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A. Proof of Lemma 2
Lemma 2. Similar to the definition of f(x,Z), let
lt−1(x,Z) and ut−1(x,Z) denote the random function over
x where the randomness comes from the random variable
Z; lt−1 and ut−1 are defined in (3). Then, ∀x ∈ Dx, t ≥ 1,
α ∈ (0, 1),

Vα(f(x,Z))∈ It−1[Vα(f(x,Z))]
, [Vα(lt−1(x,Z)), Vα(ut−1(x,Z))]

holds with probability ≥ 1 − δ for δ in Lemma 1, where
Vα(lt−1(x,Z)) and Vα(ut−1(x,Z)) are defined as (1).

Proof. Conditioned on the event f(x, z) ∈ It−1[f(x, z)] ,
[lt−1(x, z), ut−1(x, z)] for all x ∈ Dx, z ∈ Dz, t ≥ 1
which occurs with probability≥ 1−δ for δ in Lemma 1, we
will prove that Vα(lt−1(x,Z)) ≤ Vα(f(x,Z)). The proof
of Vα(f(x,Z)) ≤ Vα(ut−1(x,Z)) can be done in a similar
manner.

From f(x, z) ∈ It−1[f(x, z)] , [lt−1(x, z), ut−1(x, z)]
for all x ∈ Dx, z ∈ Dz, t ≥ 1 we have ∀x ∈ Dx, z ∈
Dz, t ≥ 1,

f(x, z) ≥ lt−1(x, z) .

Therefore, for all ω ∈ R, x ∈ Dx, z ∈ Dz, t ≥ 1,

f(x, z) ≤ ω ⇒ lt−1(x, z) ≤ ω
P (f(x,Z) ≤ ω) ≤ P (lt−1(x,Z) ≤ ω) .

So, for all ω ∈ R, α ∈ (0, 1), x ∈ Dx, t ≥ 1,

P (f(x,Z) ≤ ω) ≥ α⇒ P (lt−1(x,Z) ≤ ω) ≥ α .

Hence, the set {ω : P (f(x,Z) ≤ ω) ≥ α} is a subset of
{ω : P (lt−1(x,Z) ≤ ω) ≥ α} for all α ∈ (0, 1), x ∈ Dx,
t ≥ 1, which implies that inf{ω : P (f(x,Z) ≤ ω) ≥ α} ≥
inf{ω : P (lt−1(x,Z) ≤ ω) ≥ α}, i.e., Vα(lt−1(x,Z)) ≤
Vα(f(x,Z)) for all α ∈ (0, 1), x ∈ Dx, t ≥ 1.

B. Proof of (4)

We prove that

r(xt) ≤ Vα(ut−1(xt,Z))− Vα(lt−1(xt,Z)) ∀t ≥ 1

which holds with probability ≥ 1− δ for δ in Lemma 1.

Proof. Conditioned on the event Vα(f(x,Z)) ∈
It−1[Vα(f(x,Z))] , [Vα(lt−1(x,Z)), Vα(ut−1(x,Z))]
for all α ∈ (0, 1), x ∈ Dx, t ≥ 1, which occurs with
probability ≥ 1− δ in Lemma 2,

Vα(f(x∗,Z)) ≤ Vα(ut−1(x∗,Z))
Vα(f(xt,Z)) ≥ Vα(lt−1(xt,Z)) .

Hence,

r(xt) , Vα(f(x∗,Z))− Vα(f(xt,Z))
≤ Vα(ut−1(x∗,Z))− Vα(lt−1(xt,Z)) . (9)

Since xt is selected as argmaxx∈Dx Vα(ut−1(x,Z)),

Vα(ut−1(x∗,Z)) ≤ Vα(ut−1(xt,Z)) ,

equivalently, Vα(ut−1(x∗,Z)) − Vα(lt−1(xt,Z)) ≤
Vα(ut−1(xt,Z)) − Vα(lt−1(xt,Z)). Hence, from (9),
r(xt) ≤ Vα(ut−1(xt,Z)) − Vα(lt−1(xt,Z)) for all α ∈
(0, 1) and t ≥ 1.

C. Proof of Theorem 1
Theorem 1. ∀α ∈ (0, 1), ∀x ∈ Dx, ∀t ≥ 1, there exists a
lacing value in Dz with respect to x and t.

Proof. Recall that

Z≤l , {z ∈ Dz : lt−1(x, z) ≤ Vα(lt−1(x,Z))} .

From to the definition of Z≤l and Vα(lt−1(x,Z)), we have

P (Z ∈ Z≤l ) ≥ α . (10)

Since α ∈ (0, 1), Z≤l 6= ∅. We prove the existence of
LV by contradiction: (a) assuming that ∃x ∈ Dx,∃t ≥
1,∀z ∈ Z≤l , ut−1(x, z) < Vα(ut−1(x,Z)) and then, (b)
proving that Vα(ut−1(x,Z)) is not a lower bound of {ω :
P (ut−1(x,Z) ≤ ω) ≥ α} which is a contradiction.

Since the GP posterior mean µt−1 and posterior standard
deviation σt−1 are continuous functions in Dx ×Dz, lt−1
and ut−1 are continuous functions in the closed Dz ⊂ Rdz
(x and t are given and remain fixed in this proof). We will
prove that Z≤l is closed in Rdz by contradiction.

If Z≤l is not closed in Rdz , there exists a limit point zp
of Z≤l such that zp /∈ Z≤l . Since Z≤l ⊂ Dz and Dz is
closed in Rdz , zp ∈ Dz. Thus, for zp /∈ Z≤l , lt−1(x, zp) >
Vα(lt−1(x,Z)) (from the definition of Z≤l ). Then, there
exists ε0 > 0 such that lt−1(x, zp) > Vα(lt−1(x,Z)) + ε0.
The pre-image of the open interval I0 = (lt−1(x, zp) −
ε0/2, lt−1(x, zp) + ε0/2) under lt−1 is also an open set V
containing zp (because lt−1 is a continuous function). Since
zp is a limit point of Z≤l , there exists an z′ ∈ Z≤l ∩V . Then,
lt−1(x, z

′) ∈ I0, so lt−1(x, z′) ≥ lt−1(x, zp) − ε0/2 ≥
Vα(lt−1(x,Z)) + ε0 − ε0/2 = Vα(lt−1(x,Z)) + ε0/2. It
contradicts z′ ∈ Z≤l .

Therefore, Z≤l is a closed set in Rdz . Besides,
since {ut−1(x, z) : z ∈ Z≤l } is upper bounded
by Vα(ut−1(x,Z)) (due to our assumption), so
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sup{ut−1(x, z) : z ∈ Z≤l } exists. Let z+l be such
that ut−1(x, z+l ) , sup{ut−1(x, z) : z ∈ Z≤l }. Then,
z+l ∈ Z

≤
l because Z≤l is closed.

Moreover, from our assumption that ∀z ∈
Z≤l , ut−1(x, z) < Vα(ut−1(x,Z)), we have
ut−1(x, z

+
l ) < Vα(ut−1(x,Z)). Furthermore,

P (ut−1(x,Z) ≤ ut−1(x, z+l )) ≥ P (Z ∈ Z
≤
l ) ≥ α .

where the first inequality is because ut−1(x, z
+
l ) =

sup{ut−1(x, z) : z ∈ Z≤l } and the last inequality is
from (10). Hence, Vα(ut−1(x,Z) is not a lower bound
of {ω : P (ut−1(x,Z) ≤ ω) ≥ α}.

D. Proof of Lemma 3
Lemma 3. By selecting xt as a maximizer of
Vα(ut−1(x,Z)) and selecting zt as an LV w.r.t xt, the in-
stantaneous regret is upper-bounded by:

r(xt) ≤ 2β
1/2
t σt−1(xt, zt) ∀t ≥ 1

with probability ≥ 1− δ for δ in Lemma 1.

Proof. Conditioned on the event f(x, z) ∈ It−1[f(x, z)] ,
[lt−1(x, z), ut−1(x, z)] for all x ∈ Dx, z ∈ Dz, t ≥ 1
which occurs with probability ≥ 1 − δ in Lemma 1,
it follows that Vα(f(x,Z)) ∈ It−1[Vα(f(x,Z))] ,
[Vα(lt−1(x,Z)), Vα(ut−1(x,Z))] for all α ∈ (0, 1), x ∈
Dx, and t ≥ 1 in Lemma 2.

From (4), by selecting zt as an LV, for all t ≥ 1,

r(xt) ≤ Vα(ut−1(xt,Z))− Vα(lt−1(xt,Z))
≤ ut−1(xt, zt)− lt−1(xt, zt) (since zt is an LV)

≤ µt−1(xt, zt) + β
1/2
t σt−1(xt, zt)

− µt−1(xt, zt) + β
1/2
t σt−1(xt, zt)

= 2β
1/2
t σt−1(xt, zt) .

E. Bound on the Average Cumulative Regret
Conditioned on the event f(x, z) ∈ It−1[f(x, z)] ,
[lt−1(x, z), ut−1(x, z)] for all x ∈ Dx, z ∈ Dz, t ≥ 1
which occurs with probability ≥ 1− δ in Lemma 1, it fol-
lows that r(xt) ≤ 2β

1/2
t σt−1(xt, zt) ∀t ≥ 1 in Lemma 3.

Therefore,

RT ,
T∑
t=1

r(xt) ≤
T∑
t=1

2β
1/2
t σt−1(xt, zt)

≤ 2β
1/2
T

T∑
t=1

σt−1(xt, zt)

since βt is a non-decreasing sequence.

From Lemma 5.4 and the Cauchy-Schwarz inequality in
(Srinivas et al., 2010), we have

2

T∑
t=1

σt−1(xt, zt) ≤
√
C1TγT (11)

where C1 = 8/ log(1 + σ−2n ). Hence,

RT ≤
√
C1TβT γT .

Equivalently, RT /T ≤
√
C1βT γT /T . Since γT is shown

to be bounded for several common kernels in (Srinivas et al.,
2010), the above implies that limT→∞RT /T = 0, i.e., the
algorithm is no-regret.

F. Bound on r(xt∗(T ))

Conditioned on the event f(x, z) ∈ It−1[f(x, z)] ,
[lt−1(x, z), ut−1(x, z)] for all x ∈ Dx, z ∈ Dz, t ≥ 1,
which occurs with probability ≥ 1 − δ in Lemma 1,
it follows that Vα(f(x,Z)) ∈ It−1[Vα(f(x,Z))] ,
[Vα(lt−1(x,Z)), Vα(ut−1(x,Z))] for all α ∈ (0, 1),x ∈
Dx, t ≥ 1 in Lemma 2. Furthermore, we select zt as an LV,
so lt−1(xt, zt) ≤ Vα(lt−1(xt,Z)) ≤ Vα(ut−1(xt,Z)) ≤
ut−1(xt, zt) according to the Definition 1.

At T -th iteration, by recommending xt∗(T ) as an estimate of
x∗ where t∗(T ) , argmaxt∈{1,...,T} Vα(lt−1(xt,Z)), we
have

Vα(lt∗(T )−1(xt∗(T ),Z)) = max
t∈{1,...,T}

Vα(lt−1(xt,Z))

≥ 1

T

T∑
t=1

Vα(lt−1(xt,Z)) .

Therefore,

r(xt∗(T )) = Vα(f(x∗,Z))− Vα(f(xt∗(T ),Z))

≤ Vα(f(x∗,Z))− Vα(lt∗(T )−1(xt∗(T ),Z))

≤ 1

T

T∑
t=1

(Vα(f(x∗,Z))− Vα(lt−1(xt,Z))) .

Furthermore, Vα(f(x∗,Z)) ≤ Vα(ut−1(x∗,Z)) from our
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condition, so

r(xt∗(T )) ≤
1

T

T∑
t=1

(Vα(f(x∗,Z))− Vα(lt−1(xt,Z)))

≤ 1

T

T∑
t=1

(Vα(ut−1(x∗,Z))− Vα(lt−1(xt,Z)))

≤ 1

T

T∑
t=1

(Vα(ut−1(xt,Z))− Vα(lt−1(xt,Z)))

≤ 1

T

T∑
t=1

(ut−1(xt, zt)− lt−1(xt, zt)) (since zt is an LV)

≤ 1

T

T∑
t=1

2β
1/2
t σt−1(xt, zt)

≤
√
C1βT γT

T
(from Appendix E) .

Since γT is shown to be bounded for several common
kernels in (Srinivas et al., 2010), the above implies that
limT→∞r(xt∗(T )) = 0.

G. Proof of Theorem 2 and Its Corollaries
G.1. Proof of Theorem 2

Theorem 2. Let W be a random variable with the support
Dw ⊂ Rdw and dimension dw. Let h be a continuous func-
tion mapping from w ∈ Dw to R. Then, h(W) denotes the
random variable whose realization is the function h evalua-
tion at a realization w of W. Suppose h(w) has a minimizer
wmin ∈ Dw, then limα→0+ Vα(h(W)) = h(wmin) .

Recall that the support Dw of W is defined as the smallest
closed subset Dw of Rdz such that P (W ∈ Dw) = 1, and
wmin ∈ Dw minimizes h(w).
Lemma 4. For all α ∈ (0, 1), Vα(h(W)) is a nondecreas-
ing function, i.e.,

∀ 1 > α > α′ > 0, Vα(h(W)) ≥ Vα′(h(W)) .

Proof. Since α > α′, for all ω ∈ R,

P (h(W) ≤ ω) ≥ α⇒ P (h(W) ≤ ω) ≥ α′ .
Therefore, {ω : P (h(W) ≤ ω) ≥ α} is a subset of {ω :
P (h(W) ≤ ω) ≥ α′}. Thus,

inf{ω : P (h(W) ≤ ω) ≥ α}
≥ inf{ω : P (h(W) ≤ ω) ≥ α′}

i.e., Vα(h(W)) ≥ Vα′(h(W)) .

Let

ω0+ , lim
α→0+

Vα(h(W)) . (12)

Then, from Lemma 4, the following lemma follows.
Lemma 5. For all α ∈ (0, 1), and ω0+ defined in (12)

ω0+ ≤ Vα(h(W)) .

We use Lemma 5 to prove the following lemma.
Lemma 6. For all w ∈ Dw, and ω0+ defined in (12)

ω0+ ≤ h(w)

which implies that

ω0+ ≤ h(wmin) .

Proof. By contradiction, we assume that there exits w′ ∈
Dw such that ω0+ > h(w′). Then, there exists ε1 > 0
such that ω0+ > h(w′) + ε1. Consider the pre-image V
of the open interval Ih = (h(w′) − ε1/2, h(w

′) + ε1/2.
Since h is a continuous function, V is an open set and it
contains w′ (as Ih contains h(w′)). Then, consider the set
V ∩ Dw ⊃ {w′} 6= ∅, we prove P (W ∈ V ∩ Dz) > 0 by
contradiction as follows.

If P (W ∈ V ∩ Dw) = 0 then the closure of Dw \ V is a
closed set that is smaller than Dw (since V is an open set,
Dw is a closed set, and V ∩ Dw is not empty) and satisfies
P (W ∈ Dw \ V) = 1, which contradicts the definition of
Dw. Thus, P (W ∈ V ∩ Dw) > 0.

Therefore, P (h(W) ∈ Ih) > 0. So,

P (h(W) ≤ ω0+)

≥ P (h(W) ≤ h(w′) + ε1/2)

≥ P (h(W) ∈ Ih)
> 0 .

Let us consider α0 = P (h(W) ≤ h(w′) + ε1/2) > 0, the
VAR at α0 is

Vα0
(h(W)) , inf{ω : P (h(W) ≤ ω) ≥ α0}

≤ h(w′) + ε1/2

< ω0+

which is a contradiction to Lemma 5.

Lemma 7. For ω0+ defined in (12)

ω0+ ≥ h(wmin) . (13)

Proof. By contradiction, we assume that ω0+ < h(wmin).
Then there exists ε2 > 0 that ω0+ + ε2 < h(wmin). Since
ω0+ , limα→0+ Vα(h(W)) so there exits α0 > 0 such that
Vα0

(h(W)) ∈ (ω0+ , ω0+ + ε2). However,

P (h(W) ≤ Vα0
(h(W)))

≤ P (h(W) ≤ ω0+ + ε2 < h(wmin))

= 0
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which contradicts the fact that α0 > 0. Therefore, ω0+ ≥
h(wmin).

From (12), Lemma 6 and Lemma 7,

lim
α→0+

Vα(h(W)) = h(wmin)

which directly leads to the result in Corollary 2.1 for a con-
tinuous function f(x, z) over z ∈ Dz. While Z can follow
any probability distribution defined on the support Dz, we
can choose the distribution of Z as a uniform distribution
over Dz.

G.2. Corollary 2.2

From Theorem 2, Dz is a closed subset of Rdz , and
ut−1(x, z), lt−1(x, z) are continuous functions over z ∈
Dz, it follows that the selected xt by both STABLEOPT (in
(5)) and V-UCB are the same. Furthermore,

Z≤l , {z ∈ Dz : lt−1(x, z) ≤ Vα(lt−1(x,Z))}
= {z ∈ Dz : lt−1(x, z) ≤ min

z′∈Dz

lt−1(x, z
′)}

= {z ∈ Dz : lt−1(x, z) = min
z′∈Dz

lt−1(x, z
′)} ,

Z≥u , {z ∈ Dz : ut−1(x, z) ≥ Vα(ut−1(x,Z))}
= {z ∈ Dz : ut−1(x, z) ≥ min

z′∈Dz

ut−1(x, z
′)}

= Dz .

Therefore, the set of lacing values is Z≤l ∩ Z≥u = Z≤l =
{z ∈ Dz : lt−1(x, z) = minz′∈Dz lt−1(x, z

′)} any of
which is also the selected zt in (5) by STABLEOPT. Thus,
the selected zt by both STABLEOPT and V-UCB are the
same.

H. Local Neural Surrogate Optimization
The local neural surrogate optimization (LNSO) to maxi-
mize a VAR Vα(h(x,Z)) is described in Algorithm 2. The
algorithm can be summarized as follows:

• Whenever the current updated x(i) is not in B(xc, r)
(line 4), the center xc of the ball B is updated to be x(i)

(line 6) and the surrogate function g(x,θ) is re-trained
(lines 7-12).

• The surrogate function g(x,θ) is (re-)trained to es-
timate Vα(h(x,Z)) well for all x ∈ B(xc, r) (lines
7-12) with stochastic gradient descent by minimizing
the following loss function given random mini-batches
Z of Z (line 8) and X of x ∈ B(xc, r) (line 9):

Lg(X ,Z) ,
1

|X ||Z|
∑

x∈X ,z∈Z
[ρα(h(x, z)− g(x;θ))]

(14)

Algorithm 2 LNSO of Vα(h(x,Z))

1: Input: target function h; domain Dx; initializer x(0);
α; a generator of Z samples gen Z; radius r; no. of
training iterations tv , tg; optimization stepsizes γx, γg

2: Randomly initialize θs
3: for i = 1, 2, . . . , tv do
4: if i = 1 or ‖x(i) − xc‖ ≥ δx then
5: Initialize θ(0) = θs
6: Update the center of B: xc = x(i)

7: for j = 1, 2, . . . , tg do
8: Draw nz samples of Z: Z = gen Z(nz).
9: Draw a set X of nx uniformly distributed sam-

ples in B(xc, r).
10: Update θ(j) = θ(j−1) − γg dLg(X ,Z)

dθ

∣∣∣
θ=θ(j−1)

where Lg(X ,Z) is defined in (14).
11: end for
12: θs = θtg
13: end if
14: Update x(i) = x(i−1) + γx

dg(x;θs)
dx

∣∣
x=x(i−1) .

15: Project x(i) into Dx.
16: end for
17: Return x(tv)

where ρα is the pinball function in Sec. 3.5.

• Instead of directly maximizing Vα(h(x,Z)) whose gra-
dient w.r.t x is unavailable, we find x that maximizes
the surrogate function g(x,θs) (line 14) where θs is
the parameters trained in lines 7-12.

I. Experimental Details
Regarding the construction of Dz in optimizing the syn-
thetic benchmark functions, the discrete Dz is selected as
equi-distanct points (e.g., by dividing [0, 1]dz into a grid).
The probability mass of Z is defined as P (Z = z) ∝
exp(−(z− 0.5)2/0.12) (the subtraction z− 0.5 is elemen-
twise). The continuous Z follows a 2-standard-deviation
truncated independent Gaussian distribution with the mean
of 0.5 and standard deviation 0.125. It is noted that whenDz

is discrete, there is a large region of Z with low probability
P (Z) in experiments with synthetic benchmark functions.
This is to highlight the advantage of V-UCB Prob in ex-
ploiting P (Z) compared with V-UCB Unif. In the robot
pushing experiment, the region of Z with low probability is
smaller than that in the experiments with synthetic bench-
mark functions (e.g., Hartmann-(1, 2)), which is illustrated
in Fig. 6. Therefore, the gap in the performance between V-
UCB Unif and V-UCB Prob is smaller in the robot pushing
pushing experiment (Fig. 5b) than that in the experiment
with Hartmann-3D-(1, 2) (Fig. 3c).

When the closed-form expression of the objective func-
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Figure 6. Plots of the log values of the un-normalized probabili-
ties of the discrete Z for the Hartmann-(1, 2) in the left plot and
Robot pushing (3, 2) in the right plot. The orange dots show the
realizations of the discrete Z.

tion is known (e.g., synthetic benchmark functions) in the
evaluation of the performance metric, the maximum value
maxx∈Dx Vα(f(x,Z)) can be evaluated accurately. On the
other hand, when the closed-form expression of the objec-
tive function is unknown even in the evaluation of the perfor-
mance metric (e.g., the simulated robot pushing experiment),
the maximum value maxx∈Dx Vα(f(x,Z)) is estimated by
maxx∈DT

Vα(f(x,Z)) + 0.01 where DT are input queries
in the experiments with both V-UCB and ρKGapx. The
addition of 0.01 is to avoid −∞ value in plots of the log
values of the performance metric.

The sizes of the initial observations D0 are 3 for the Branin-
Hoo and Goldstein-Price functions; 10 for the Hartmann-
3D function; 20 for the portfolio optimization problem;
and 30 for the simulated robot pushing task. The initial
observations are randomly sampled for different random
repetitions of the experiments, but they are the same between
the same iterations in V-UCB and ρKGapx.

The hyperparameters of GP (i.e., the length-scales and sig-
nal variance of the SE kernel) and the noise variance σ2

n are
estimated by maximum likelihood estimation (Rasmussen
& Williams, 2006) every 3 iterations of BO. We set a lower
bound of 0.0001 for the noise variance σ2

n to avoid numeri-
cal errors.

To show the advantage of LNSO, we set the number of
samples of W to be 10 for both V-UCB and ρKGapx. The
number of samples of x, i.e., |X |, in LNSO (line 9 of Algo-
rithm 2) is 50. The radius r of the local region B is set to be
a small value of 0.1 such that a small neural network works
well: 2 hidden layers with 30 hidden neurons at each layer;
the activation functions of the hidden layers and the output
layer are sigmoid and linear functions, respectively.

Since the theoretical value of βt is often considered as exces-
sively conservative (Bogunovic et al., 2016; Srinivas et al.,
2010; Bogunovic et al., 2018). We set βt = 2 log(t2π2/0.6)
in our experiments while βt can be tuned to achieved better
exploration-exploitation trade-off (Srinivas et al., 2010) or

multiple values of βt can be used in a batch mode (Torossian
et al., 2020).

Fig. 7 shows the performance advantage of our V-UCB
method over a baseline that selects the input query as a
random (x, z) ∈ Dx ×Dz, labeled as Random in the figure.

0 10 20 30
Iteration

−4

−3

−2

−1

0

lo
g

10
R

eg
re

t

Algorithm
V-UCB Prob
V-UCB Unif
Random

0 25 50
Iteration

−1.5

−1.0

−0.5

0.0

lo
g

10
R

eg
re

t

Algorithm
V-UCB Prob
V-UCB Unif
Random

(a) Branin-Hoo-(1, 1) (b) Goldstein-Price-(1, 1)

0 50 100
Iteration

−4

−3

−2

−1

0

lo
g

10
R

eg
re

t
Algorithm

V-UCB Prob
V-UCB Unif
Random

0 20 40
Iteration

−1.25

−1.00

−0.75

−0.50

−0.25

lo
g

10
R

eg
re

t

Algorithm
V-UCB Prob
V-UCB Unif
Random

(c) Hartmann-3D-(1, 2) (d) Hartmann-3D-(2, 1)

0 50 100
Iteration

−1.5

−1.0

−0.5

0.0

0.5

lo
g

10
R

eg
re

t

Algorithm
V-UCB Prob
V-UCB Unif
Random

0 25 50
Iteration

0.00

0.25

0.50

0.75

1.00

lo
g

10
R

eg
re

t
Algorithm

V-UCB Prob
V-UCB Unif
Random

(e) Hartmann-6D-(5, 1)
(f) Portfolio optimization

problem (3, 2)

Figure 7. Plots of the empirical performances of V-UCB and Ran-
dom in optimizing synthetic functions and the portfolio optimiza-
tion problem.


