=

∥∥∥∑n
i=1 zig

(ui)
i

∥∥∥
2

σmin (
∑n
i=1 zix

ᵀ
i )

20The operator σmin(·) denotes the smallest singular value.
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Finally, we may bound
∥∥∥θ̂S − θ∥∥∥

2
by upper bounding

∥∥∥∑n
i=1 zig

(ui)
i

∥∥∥
2

in the following lemma F.1.

Lemma F.1. For any δ ∈ (0, 1), with probability at least 1− δ, we have∥∥∥∥∥
n∑
i=1

zig
(ui)
i

∥∥∥∥∥
2

≤ σg
√

2nk log(k/δ) (53)

Proof. Recall that the baseline reward g(u) is an independently distributed random variable which, by assumption, has a
mean of zero, i.e. E[g(u)] = 0. Because of these properties of g(u), with probability at least 1− δ for any δ ∈ (0, 1), the
numerator above satisfies the following upper bound:∥∥∥∥∥

n∑
i=1

g
(ui)
i zi

∥∥∥∥∥
2

=

√√√√ k∑
j=1

(
n∑
i=1

g
(ui)
i 1[zi = ej ]

)2

=

√√√√ k∑
j=1

(
nj∑
i=1

g
(ui)
i

)2

(where nj =
∑n
i=1 1[zi = ej ])

≤

√√√√ k∑
j=1

(
σg

√
2nj log(1/δj)

)2

(by Corollary A.2 and, by assumption, E[g(u)] = 0)

≤

√√√√ k∑
j=1

(
σg

√
2nj log(k/δ)

)2

(by a Theorem A.7 where δj = δ
k for all j)

≤
√
k
(
σg
√

2n log(k/δ)
)2

(since nj ≤ n for all j)

= σg
√

2nk log(k/δ)

This recovers the stated bound and finishes the proof for Theorem 6.1.

Next, we demonstrate a lower bound which the denominator of the approximation bound A(S, δ) in Theorem 6.1 equals
O(1/

√
|S|), where |S| is the size of sample set S.

Theorem F.2 (Treatment Effect Confidence Interval for General k Treatments). Let z1, . . . , zn ∈ {0, 1}k be a sequence of
instruments. Suppose there is a sequence of n agents such that each agent i has private type ui drawn independently from U ,
selects xi under instrument zi and receives reward yi. Assume that each agent initially prefers treatment 1, i.e. x = e1. Let
sample set S = (xi, yi, zi)

n
i=1. Let r be the proportion of recommendations for each treatment j > 1 and let 1− (k − 1)r

be the proportion of recommendations for treatment 1. Let pc fraction of agents in the population of agents be compliant
over the rounds from which S is collected. For any δ ∈ (0, 1), if n ≥ rp2c

log(k/δ) , then the approximation bound A(S, δ) is
given as such:

A(S, δ) ≤
σg
√

2k log(k/δ)

α
√
n

= O

(√
log(1/δ)

n

)
,

and the IV estimator given by Equation (11) satisfies∥∥∥θ̂S − θ∥∥∥
2
≤ A(S, δ)

with probability at least 1− δ, where α > 0 is a constant of proportionality given in Claim F.3 below.

Proof. Note that Theorem 6.1 holds in this case and it suffices to demonstrate that the denominator is bounded by 1
αn .
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Claim F.3 (Proportionality of the Denominator of the Approximation Bound for k Treatments). Given all assumptions
in Theorem F.2 above, the denominator σmin (

∑n
i=1 zix

ᵀ
i ) of the approximation bound A(S, δ) is positive and increases

proportionally to n. Formally, σmin (
∑n
i=1 zix

ᵀ
i ) = Ω(n).

Proof. Recall that we assume that every agent initially prefers treatment 1. Thus, whenever agent is recommended any
treatment greater than 1 and does not comply, the agent takes treatment 1. At any round i, if agent i is always compliant,
then xi = zi; if not, then xi = e1. (If zi = e1, then xi = zi = e1 always.) Furthermore, at any round i when xi = zi, the
outer product zix

ᵀ
i = diag(zi), i.e. a diagonal matrix where the diagonal equals zi. If xi = e1, then the outer product

zix
ᵀ
i =

↑ ↑ ↑
zi 0 · · · 0
↓ ↓ ↓

 ,

which is a k × k matrix where the first column is zi and all other entries are 0. Thus, as long as we have at least one sample
of each treatment, i.e. at least one round i where xi = zi = ej for all 1 ≤ j ≤ k, then the sum

∑n
i=1 zix

ᵀ
i is a lower

triangular matrix with all positive entries in the diagonal. To illustrate this, let A denote the expected mean values of the
sum

∑n
i=1 zix

ᵀ
i , such that

E

[
n∑
i=1

zix
ᵀ
i

]
= n



1− rk 0 · · · · · · 0

r(1− pc) rpc 0 · · · · · ·
...

r(1− pc) 0 rpc 0 · · ·
...

... 0
. . .

...
...

...
...

. . . 0
r(1− pc) 0 · · · · · · 0 rpc


= nA.

Note that

E

[(
n∑
i=1

zix
ᵀ
i

)ᵀ( n∑
i=1

zix
ᵀ
i

)]
= E

[(
n∑
i=1

zix
ᵀ
i

)]ᵀ
E

[
n∑
i=1

zix
ᵀ
i

]

= n2



(1− rk)2 + (k − 1)r2(1− pc)2 r2pc(1− pc) · · · · · · r2pc(1− pc)
r2pc(1− pc) r2p2

c 0 · · · · · · 0

r2pc(1− pc) 0 r2p2
c 0 · · ·

...
...

... 0
. . .

...
...

...
...

. . . 0
r2pc(1− pc) 0 · · · · · · 0 r2p2

c


.

Furthermore, let Â denote the empirical approximation of A over our n samples, given as such:

n∑
i=1

zix
ᵀ
i = n



1− rk 0 · · · · · · 0

r(1− p̂c,2) rp̂c,2 0 · · · · · ·
...

r(1− p̂c,3) 0 rp̂c,3 0 · · ·
...

...
... 0

. . .
...

...
...

...
. . . 0

r(1− p̂c,k) 0 · · · · · · 0 rp̂c,k


= nÂ,

where for any j ≥ 2, the empirical proportion of agents who comply with the recommended treatment j is denoted as
p̂c,j . Note that, since E[p̂c,j ] = pc for all j ≥ 2, the expected value E

[
Â
]

= A. We may bound the difference between
p̂c,j and pc with high probability, based on the number of times each treatment j is recommended, which is rn. Over n
samples, with probability at least 1− δj for any δj ∈ (0, 1) for any treatment j, the proportion p̂c,j satisfies the following:
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p̂c,j ≥ pc −
√

log(1/δj)
2rn . In order for this bound to hold for all j ≥ 2, let δ2 = δ3 = · · · = δk = δ/k. Then, by a union

bound, with probability 1− δ for any δ ∈ (0, 1), the bound p̂c,j ≥ pc −
√

log(k/δ)
2rn holds simultaneously for all 2 ≤ j ≤ k.

Thus, for any δ ∈ (0, 1) and n ≥ rp2c
log(k/δ) , each entry in the diagonal of Â is positive. Thus, (since it is a triangular matrix)

the eigenvalues of Â equal the entries in the diagonal and are all positive. Furthermore, because rank(Â) = rank(ÂᵀÂ),
the singular values of Â are all positive, as well.

Thus, for n ≥ rp2c
log(k/δ) , the minimum singular value

σmin

(
n∑
i=1

zix
ᵀ
i

)
= nσmin

{
Â
}

= nα = Ω(n),

where α = σmin

(
Â
)
> 0 is some (possibly small) constant of proportionality.

Thus, by Claim F.3 and Theorem 6.1, the approximation bound

A(S, δ) ≤
σg
√

2nk log(k/δ)

nα
= O

(√
log(1/δ)

n

)
.

Corollary F.4 (Treatment Effect Confidence Interval for General k Treatments). Given all assumptions in Theorem F.2,
plus the assumptions that the minimum compliance rate for any arm is at least 1/k and the minimum proportion of treatment
1 recommendations is at least 1/k, for any δ ∈ (0, 1), with a large enough sample size n, the approximation bound A(S, δ)
is given as such:

A(S, δ) = O

(
k

√
k log(1/δ)

n

)
(54)

Proof. Note that Claim F.3 holds in this case and it suffices to demonstrate that the α is bounded by 1
k . We focus on the

denominator σmin (
∑n
i=1 zix

ᵀ
i ) of the approximation bound A(S, δ). Note that since zi and xi are one-hot encoded vectors,

we have:

E

[
n∑
i=1

zix
ᵀ
i

]
=

k∑
j=1

∑
i∈Sj

xi

∑
i∈Sj

xi

ᵀ

(where Sj = {i : zi = ej})

= n

k∑
j=1

vjv
ᵀ
j (where vector vj = (vj1, 0, · · · 0, vjj , 0, · · · 0) ∈ Rk)

where ∀j : vj1 = r
k (1 − pj) is the probability of getting a treatment 1 sample when the recommendation is j > 1, the

term v11 = 1− r is the probability of recommending treatment 1 (since we assume agents always comply with treatment 1
recommendations), and the term vjj = r

kpj is the probability of getting a treatment j sample when the recommendation is
j > 1. By definition, we can write the denominator term squared as:

σmin

(
E

[
n∑
i=1

zix
ᵀ
i

])2

= min
a:‖a‖=1

aᵀ

n k∑
j=1

vjv
ᵀ
j

 a

= n

[
min

a:‖a‖=1
(a1v11)2 + (a1v21 + a2v22)2 + · · ·+ (a1vk1 + akvkk)2

]
.
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Also, without loss of generality, assume that a1 > 0 and ∀j > 1 : aj ≤ 0.
Substituting the expression above with algorithm-specific variables, we have:

(a1v11)2 + (a1v21 + a2v22)2 + · · ·+ (a1vk1 + akvkk)2

= a2
1(1− r)2 +

r2

k2
a2

1

k∑
j=2

(1− pj)2 +

k∑
j=2

a2
jp

2
j +

2r2

k2
a1

k∑
j=2

ajpj(1− pj)

≥ a2
1(1− r)2 +

r2

k2
a2

1

k∑
j=2

(1− pj)2 + p2
min

k∑
j=2

a2
j +

2r2

k2
a1

k∑
j=2

aj
1

4

≥ a2
1(1− r)2 +

r2

k2
a2

1

k∑
j=2

(1− pj)2 + p2
min(1− a2

1)− r2a1

2k2

√
(k − 1)(1− a2

1)

where the second line is direct substitution, the third line comes from lower bounding all p2
j terms with the minimum

compliance rate p2
min and lower bounding pj(1 − pj) by 1/4. The last line comes from the fact that ‖a‖ = 1 and from

applying Lemma A.5 on the last term. Since we assume that the probability of recommending treatment 1 is 1− r ≥ 1
k , we

have:

σmin

(
E

[
n∑
i=1

zix
ᵀ
i

])2

≥ n

 min
a:‖a‖=1

a2

k2
+

(
1− 1

k

)2
k2

a2
1

k∑
j=2

(1− pj)2 + p2
min(1− a1)2 −

(
1− 1

k

)2
2k2

a1

√
(k − 1)(1− a2

1)


≥ n

[
min

a:‖a‖=1

a2
1

k2
+ p2

min(1− a1)2 − (k − 1)2

2k4
a1

√
(k − 1)(1− a2

1)

]
≥ n

[
min

a:‖a‖=1

a2
1

k2
+ p2

min(1− a1)2 − a1

√
(k − 1)(1− a2

1)

2k2

]

= n

(a1

√
1

k2
− p2

min −
1

4k2

√
(k − 1)(1− a2

1)
1
k2 − p

2
min

)2

+ p2
min −

(k − 1)(1− a2
1)

16k4
(

1
k2 − p

2
min

)


≥ n

[
p2

min −
(k − 1)(1− a2

1)

16k4
(

1
k2 − p

2
min

)]

≥ n
[
p2

min −
(1− a2

1)

16k − 16k3p2
min

]
Since we assume that the minimum compliance rate pmin ≥ 1

k , we have:

p2
min ≥

1

k2
⇒ 16k − 16k3p2

min ≤ 0

Therefore, we have α = 1
k and

σmin

(
E

[
n∑
i=1

zix
ᵀ
i

])2

≥ n

k2

We apply Theorem A.6 to this matrix to get that, with probability at least 1− δ, for δ ∈ (0, 1):

σmin

(
n∑
i=1

zix
ᵀ
i

)
≥
√

n

k2
− log(k/δ)
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Hence, we have the approximation bound A(S, δ) for Algorithm 4 is given as

A(S, δ) ≤
σg
√

2nk log(k/δ)√
n
k2 − log(k/δ)

√
n

= O

(
k

√
k log(1/δ)

n

)

F.4. Extensions of Algorithms 1 and 2 and Recommendation Policy πc to k Treatments

We assume that every agent —regardless of type— shares the same prior ordering of the treatments, such that all agents prior
expected value for treatment 1 is greater than their prior expected value for treatment 2 and so on. First, Algorithm 3 is a
generalization of Algorithm 1 which serves the same purpose: to overcome complete non-compliance and incentivize some
agents to comply eventually. The incentivization mechanism works the same as in Algorithm 1, where we begin by allowing
all agents to choose their preferred treatment —treatment 1— for the first ` rounds. Based on the ` samples collected from
the first stage, we then define a number of events ξ(u)

j —which are similar to event ξ from Algorithm 1— that each treatment
j ≥ 2 has the largest expected reward of any treatment and treatment 1 has the smallest, according to the prior of type u:

ξ
(u)
i :=

(
ȳ1
` + C ≤ min

1<j<i
ȳj` − C and max

1<j<i
ȳj` + C ≤ µ(u)

i

)
, (55)

where C = σg

√
2 log(3/δ)

` + 1
4 for any δ ∈ (0, 1) and where ȳ1

` denotes the mean reward for treatment 1 over the ` samples
of the first stage of Algorithm 3. Thus, if we set the exploration probability ρ small enough, then some subset of agents will
comply with all recommendations in the second stage of Algorithm 3.

Algorithm 3 Overcoming complete non-compliance for k treatments
Input: exploration probability ρ ∈ (0, 1), minimum number of samples of any treatment ` ∈ N (assume w.l.o.g.
(`/ρ) ∈ N), failure probability δ ∈ (0, 1), compliant type u
1st stage: The first ` agents are given no recommendation (they choose treatment 1)
for each treatment i > 1 in increasing lexicographic order do

if ξ(u)
i holds, based on the ` samples from the first phase and any samples of treatment 2 ≤ j < i collected thus far

then
a∗i = i

else
a∗i = 1

end if
From the next `/ρ agents, pick ` agents uniformly at random to be in the explore set E21

for the next ` rounds do
if agent t is in explore set E then
zt = 1

else
zt = a∗

end if
end for

end for

Second, Algorithm 4 is a generalization of Algorithm 2, which is required to start with at least partial compliance and
more rapidly and incentivizes more agents to comply eventually. The incentivization mechanism works the same as in
Algorithm 1, where we begin by allowing all agents to choose their preferred treatment —treatment 1— for the first `
rounds. Based on the ` samples collected from the first stage, we then define a number of events —which are similar to
event ξ from Algorithm 1— that each treatment j ≥ 2 has the largest expected reward of any treatment and treatment 1 has
the smallest. Thus, if we set the exploration probability ρ small enough, then some subset of agents will comply with all
recommendations in the second stage of Algorithm 3.

Definition F.5 (General recommendation policy πc for k treatments). Recommendation policy πc over T rounds is given as
such:

21We set the length of each phase i of the second stage to be `/ρ so that we get ` samples of each treatment i and the exploration
probability is ρ.
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Algorithm 4 Overcoming partial compliance for k treatments

Input: samples S0 := (xi, zi, yi)
|S0|
i=1 which meet Theorem 6.1 conditions and produce IV estimate θ̂S0 , time horizon T ,

number of recommendations of each action per phase h, failure probability δ ∈ (0, 1)
Split the remaining rounds (up to T ) into consecutive phases of h rounds each, starting with q = 1;
Let θ̂0 = θ̂S0

and A0 = A(S0, δ)
Initialize set of active treatments: B = {all treatments}.
while |B| > 1 do

Let θ̂∗q−1 = maxi∈B θ̂
i
q−1 be the largest entry i in θ̂q−1

Recompute B =
{

treatments i : θ̂∗q−1 − θ̂iq−1 ≤ Aq−1

}
;

The next |B| agents are recommended each treatment i ∈ B sequentially in lexicographic order;
Let SBEST

q be the sample set with the smallest approximation bound so far, i.e. SBEST
q = argminSr,0≤r≤q A(Sr, δ);

Define θ̂q = θ̂SBEST
q

and Aq = A(SBEST
q , δ);

q = q + 1
end while
For all remaining agents, recommend a∗ that remains in B.

1) Run Algorithm 3 with exploration probability ρ set to incentivize at least pc1 > 0 fraction of agents of the population
to comply in Algorithm 3. Let S0 be the sample set given from Algorithm 3. By Corollary F.8 and Theorem F.9,
we can use S0 as the initial samples in Algorithm 4 to incentivize compliance for any arm a if the approximation
bound A(S0, δ) given by S0 is small enough (see Theorem F.9). Thus, we run Algorithm 3 long enough (i.e. we set `
large enough) so that the approximation bound is small enough and at least pc2 > 1/k fraction of agents comply with
recommendations of every treatment in Algorithm 4.

2) Initialize Algorithm 4 with samples S0 from Algorithm 3. At least pc2 > 1/k fraction of agents comply with
recommendations from Algorithm 4 from the beginning and until time horizon T .

Lemma F.6 (Algorithm 3 compliance). Let event ξ(u) be defined such that P[ξ(u)] = mini P[ξ
(u)
i ]. In Algorithm 3, any

type u agent who arrives in the last `/ρ rounds of Algorithm 3 is compliant with any recommendation if µ(u)
i > 0 for all

1 < i ≤ k, and the exploration probability ρ satisfies:

ρ ≤ 1 +
8
(
µ

(u)
j − µ

(u)
i

)
Pπc,P(u) [ξ(u)]

(56)

Proof. Let the recommendation policy π here be Algorithm 3.

Part I (Compliance with recommendation for treatment i > 1): We first argue that an agent t of type u who is
recommended treatment i will not switch to any other treatment j. For treatments j > i, there is no information about
treatments i or j collected by the algorithm and by assumption, we have µ(u)

i ≥ µ(u)
j . Hence, it suffices to consider when

j < i. We want to show that
E

πt,P(u)

[θj − θ1|zt = ei] P
πt,P(u)

[zt = ei] ≥ 0. (57)

Part II (Recommendation for treatment 1): When agent t is recommended treatment 1, they know that they are not in
the explore group E. Therefore, they know that the event ¬ξ(u)

i occurred. Thus, in order to prove that Algorithm 3 is BIC
for an agent of type u, we need to show the following for any treatment j > 1:

E
πt,P(u)

[θ1 − θj |zt = e1] P
πt,P(u)

[zt = e1] = E
πt,P(u)

[θ1 − θj |¬ξ(u)
i ] P

πt,P(u)

[¬ξ(u)
i ] ≥ 0 (58)

We omit the remainder of this proof due to its similarity with the proof of Lemma 3.2
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Lemma F.7 (Algorithm 4 Partial Compliance). Recall that Algorithm 4 is initialized with input samples S0 = (xi, yi, zi)
|S0|
i=1 .

For any type u, if S0 satisfies the following condition, then with probability at least 1− δ all agents of type u will comply
with recommendations of Algorithm 4:

A(S0, δ) ≤ τ P
P(u)

[min
a,b

(
|θa − θb|

)
> τ ]/4

for some τ ∈ (0, 1), where A(S0, δ) is the approximation bound for S0 and any δ ∈ (0, 1) (see Theorem 6.1).

Proof. Let the recommendation policy π here be Algorithm 4. We want to show that for any agent at time t with a type
i < u in the racing stage and for any two treatments a, b ∈ B :

E
πt,P(u)

[θa − θb|zt = ea] P
πt,P(u)

[zt = ea] ≥ 0

We omit the remainder of this proof due to its similarity with Lemma 4.2.

Corollary F.8. (Pairwise Treatment Effect Confidence Interval for General k Treatments) Given all assumptions in
Corollary F.4, the pairwise approximation bound between any two particular arms a, b is given as

|(θa − θb)− (θ̂a − θ̂b)| = Aab(S, δ) ≤
√

2A(S, δ)

where θ̂a and θ̂b are the IV estimate for the treatment effect of arm a and arm b, respectively.

Proof. We have:

|(θa − θb)− (θ̂a − θ̂b)| = |(θ̂a − θa) + (θ̂b − θb)|

≤ |θ̂a − θa|+ |θ̂b − θb| (by Triangle Inequality)

≤
√

2

√
(θ̂a − θa)2 + (θ̂b − θb)2 (by Lemma A.5)

≤
√

2

√√√√ k∑
i=1

(θ̂i − θi)2

≤
√

2A(S, δ)

This recovers the stated bound and we only pay a small constant (
√

2) to obtain a pairwise approximation bound from our
IV estimator.

Theorem F.9. Let Gvw denote the gap between the causal effects of any arms v and w, i.e. Gvw := θv − θw and let Gv

denote the smallest gap for arm v, i.e. Gv := θv −maxw 6=v θ
w = minw 6=v θ

v − θw.

Let Avw(S, δ) denote a high-probability upper bound (with probability at least 1− δ) on the difference between the true
gap Gvw (for causal effects θv and θw for arms v and w) and its estimate Ĝvw based on the sample set S, i.e.∣∣∣Gvw − Ĝvw∣∣∣ =

∣∣∣θv − θw − (θ̂v − θ̂w)∣∣∣ < Avw(S, δ).

Furthermore, let Av(S, δ) denote a high-probability upper bound on the difference between the true minimum gap Gv for
arm v and its empirical estimate Ĝv based on sample set S, i.e.∣∣∣Gv − Ĝv∣∣∣ =

∣∣∣θv − θwmin −
(
θ̂v − θ̂wmin

)∣∣∣ < Av(S, δ),

where wmin = argminw 6=v θ
v− θw. For shorthand, let Avq denote the best (i.e. smallest) approximation bound Av(SBEST

q , δ)
by phase q.
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Recall that Algorithm 4 is initialized with samples S0 = (xi, yi, zi)
|S0|
i=1 . Any agent at time t with type ut will comply with

recommendation zt = ev for arm v from policy πt according to Algorithm 4, if the following holds for some τ ∈ (0, 1):

Av(S0, δ) ≤ τ P
πt,P(ut)

[Gv ≥ τ ]/4.

Proof. Any agent at time t with type ut will comply with an arm v recommendation zt = ev from policy πt following
Algorithm 4, if the following holds: For any two treatments v, w ∈ B,

E
πt,P(ut)

[θv − θw|zt = ev] P
πt,P(ut)

[zt = ev] ≥ 0.

We will prove a stronger statement:

E
πt,P(ut)

[θv −max
w 6=v

θw|zt = ev] P
πt,P(ut)

[zt = ev] ≥ 0.

We can prove this in largely the same way as we proved Lemma 4.2 in Appendix D.1: we simply replace θ and Avq in the
proof for Lemma 4.2 with Gv and Avq , respectively.

The clean event C is given as:
C :=

(
∀q ≥ 0 : |Gv − Ĝv| < Avq

)
.

By Corollary F.4, for event C, the failure probability P[¬C] ≤ δ. We assume that

δ ≤
τ Pπt,P(ut) [G

v ≥ τ ]

2τ Pπt,P(ut) [Gv ≥ τ ] + 2
.

First, we marginalize Eπt,P(ut) [θ
v −maxw 6=v θ

w|zt = ev]Pπt,P(ut) [zt = ev] based on the clean event C, such that

E
πt,P(ut)

[Gv|zt = ev] P
πt,P(ut)

[zt = ev]

= E
πt,P(ut)

[Gv|zt = ev, C] P
πt,P(ut)

[zt = ev, C] + E
πt,P(ut)

[Gv|zt = ev,¬C] P
πt,P(ut)

[zt = ev,¬C]

≥ E
πt,P(ut)

[Gv|zt = ev, C] P
πt,P(ut)

[zt = ev, C]− δ

≥ E
πt,P(ut)

[Gv|zt = ev, C] P
πt,P(ut)

[zt = ev, C]− δ

≥ E
πt,P(ut)

[Gv|zt = ev, C] P
πt,P(ut)

[zt = ev, C]−
τ Pπt,P(ut) [G

v ≥ τ ]

2τ Pπt,P(ut) [Gv ≥ τ ] + 2
.

Next, we marginalize EP(ut),πt [G
v|zt = ev, C]PP(ut),πt [zt = ev, C] based on four possible ranges which Gv lies on:

E
P(ut),πt

[Gv|zt = ev, C] P
P(ut),πt

[zt = ev, C

= E
πt,P(ut)

[Gv|zt = ev, C, Gv ≥ τ ] P
πt,P(ut)

[zt = ev, C, Gv ≥ τ ]

+ E
πt,P(ut)

[Gv|zt = ev, C, 0 ≤ Gv < τ ] P
πt,P(ut)

[zt = ev, C, 0 ≤ Gv < τ ]

+ E
πt,P(ut)

[Gv|zt = ev, C,−2Avq < Gv < 0] P
πt,P(ut)

[zt = ev, C,−2Avq < Gv < 0]

+ E
πt,P(ut)

[Gv|zt = ev, C, Gv ≤ −2Avq ] P
πt,P(ut)

[zt = ev, C, Gv ≤ −2Avq ]

(59)

Because Avq is the smallest approximation bound derived from samples collected over any phase q of Algorithm 4 (including
the initial sample set S0), the following holds:

2Avq ≤ 2Av(S0, δ)

≤
τ Pπt,P(ut) [G

v ≥ τ ]

2
(by assumption Av(S0, δ) ≤ τ Pπt,P(ut) [G

v ≥ τ ]/4)

≤ τ
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Conditional on C, |Gv− Ĝvq | < Avq . Thus, if Gv ≥ τ ≥ 2Avq , then Ĝvq ≥ τ −Avq ≥ Avq , which invokes the stopping criterion
for the while loop in Algorithm 4. Thus, all other arms must have been eliminated from the race before phase q = 1 and
arm v is recommended almost surely throughout Algorithm 4, i.e. Pπt,P(ut) [zt = ev, C, Gv ≥ τ ] = Pπt,P(ut) [C, Gv ≥ τ ].
Similarly, if Gv ≤ −2Avq , then Ĝvq ≤ −Avq by phase q = 1 and arm v is recommended almost never, i.e. Pπt,P(ut) [zt =
ev, C, Gv < −2Avq ] = 0. Substituting in these probabilities (and substituting minimum possible expected values), we
proceed:

E
P(ut),πt

[Gv|zt = ev, C] P
P(ut),πt

[zt = ev, C]

≥ τ P
πt,P(ut)

[C, Gv ≥ τ ]− 2Avq P
πt,P(ut)

[zt = ev, C,−2Avq < Gv < 0]

≥ τ P
πt,P(ut)

[C, Gv ≥ τ ]−
τ Pπt,P(ut) [G

v ≥ τ ]

2

≥ τ P
πt,P(ut)

[C|Gv ≥ τ ] P
πt,P(ut)

[Gv ≥ τ ]−
τ Pπt,P(ut) [G

v ≥ τ ]

2

≥ (1− δ)τ P
πt,P(ut)

[Gv ≥ τ ]−
τ Pπt,P(ut) [G

v ≥ τ ]

2

≥
(

1

2
−

τ Pπt,P(ut) [G
v ≥ τ ]

2τ Pπt,P(ut) [Gv ≥ τ ] + 2

)
τ P
πt,P(ut)

[Gv ≥ τ ]

=
τ Pπt,P(ut) [G

v ≥ τ ]

2τ Pπt,P(ut) [Gv ≥ τ ] + 2
.

Putting everything together, we get that

E
P(ut),πt

[Gv|zt = ev] P
P(ut),πt

[zt = ev]

= E
P(ut),πt

[Gv|zt = ev, C] P
P(ut),πt

[zt = ev, C] + E
P(ut),πt

[Gv|zt = ev,¬C] P
P(ut),πt

[zt = ev,¬C]

≥
τ Pπt,P(ut) [G

v ≥ τ ]

2τ Pπt,P(ut) [Gv ≥ τ ] + 2
−

τ Pπt,P(ut) [G
v ≥ τ ]

2τ Pπt,P(ut) [Gv ≥ τ ] + 2

= 0.

Thus, as long as Av(S0, δ) ≤ τ Pπ,P(u) [Gv ≥ τ ]/4, any agent of type u will comply with a recommendation of arm v from
recommendation policy π according to Algorithm 4.

Finally, we present the (expected) regret from the k treatment extension of policy πc given in Definition F.5.
Lemma 6.3 (Regret of Policy πc for k Treatments). An extension of policy πc achieves (expected) regret as follows:

E[R(T )] = O
(
k
√
kT log(kT )

)
(12)

for sufficiently large time horizon T .

Proof. Let θ∗ be the best treatment effect overall and the gap between θ∗ and any treatment effect θi be ∆i = |θ∗ − θi|.
Recall that the clean event C entails that the approximation bound holds for all rounds. If event C fails, then we can only
bound the pseudo-regret by the maximum value, which is at most T mini ∆i.
For the rest of this proof, assume that the event C holds for every round of Algorithm 4. This proof follows the standard
technique from (Even-Dar et al., 2006). Since C holds, we have ∆i ≤ A(SL2 , δ) + |θ̂∗ − θ̂i| for any treatment i, where
A(SL2

, δ) is the approximation bound based on SL2
samples of Algorithm 4. Before the stopping criteria is invoked, we

also have |θ̂∗ − θ̂i| ≤ A(SL2,δ). Hence, the gap between the best treatment effect and any other treatment effect is:

∆i ≤ 2A(SL2
, δ) ≤

2σg
√

2k log(2kT/δ)√
L2

k2 − log(k/δ)
,
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where σg is the variance parameter for the baseline reward g(u) and α2 is defined as in Claim F.3 relative to the proportion
r2 = 1/|B| of recommendations for each treatment during Algorithm 4 and the proportion of compliant agents pc2 . Hence,
we must have eliminated treatment i by round

L2 =
8kσ2

g log(2kT/δ)

∆2
i

(
1
k2 − log(k/δ)

) ,
assuming that L2 ≥ p2c

k log(k/δ) (in order to satisfy the criterion for Theorem F.2). During Algorithm 4, the social planner
gives out |B| recommendations for each treatment i ∈ B sequentially. Hence, the contribution of each treatment i for each
phase is ∆. Conditioned on event C, the treatment a∗ at the end of Algorithm 4 is the best treatment overall; so, no more
regret is collected after Algorithm 4 is finished.

If treatment 1 is not the winner, then we accumulate R1(T ) = ∆i ((1− kρ)L1 + L2/k) regret for treatment 1. If some
other treatment i > 1 is not the winner, then we accumulate Ri(T ) = ∆i (ρL1 + L2/k) regret for treatment i. Hence, the
total regret accumulated in Algorithm 4 is:

R(T ) ≤ ∆i

(
(1− ρ)L1 +

(
k − 1

k

)
L2

)
≤ (1− ρ)L1∆i +

8(k − 1)σ2
g log(2kT/δ)

∆i

(
1
k2 − log(k/δ)

)
Observe that the pseudo-regret of the combined recommendation policy is at most that of Algorithm 4 plus ∆ = mini ∆i

per each round of Algorithm 3. Alternatively, we can also upper bound the regret by ∆ per each round of the combined
recommendation policy. Following the same argument as Lemma 5.4, we can derive the pseudo-regret of the policy πc for k
treatments:

R(T ) ≤ min

(
L1(1− ρ)∆i +

8(k − 1)σ2
g log(2kT/δ)

∆i

(
1
k2 − log (k/δ)

) , T∆

)
≤ L1 +O(k

√
kT log(kT/δ)).

For the expected regret, we can set the parameters δ and L1 in terms of the time horizon T , in order to both guarantee
compliance throughout policy πc and to obtain sublinear expected regret bound relative to T .

First, we must guarantee that the failure probability δ in Algorithm 4 is small, i.e. δ = 1/T 2. To meet our compliance
condition for Algorithm 4, we must set

δ ≤ τ PP(u) [θ ≥ τ ]

2(τ PP(u) [θ ≥ τ ] + 1)

for some constant τ ∈ (0, 1). Hence, we can set T sufficiently large such that, for any δin(0, 1), we have

T ≥ 1√
δ
≥

√
2(τ PP(u) [θ ≥ τ ] + 1)

τ PP(u) [θ ≥ τ ]

We also recall that the length L1 of Algorithm 3 needs to be sufficiently large so that pc2 fraction of agents comply in
Algorithm 4. Moreover, we accumulate linear regret in each round of Algorithm 3. Hence, in order to guarantee sublinear
regret, we also require that T satisfies the following:

T ≥ L2
1 = (`+ `/ρ)2

Finally, recall that the clean event C in Algorithm 4 holds with probability at least 1− δ for any δ ∈ (0, 1). Conditioned on
the failure event ¬C, policy πc accumulates at most linear pseudo-regret in terms of T . Thus, in expectation, it accumulates
at most T maxi,j |θi − θj |δ regret
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Therefore, we can derive the expected regret of k treatment recommendation policy πc as:

E
P(u)

[R(T )] = E[R(T )|¬C] P
P(u)

[¬C] + E[R(T )|C] P
P(u)

[C]

≤ Tδ + (L1 +O(
√
kT log(kT/δ)))

=
1

T
+ (
√
T +O(k

√
kT log(kT )))

=
1

T
+O(k

√
kT log(kT ))

= O(k
√
kT log(kT ))

Therefore, assuming that all hyperparameters δ, L1 are set to incentivize compliance for some nonzero proportion of agents
throughout πc and assuming that T is sufficiently large so as to satisfy the conditions above, policy πc (for k treatments)
achieves sublinear regret.

G. Experiments Omitted from Section 7
In this section, we present additional experiments to evaluate Algorithm 1 and Algorithm 2, which were pre-
viously omitted from Section 7. Our code is available here: https://github.com/DanielNgo207/
Incentivizing-Compliance-with-Algorithmic-Instruments. We are interested in (1) the effect of dif-
ferent prior choices on the exploration probability ρ, (2) comparing the approximation bound in Algorithm 1 to that of
Algorithm 2 and (3) the total regret accumulated by the combined recommendation policy. Firstly, we observed that the
exploration probability ρ in Figure 1 is small, leading to slow improvement in accuracy of Algorithm 1. Since ρ depends on
the event ξ (as defined in Equation (5)), we want to investigate whether changes in the agents’ priors would increase the
exploration probability. Secondly, we claimed earlier in the paper that the estimation accuracy increases much quicker in
Algorithm 2 compared to Algorithm 1. This improvement motivates the social planner to move to Algorithm 2, granted there
is a large enough portion of agents that comply with the recommendations. Finally, while we provide a regret guarantee in
Lemma 5.4, it is not immediately clear how the magnitude of Algorithm 1 length L1 would affect the overall regret. There is
a tradeoff: if we run Algorithm 1 for a small number of rounds, then it would not affect the regret by a significant amount,
but a portion of the agents in Algorithm 2 may not comply. For our combined recommendation policy, we run Algorithm 1
until it is guaranteed that type 0 agents will comply in Algorithm 2.

Experimental Description For Algorithm 1, we consider a setting with two types of agents: type 0 who are initially
never-takers, and type 1 who are initially always takers. For Algorithm 2, we consider a setting with two types of agents:
type 0 who are compliant, and type 1 who are initially always-takers. We let each agent’s prior on the treatment be a
truncated Gaussian distribution between −1 and 1. The noisy baseline reward g(ut)

t for each type u of agents is drawn from
a Gaussian distribution N (µg(u) , 1), with its mean µg(u) also drawn from a Gaussian prior. We let each type of agents have
equal proportion in the population, i.e. p0 = p1 = 0.5.

For the first experiment, we are interested in finding the correlation between the exploration probability ρ and different prior
parameters, namely the difference between mean baseline rewards µg(1) − µg(0) and the variance of Gaussian prior on the
treatment effect θ. Similar to the experiment in Section 7, we use Monte Carlo simulation by running the first stage of
Algorithm 1 with varying choices of the two prior parameters above. From these initial samples, we calculate the probability
of event ξ, and subsequently the exploration probability ρ. For the second experiment, we are interested in finding when
agents of type 1 also comply with the recommendations. This shift in compliance depends on a constant τ (as defined in
Lemma 4.2). We find two values of the constant τ that minimizes the number of samples needed to guarantee that agents of
type 0 and type 1 are compliant in Algorithm 2 (as defined in Lemma 5.2). After this, Algorithm 2 is run for increasing
number of rounds. Similar to the Algorithm 1 experiment, we repeated calculate the IV estimate of the treatment effect
and compare it to the naive OLS estimate over the same samples as a benchmark. On a separate attempt, we evaluate
the combined recommendation policy by running Algorithm 1 and Algorithm 2 successively using the priors above. We
calculate the accumulated regret of this combined policy using the pseudo-regret notion (as defined in Definition 5.3).

Results In Table 1 and Table 2, we calculate the exploration probability ρ with different initialization of the agents’ priors.
In Table 1, we let the mean baseline reward of type 1 µg(1) be drawn fromN (0.5, 1) and the mean baseline reward of type 0
µg(0) be drawn fromN (c, 1) with c ∈ [0, 1]. The gap between these priors is defined as E[µg(1) ]−E[µg(0) ]. We observe that
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Gap between E[µg(1) ] and E[µg(0) ] ρ
-0.5 0.004480
-0.4 0.004975
-0.3 0.007936
-0.2 0.003984
-0.1 0.003488
0.1 0.003984
0.2 0.004480
0.3 0.003488
0.4 0.004480
0.5 0.003488

Table 1. ρ with different gaps between E[µg(1) ] and E[µg(0) ]

Variance in prior over treatment effect ρ
0.1 0.002561
0.2 0.003112
0.3 0.002561
0.4 0.002561
0.5 0.003982
0.6 0.004643
0.7 0.005422
0.8 0.002790
0.9 0.001389
1 0.003488

Table 2. ρ with different variances in the prior over treatment effect θ

the exploration probability does not change monotonically with increasing gap between mean baseline reward. In Table 2,
we calculate the exploration probability ρ with different variance in prior over treatment effect θ. Similarly, in Table 1,
we observe that the exploration probability ρ does not change monotonically with increasing variance in prior over θ. In
both tables, ρ value lies between [0.001, 0.008], which implies infrequent exploration by Algorithm 1. This slow rate of
exploration is also reflected in Figure 1, which motivates the social planner to transition to Algorithm 2.

Figure 2. Approximation bound using IV regression and OLS during Algorithm 2 with τ = 0.43. The y-axis uses a log scale. Results are
averaged over 5 runs; error bars represent one standard error.

In Figure 2, we compare the approximation bound on |θ−θ̂| between the IV estimate θ̂ and the naive estimate for Algorithm 2.
In our experiments, the constant τ generally lies within [0.4, 0.6]. Similar to the experiment in Section 7, we let the hidden
treatment effect θ = 0.5, type 0 and type 1 agents’ priors on the treatment effect be N (−0.5, 1) and N (0.9, 1) — each
truncated into [−1, 1] — respectively. We also let the mean baseline reward for type 0 and type 1 agents be µg(0) ∼ N (0, 1)
and µg(1) ∼ N (0.1, 1), respectively. With these priors, we have found a suitable value of τ = 0.43 for Algorithm 2. Instead
of using the theoretical bound on ` in Lemma 5.2, we compare the approximation bound |θ − θ̂| with the conditions in
Lemma 4.2. In Figure 2, the IV estimate consistently outperform the naive estimate for any number of rounds. Furthermore,
we observe that the scale of the IV estimate approximation bound in Figure 2 is much smaller than that of Figure 1. This
difference shows the improvement of Algorithm 2 over Algorithm 1 on estimating the treatment effect θ. It takes Algorithm 2
a small number of rounds to get a better estimate than Algorithm 1 due to the small exploration probability ρ.


