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Abstract

Neural architecture search (NAS) automates the
design of deep neural networks. One of the
main challenges in searching complex and non-
continuous architectures is to compare the simi-
larity of networks that the conventional Euclidean
metric may fail to capture. Optimal transport
(OT) is resilient to such complex structure by con-
sidering the minimal cost for transporting a net-
work into another. However, the OT is generally
not negative definite which may limit its ability
to build the positive-definite kernels required in
many kernel-dependent frameworks. Building
upon tree-Wasserstein (TW), which is a negative
definite variant of OT, we develop a novel discrep-
ancy for neural architectures, and demonstrate it
within a Gaussian process (GP) surrogate model
for the sequential NAS settings. Furthermore,
we derive a novel parallel NAS, using quality k-
determinantal point process on the GP posterior,
to select diverse and high-performing architec-
tures from a discrete set of candidates. We empir-
ically demonstrate that our TW-based approaches
outperform other baselines in both sequential and
parallel NAS.

1. Introduction

Neural architecture search (NAS) is the process of automat-
ing architecture engineering to find the best design of our
neural network model. This output architecture will per-
form well for a given dataset. With the increasing interest
in deep learning in recent years, NAS has attracted signifi-
cant research attention (Dong & Yang, 2019; Elsken et al.,
2019a; Liu et al., 2018; 2019; Luo et al., 2018; Real et al.,
2019; 2017; Shah et al., 2018; Suganuma et al., 2017; Xie
& Yuille, 2017; Yao et al., 2020). We refer the interested
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readers to the survey (Elsken et al., 2019b) for a detailed
review of NAS and to the comprehensive list' for all of the
related papers in NAS.

Bayesian optimization (BO) utilizes a probabilistic model,
particularly Gaussian process (GP) (Rasmussen, 2006), for
determining future evaluations and its evaluation efficiency
makes it well suited for the expensive evaluations of NAS.
However, the conventional BO approaches (Shahriari et al.,
2016; Snoek et al., 2012) are not suitable to capture the
complex and non-continuous designs of neural architectures.
Recent work (Kandasamy et al., 2018) has considered opti-
mal transport (OT) for measuring neural architectures. This
views two networks as logistical suppliers and receivers,
then optimizes to find the minimal transportation cost as
the distance, i.e., similar architectures will need less cost
for transporting and vice versa. However, the existing OT
distance for architectures, such as OTMANN (Kandasamy
et al., 2018), do not easily lend themselves to the creation of
the positive semi-definite (p.s.d.) kernel (covariance func-
tion) due to the indefinite property of OT (Peyré & Cuturi,
2019) (88.3). It is critical as the GP is not a valid random
process when the covariance function (kernel) is not p.s.d.
(see Lem. 2.1). In addition, there is still an open research
direction for parallel NAS where the goal is to select multi-
ple high-performing and diverse candidates from a discrete
set of candidates for parallel evaluations. This discrete prop-
erty makes the parallel NAS interesting and different from
the existing batch BO approaches (Desautels et al., 2014;
Gonzélez et al., 2016), which are typically designed to han-
dle continuous observations.

We propose a negative definite tree-Wasserstein (TW) dis-
tance for neural network architectures based on a novel de-
sign which captures both global and local information via n-
gram and indegree/outdegree representations for networks.
In addition, we propose the k-determinantal point process
(k-DPP) quality for selecting diverse and high-performing
architectures from a discrete set. This discrete property of
NAS makes k-DPP ideal in sampling the choices overcom-
ing the greedy selection used in the existing batch Bayesian
optimization (Desautels et al., 2014; Gonzilez et al., 2016;
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Wang et al., 2018). At a high level, our contributions are
three-fold as follows:

e A TW distance with a novel design for capturing both
local and global information from architectures which
results in a p.s.d. kernel while the existing OT distance
does not.

e A demonstration of TW as the novel GP covariance
function for sequential NAS.

e A parallel NAS approach using k-DPP for selecting
diverse and high-quality architectures from a discrete
set.

2. Tree-Wasserstein for Neural Network
Architectures

We first argue that the covariance matrices associated with a
kernel function of Gaussian process (GP) and k-DPP need
to be positive semi-definite (p.s.d.) for a valid random pro-
cess in Lemma 2.1. We then develop tree-Wasserstein (TW)
(Do Ba et al., 2011; Le et al., 2019b), the negative defi-
nite variant of optimal transport (OT), for measuring the
similarity of architectures. Consequently, we can build a
p-s.d. kernel upon OT geometry for modeling with GPs and
k-determinantal point processes (k-DPPs).

Lemma 2.1. If a covariance function k of a Gaussian pro-
cess is not positive semi-definite, the resulting GP is not a
valid random process.

Proof of Lemma 2.1 is placed in the Appendix §D.1.

2.1. Tree-Wasserstein

We give a brief review about OT, tree metric, tree-
Wasserstein (TW) which are the main components for our
NAS framework. We denote [n] = {1,2,...,n},Vn € N,.
Let (2, d) be a measurable metric space. For any = € €,
we use 0, for the Dirac unit mass on z.

Optimal transport. OT, a.k.a. Wasserstein, Monge-
Kantorovich, or Earth Mover’s distance, is the flexible tool
to compare probability measures (Peyré & Cuturi, 2019;
Villani, 2003). Let w, v be Borel probability distributions
on 2 and R (w, ) be the set of probability distributions 7 on
Qx Qsuchthat 7(B x Q) = w(B)and 7(2 x B") = v(B’)
for all Borel sets B, B’. The 1-Wasserstein distance Wy
(Villani, 2003) (p.2) between w and v is defined as:

Wd(W7 V) - 7r€7i€1%£1 V)

/ d(z, z)m(dz,dz), (1)
QxQ

where d is a ground metric (i.e., cost metric) of OT.

Tree metrics and tree-Wasserstein. A metric d :  x
Q — R, is a tree metric if there exists a tree 7 with positive
edge lengths such that Vz € ), then «x is a node of T; and
Y,z € Q, d(x, z) is equal to the length of the (unique) path
between x and z (Semple & Steel, 2003) (§7, p.145-182).

Let d7 be the tree metric on tree 7 rooted atr. Forx, z € T,
we denote P(z, z) as the (unique) path between z and z.
We write I'(x) for a set of nodes in the subtree of 7 rooted
atz, defined as I'(z) = {z € T | € P(r, 2) }. Foredge e
in T, let v, be the deeper level node of edge e (the farther
node to root r), and w,. be the positive length of that edge.

Tree-Wasserstein (TW) is a special case of OT whose ground
metric is a tree metric (Do Ba et al., 2011; Le et al., 2019b).
Given two measures w, v supported on tree 7, and setting
the tree metric d as the ground metric, then the TW dis-
tance W, between w and v admits a closed-form solution
as follows:

Wy, (w,v) = Z we|w(F(ve)) — I/(F(’Ue))|, 2)

ecT

where w(I'(v.)) is the total mass of the probability measure
w in the subtree I'(v,) rooted at v.. It is important to note
that we can derive p.s.d. kernels on tree-Wasserstein dis-
tance Wy~ (Le et al., 2019b), as opposed to the standard OT
W for general ground metric d (Peyré & Cuturi, 2019).

2.2. Tree-Wasserstein for Neural Networks

We present a new approach leveraging the tree-Wasserstein
for measuring the similarity of neural network architectures.
We consider a neural network architecture x by (S°, A)
where §° is a multi-set of operations in each layer of x,
and A is an adjacency matrix, representing the connection
among these layers (i.e., network structure) in x. We can
also view a neural network as a directed labeled graph where
each layer is a node in a graph, and an operation in each
layer is a node label (i.e., A represents the graph structure,
and S° contains a set of node labels). We then propose to
extract information from neural network architectures by
distilling them into three separate quantities as follows:

e n-gram representation for layer operations. Each
neural network consists of several operations from the input
layer to the output layer. Inspired by the n-gram represen-
tation for a document in natural language processing, we
view a neural network as a document and its operations
as words. Therefore, we can use n-grams (i.e., n-length
paths) to represent operations used in the neural network.
We then normalize the n-gram, and denote it as x° for a
neural network x.

Particularly, for n = 1, the n-gram representation is a fre-
quency vector of operations, used in Nasbot (Kandasamy
et al., 2018). When we use all n < ¢ where £ is the num-
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ber of network layers, the n-gram representation shares the
same spirit as the path encoding, used in Bananas (White
et al., 2021).

Let S be the set of operations, and S” =S xS x -++ X S
(n times of S), the n-gram can be represented as empirical
measures in the followings

o __ o
wy = E X205,

sesSn

wy = Z 2205, 3)

sesn

where x¢ and z? are the frequency of n-gram operation
s € S™ in architecture x and z, respectively.

We can leverage the TW distance to compare the n-gram
representations wy and wy using Eq. (2), denoted as
Wi, (wg,wg). To compute this distance, we utilize a prede-
fined tree structure for network operations by hierarchically
grouping similar network operations into a tree as illustrated
in Fig. 1. We can utilize the domain knowledge to define the
grouping and the edge weights, such as we can have convl
and conv3 in the same group and maxpool is from an-
other group. Inspired by the partition-based tree metric
sampling (Le et al., 2019b), we define the edge weights
decreasing when the edge is far from the root. Although
such design can be subjective, the final distance (defined
later in Eq. (5)) will be calibrated and normalized properly
when modeling with a GP in §3. We refer to Fig. 8 and
Appendix §F for the example of TW computation for neural
network architectures.

o Indegree and outdegree representations for network
structure. We extract the indegree and outdegree of each
layer, which are the number of ingoing and outgoing layers
respectively, as an alternative way to represent a network
structure. We denote Ly as the set of all layers which one
can reach from the input layer for neural network x. Let
7z, and M, be lengths of the longest paths from an input
layer to the layer ¢ and to the output layer respectively. Such
paths interpret the order of layers in a neural network which
starts with the input layer, connect with some middle layers,
and end with the output layer, we represent the indegree and
outdegree of network layers in x as empirical measures w?
and wf , defined as

d~ § d~
Wy = Xy 5771,2‘*'1 s
Mg +1

dt § : dt
Wy = Xy 5%,24—1, (4)
L€ Ly Mt

LeLy
where x¢ and x¢ are the normalized indegree and outde-
gree of the layer ¢ of x respectively.

For indegree and outdegree information, the supports of

empirical measures w? , and w?  are in one-dimensional

space that a tree structure reduces to a chain of supports.
= d-

Thus, we can use Wy (wx , Wy ) to compare those em-

. . . . + +
pirical measures.” Similarly, we have W, (wi ,wd )
+ o
4" and w?" built from outdegree

for empirical measures w
information.

Tree-Wasserstein distance for neural networks. Given
neural networks x and z, we consider three separate TW
distances for the n-gram, indegree and outdegree repre-
sentations of the networks respectively. Then, we define
dnn as a convex combination with nonnegative weights
{al,ag,ag ‘ Zl ;= 1,041‘ > 0} for WdTD’ WdT,’ and
Way, respectively, to compare neural networks x and z
as:

dnn(x,2) = oWy, (x%,2°) + aaWa (wi_,wg_)
+ +
+(1—a; — ag)de (wi ,wd ) . (5
The proposed discrepancy dny can capture not only the
frequency of layer operations, but also network structures,
e.g., indegree and outdegree of network layers.

We illustrate our proposed TW for neural networks in Fig.
10 describing each component in Eq. (5). We also describe
the detailed calculations in the Appendix §F. We highlight
a useful property of our proposed dnn: it can compare two
architectures with different layer sizes and/or operations
sizes.

Proposition 1. The dyy for neural networks is a pseudo-
metric and negative definite.

Proof of Proposition 1 is placed in the Appendix §D.2.

Our discrepancy dny is negative definite as opposed to the
OT for neural networks considered in Kandasamy et al.
(2018) which is indefinite. Therefore, from Proposition 1
and following Theorem 3.2.2 in Berg et al. (1984), we can
derive a positive definite TW kernel upon dny for neural
networks x, z as

k(x,z) = exp (deN(x, z)/of), (6)

where the scalar o7 is the length-scale parameter. Our kernel
has three hyperparameters including a length-scale 012 in
Eq. (6); a1 and s in Eq. (5). These hyperparameters will
be estimated by maximizing the log marginal likelihood (see
Appendix §G). We refer to the Appendix §H for a further
discussion about the properties of the pseudo-distance dyn.

3. Neural Architecture Search with Gaussian
Process and k-DPP

Problem setting. We consider a noisy black-box function
f : R — R over some domain X containing neural net-
work architectures. As a black-box function, we do not have

2Since the tree is a chain, the TW distance is equivalent to the
univariate OT.
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Figure 1. We represent two architectures x and z by network structure (via outdegree and indegree) and network operation (using 1-gram
in this example). The similarity between each respective representation is estimated by tree-Wasserstein to compute the minimal cost
of transporting one object to another. As a nice property of optimal transport, our tree-Wasserstein can handle different layer sizes and
different operation types. The weights in each histogram are calculated from the architectures. The histogram bins in outdegree and
indegree are aligned with the network structure in the left. See the Appendix §F for detailed calculations.

an explicit formulation for f and it is expensive to evaluate.
Our goal is to find the best architecture x* € X such that

x* = argmax f(x). 7

xeX

We view the black-box function f as a machine learning
experiment which takes an input as a neural network ar-
chitecture x and produces an accuracy y. We can write
y = f(x) + € where we have considered Gaussian noise
¢ ~ N(0,0%) given the noise variance o estimated from
the data.

Bayesian optimization (BO) optimizes the black-box func-
tion by sequentially evaluating it (Garnett et al., 2010;
Shahriari et al., 2016; Nguyen & Osborne, 2020). Particu-
larly, BO can speed up the optimization process by using a
probabilistic model to guide the search (Snoek et al., 2012).
BO has demonstrated impressive success for optimizing the
expensive black-box functions across domains.

Surrogate models. Bayesian optimization reasons about
f by building a surrogate model, such as a Gaussian process
(GP) (Rasmussen, 2006), Bayesian deep learning (Sprin-
genberg et al., 2016) or deep neural network (Snoek et al.,
2015; White et al., 2021). Among these choices, GP is the
most popular model, offering three key benefits: (i) closed-
form uncertainty estimation, (ii) evaluation efficiency, and

(iii) learning hyperparameters. GP imposes a normally dis-
tributed random variable at every point in the input space.
The predictive distribution for a new observation also fol-
lows a Gaussian distribution (Rasmussen, 2006) where we
can estimate the expected function value u(x) and the pre-
dictive uncertainty o(x) as

p(x) =k, X) [K + 021 'y (8)

0% (X) =k — k(x',X) [K + 021 KT (x,X) (9)

where X = [x1,...xy]| and y = [y1, ..yn] are the collected
architectures and performances respectively; K (U, V) is
a covariance matrix whose element (¢, j) is calculated as
k(x;,x;) with x; € U and x; € V; ky, = k(x/,x);
K = K(X,X); aj% is the measurement noise variance and
I is the identity matrix.

Generating a pool of candidates P;. We follow Kan-
dasamy et al. (2018); White et al. (2021) to generate a list of
candidate networks using an evolutionary algorithm (Back,
1996). First, we stochastically select top-performing can-
didates with higher acquisition function values. Then, we
apply a mutation operator to each candidate to produce mod-
ified architectures. Finally, we evaluate the acquisition given
these mutations, add them to the initial pool, and repeat for
several steps to get a pool of candidates P;. We design the
ablation study in Fig. 2 demonstrating that the evolution
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Algorithm 1 Sequential and Parallel NAS using Gaussian
process with tree-Wasserstein kernel

1: Input: Initial data Dy, black-box function f(x). Out-
put: The best architecture x*

2: fort=1,...,Tdo

3:  Generate architecture candidates P; by random per-
mutation from the top architectures

4:  Learn a GP (including hyperparameters) using TW
from D;_; to perform estimation over P, including
(i) covariance matrix Kp,, (ii) predictive mean pp,
and (iii) predictive variance op,

5. If Sequential: (i) select a next architecture x; =

argmax a(x | pp,,op,); then (i) evaluate the new
VxEPy
architecture y; = f(x;); after that, (iii) augment
Dy« D; 1 U (Xt,yt).

6: If Parallel: (i) select B architectures X; =
(Xt,1,,.-X¢,B] = k-DPP(Kp,) in Eq. (12); then
(ii) evaluate in parallel Y; = f(X,); after that, (iii)
augment D; < D;_1 U (X4, Y}).

7: end for

strategy outperforms the random strategy for this task.

Optimizing hyperparameters. We optimize the model
hyperparameters by maximizing the log marginal likelihood.
We present the derivatives for estimating the hyperparam-
eters a; and o of the tree-Wasserstein dyy for neural net-
works in the Appendix §G. We shall optimize these variables
via multi-started gradient descent.

3.1. Sequential NAS using Bayesian optimization

We sequentially suggest a single architecture for evaluation
using a decision function a(x) (i.e., acquisition function)
from the surrogate model. This acquisition function is care-
fully designed to trade off between exploration of the search
space and exploitation of current promising regions. We uti-
lize the GP-UCB (Srinivas et al., 2010) as the main decision
function «(x) = u(x) + ko (x) where « is the parameter
controlling the exploration, ;i and o are the GP predictive
mean and variance in Eqgs. (8, 9). Empirically, we find
that this GP-UCB generally performs better than expected
improvement (EI) (see the Appendix §1.1) and other acqui-
sition functions (see (White et al., 2021)). We note that
the GP-UCB also comes with a theoretical guarantee for
convergence (Srinivas et al., 2010).

We maximize the acquisition function to select the next ar-
chitecture x;41 = arg maxxep, @+ (x). This maximization
is done on the discrete set of candidate P, obtained previ-
ously. The selected candidate is the one we expect to be the
best if we are optimistic in the presence of uncertainty.

3.2. Parallel NAS using Quality k-DPP and GP

The parallel setting speeds up the optimization process by
selecting a batch of architectures for parallel evaluations.
We present the k-determinantal point process (k-DPP) with
quality to select from a discrete pool of candidate P; for (i)
high-performing and (ii) diverse architectures that cover the
most information while avoiding redundancy. In addition,
diversity is an important property for not being stuck at a
local optimal architecture.

The DPP (Kulesza et al., 2012) is an elegant probabilis-
tic measure used to model negative correlations within a
subset and hence promote its diversity. A k-determinantal
point process (k-DPP) (Kulesza & Taskar, 2011) is a dis-
tribution over all subsets of a ground set P; of cardinal-
ity k. It is determined by a positive semidefinite kernel
Kp,. Let K4 be the submatrix of Kp, consisting of
the entries K;; with i,j € A C P,. Then, the proba-
bility of observing A C P is proportional to det(K 4),
P(ACP;) xdet(K 4), (10) Ki; = q;é] diq. (11
k-DPP with quality. While the original idea of the k-DPP
is to find a diverse subset, we can extend it to find a subset
that is both diverse and high-quality. For this, we write a
DPP kernel k as a Gram matrix, K = ®T®, where the
columns of ¢ are vectors representing items in the set S.
We now take this one step further, writing each column ¢
as the product of a quality term ¢; € R and a vector of
normalized diversity features ¢;, ||¢;|| = 1. The entries of
the kernel can now be written in Eq. (11).

As discussed in (Kulesza et al., 2012), this decomposition
of K has two main advantages. First, it implicitly enforces
the constraint that & must be positive semidefinite, which
can potentially simplify learning. Second, it allows us to in-
dependently model quality and diversity, and then combine
them into a unified model. Particularly, we have

P (A) o (H %2) det(4] ¢s),

i€EA

where the first term increases with the quality of the selected
items, and the second term increases with the diversity of the
selected items. Without the quality component, we would
get a very diverse set of architectures. However, we might
fail to include the most high-performance architectures in
‘P:, focusing instead on low-quality outliers. By integrating
the two models, we can achieve a more balanced result.

Conditioning. In the parallel setting, given the training
data, we would like to select high quality and diverse ar-
chitectures from a pool of candidate P; described above.
We shall condition on the training data in constructing the
covariance matrix over the testing candidates from P,. We
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Figure 2. We study the relative contribution of the strategies generating a pool of candidate P (Rand and Evolution) versus the main
optimization algorithm (Rand, Evolution and BO). The result shows that Evolution can help to improve the performance than Rand in
generating a pool of candidate P. Given the same strategy for generating P, BO is significantly better than Rand and Evolution for
optimization. Evol+BO is the design in our approach that leads to the best performance.

make the following proposition in connecting the k-DPP
conditioning and GP uncertainty estimation. This view al-
lows us to learn the covariance matrix using GP, such as we
can maximize the GP marginal likelihood for learning the
TW distance and kernel hyperparameters for k-DPP.

Proposition 2. Conditioned on the training set, the proba-
bility of selecting new candidates from a pool Py is equiva-
lent to the determinant of the Gaussian process predictive
covariance matrix.

Proof of Proposition 2 is placed in the Appendix §G.1.

We can utilize the GP predictive mean p(-) in Eq. (8) to
estimate the quality for any unknown architecture g; defined
in Eq. (11). Then, we construct the covariance (kernel)
matrix over the test candidates for selection by rewriting Eq.
(11) as

Kp, (xi,%;) =exp(—pu(x:)) o (xi, x;) exp(—p(x;)), (12)

for all x;,x; € P, where u(x;) and o(x;,x;) are the GP
predictive mean and variance defined in Egs. (8, 9). Fi-
nally, we sample B architectures from the covariance matrix
K p, which encodes both the diversity (exploration) and
high-utility (exploitation). The sampling algorithm requires
precomputing the eigenvalues (Kulesza & Taskar, 2011).
Sampling from a k-DPP requires O(N B?) time overall
where B is the batch size.

Advantages. The connection between GP and k-DPP al-
lows us to directly sample diverse and high-quality samples
from the GP posterior. This leads to the key advantage that
we can optimally sample a batch of candidates without the
need of greedy selection. On the other hand, the existing
batch BO approaches rely either on greedy strategy (Contal
et al., 2013; Desautels et al., 2014; Gonzdlez et al., 2016) to
sequentially select the points in a batch or independent sam-
pling (Falkner et al., 2018; Herndndez-Lobato et al., 2017).
The greedy algorithm is non-optimal and the independent
sampling approaches can not fully utilize the information
across points in a batch.

‘We note that our k-DPP above is related to (Kathuria et al.,
2016), but different from two perspectives that Kathuria et al.
(2016) considers k-DPP for batch BO (i) in the continuous
setting and (ii) using pure exploration (without quality). We
will consider this as the baseline in our experiments.

4. Experiments

We evaluate our proposed approach on both sequential and
parallel neural architecture search (NAS).

Experimental settings. All experimental results are aver-
aged over 30 independent runs with different random seeds.
We set the number of candidate architecture |P;| = 100.
We utilize the popular NAS tabular datasets of Nasbench101
(NB101) (Ying et al., 2019) and Nasbench201 (NB201)
(Dong & Yang, 2020) for evaluations. TW and TW-2G stand
for our TW using 1-gram and 2-gram representation, respec-
tively. We release the Python code for our experiments at
https://github.com/ntienvu/TW_NAS.

4.1. Sequential NAS

Ablation study: different mechanisms for generating a
pool of candidates P. We analyze the relative contribution
of the process of generating architecture candidates versus
the main optimization algorithm in Fig. 2. The result sug-
gests that the evolutionary algorithm is better than a random
strategy to generate a pool of candidates P. Given this
generated candidate set P, BO is significantly better than
Rand and Evolution approaches. Briefly, the combination
of Evol+BO performs the best across datasets.

Ablation study: different distances for BO. We design an
ablation study using different distances within a BO frame-
work. Notably, we consider the vanilla optimal transport
(Wasserstein distance) in which we follow Kandasamy et al.
(2018) to define the cost metric for OT. This baseline can
be seen as the modified version of the Nasbot (Kandasamy
et al., 2018). In addition, we compare our approach with
the BO using the Gromov-Wasserstein distance (Mémoli,
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Figure 3. Sequential NAS on different distances for BO (left) and different baselines (middle and right). Our approaches of BO-TW
(black curve) and BO-TW 2G (red curve) for 1-gram and 2-gram representation consistently outperform the other baselines. We use 500

iterations on NB101 and 200 iterations on NB201.

2011) (BO-GW) and path encoding (BO-Path Encoding) as
used in (White et al., 2021). The results in the left plot of
Fig. 3 suggest that the proposed TW using 2-gram performs
the best among the BO distance for NAS. The standard OT
and GW will result in (non-p.s.d.) indefinite kernels. For
using OT and GW in our GP, we keep adding (“jitter”’) noise
to the diagonal of the kernel matrices until they become
p.s.d. kernels. We make use of the POT library (Flamary &
Courty, 2017) for the implementation of OT and GW.

While our framework is able to handle n-gram representa-
tion, we learn that 2-gram is empirically the best choice.
This choice is well supported by the fact that two convolu-
tion layers of 3 x 3 stay together can be used to represent
for a special effect of 5 x 5 convolution kernel. In addition,
the use of full n-gram may result in very sparse represen-
tation and some features are not so meaningful anymore.
Therefore, in the experiment we only consider 1-gram and
2-gram.

Sequential NAS. We validate our GP-BO model using tree-
Wasserstein on the sequential setting. Since NB101 is some-
what harder than NB201, we allocate 500 queries for NB101
and 200 queries for NB201 including 10% of random selec-
tion at the beginning of BO.

We compare our approach against common baselines in-
cluding Random search, evolutionary search, TPE (Bergstra
et al., 2011), BOHB (Falkner et al., 2018), Nasbot (Kan-
dasamy et al., 2018) and Bananas (White et al., 2021). We
use the AutoML library for TPE and BOHB? including the
results for NB101, but not NB201. We do not compare with
Reinforcement Learning approaches (Pham et al., 2018)
and AlphaX (Wang et al., 2020) which have been shown to
perform poorly in (White et al., 2021).

We show in Fig. 3 that our tree-Wasserstein including 1-
gram and 2-gram will result in the best performance with
a wide margin to the second best — the Bananas (White

*https://github.com/automl/nas_benchmarks
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Figure 4. Estimated hyperparameters on NB101.

et al., 2021), which needs to specify a meta neural network
with extra hyperparameters (layers, nodes, learning rate).
Random search performs poorly in NAS due to the high-
dimensional and complex space. Our GP-based optimizer
offers a closed-form uncertainty estimation without iterative
approximation in neural network (via back-propagation).
As a property of GP, our BO-TW can generalize well using
fewer observations. This can be seen in the right plot of
Fig. 3 that our approaches can outperform Bananas when
the number of BO iteration (or the number of network ar-
chitectures for training) is small. On the other hand, both
Bananas and ours are converging to the same performance
when the training data becomes abundant — but this is not
the case in practice for NAS.

Estimating hyperparameters. We plot the estimated hy-
perparameters

1-— a1 — Qg
Ay =—, A3= D) )
9y 9 9

over iterations in Fig. 4. This indicates the relative contri-
bution of the operation, indegree and outdegree toward the
TW dnn for neural networks in Eq. (5). Particularly, the
operation contributes receives higher weight and is useful
information than either the individual indegree or outdegree.
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Figure 5. Batch NAS comparison using TW-2Gram and a batch size B = 5. Our proposed k-DPP Quality (red) outperforms other
baselines in all cases, especially when the number of training architecture (iterations) is low. This is the desirable property of NAS when
the training cost is extremely expensive. The experiments are run over 100 iterations.

4.2. Parallel NAS

We next demonstrate our model on selecting multiple archi-
tectures for parallel evaluation (i.e., parallel NAS) setting.
There are fewer approaches for parallel NAS compared to
the sequential setting. We select to compare our k-DPP qual-
ity against Thompson sampling (Herndndez-Lobato et al.,
2017), GP-BUCB (Desautels et al., 2014) and k-DPP for
batch BO (Kathuria et al., 2016). The GP-BUCB is equiv-
alent to Kriging believer (Ginsbourger et al., 2010) when
the hallucinated observation value is set to the GP predic-
tive mean. Therefore, we label them as GP-BUCB/KB. We
also compare with the vanilla k-DPP (without using quality)
(Kathuria et al., 2016).

We allocate a maximum budget of 500 queries including 50
random initial architectures. The result in Fig. 5 shows that
our proposed k-DPP quality is the best among the consid-
ered approaches. We refer to the Appendix for additional
experiments including varying batch sizes and more results
on NB201.

Our sampling from k-DPP quality is advantageous against
the existing batch BO approaches (Ginsbourger et al., 2010;
Desautels et al., 2014; Kathuria et al., 2016; Hernandez-
Lobato et al., 2017) in which we can optimally select a batch
of architectures without relying on the greedy selection
strategy. In addition, our k-DPP quality can leverage the
benefit of the GP in estimating the hyperparameters for the
covariance matrix.

Ablation study of k-DPP quality with path distance. In
addition to the proposed tree-Wasserstein, we demonstrate
the proposed k-DPP quality using path distance (White et al.,
2021). We show that our k-DPP quality is not restricted to
TW-2G, but it can be generally used with different choices
of kernel distances.

Particularly, we present in Fig. 6 the comparison using two
datasets: Imagenet and Cifar100 in NB201. The results vali-
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Figure 6. We compare different batch approaches using a path
distance (White et al., 2021) and a batch size B = 5. We show
that (i) the k-DPP quality outperforms the other batch approaches
and (ii) the k-DPP using TW2G (a black curve) performs better
than using path distance (a red curve).

date two following messages. First, our k-DPP quality is the
best among the other baselines in selecting high-performing
and diverse architectures. Second, our k-DPP quality with
TW?2G (a black curve) performs better than k-DPP quality
using Path distance (a red curve). This demonstrates the
key benefits of comparing two complex architectures as
logistical supplier and receiver.

5. Conclusion

We have presented a new framework for sequential and par-
allel NAS. Our proposed framework constructs the similar-
ity between architectures using tree-Wasserstein geometry.
Then, it utilizes the Gaussian process surrogate for mod-
eling and optimization. We draw the connection between
GP predictive distribution to k-DPP quality for selecting
diverse and high-performing architectures from discrete set.
We demonstrate our model using Nasbench101 and Nas-
bench201 that our methods outperform the existing base-
lines in sequential and parallel settings.
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