
Interactive Learning from Activity Description

Notation Definition

∆(U) Space of all distributions over a set U
unf(U) Denotes the uniform distribution over a set U
‖.‖p p-norm

DKL(Q1(x | y) || Q2(x | y)) KL-divergence between two distributions Q1(· | y) and Q2(· | y) over a countable
set X . Formally, DKL(Q1(x | y) || Q2(x | y)) =

∑
x∈X Q1(x | y) ln Q1(x|y)

Q2(x|y) .

supp Q(x) Support of a distribution Q ∈ ∆(X). Formally, suppQ(x) = {x ∈ X | Q(x) > 0}.
N Set of natural numbers
S State space
s A single state in S
A Finite action space
a a single action in A
D Set of all possible descriptions and requests
d A single description or request

T : S ×A → ∆(S) Transition function with T (s′ | s, a) denoting the probability of transitioning to
state s′ given state s and action a.

R Family of reward functions
R : S ×A → [0, 1] Reward function with R(s, a) denoting the reward for taking action a in state s

H Horizon of the problem denoting the number of actions in a single episode.
e An execution e = (s1, a1, s2, · · · , sH , aH) describing states and actions in an episode.

q = (R, d, s1) A single task comprising of reward function R, request d and start state s1

P?(q) Task distribution defined by the world
P?(e,R, s, d) Joint distribution over executions and task (see Equation 2).
PT (d | e) Teacher model denoting distribution over descriptions d for a given execution e.

Θ Set of all parameters of agent’s policy.
θ Parameters of agent’s policy. Belongs to the set Θ.

πθ(a | s, d) Agent’s policy denoting the probability of action a given state s, description d,
and parameters θ.

Table 4. List of common notations and their definitions.

Appendix: Interactive Learning from Activity Description
The appendix is organized as follows:

◦ Statement and proof of theoretical guarantees for ADEL (Appendix A);
◦ Settings of the two problems we conduct experiments on (Appendix B);
◦ A practical implementation of the ADEL algorithm that we use for experimentation (Appendix C);
◦ Training details including model architecture and hyperparameters (Appendix D);
◦ Qualitative examples (Appendix E).

We provide a list of notations in Table 4 on page 14.

A. Theoretical Analysis of ADEL

In this section, we provide a theoretical justification for an epoch-version of ADEL for the case of H = 1. We prove
consistency results showing ADEL learns a near-optimal policy, and we also derive the convergence rate under the assumption
that we perform maximum likelihood estimation optimally and the teacher is consistent. We call a teacher model PT (d | e)

Interactive Learning from Activity Description

to be consistent if for every execution e and description d we have PT (d | e) = P?(d | e). Recall that the conditional
distribution P?(d | e) is derived from the joint distribution defined in Equation 2. We will use superscript ? to denote all
probability distributions that are derived from this joint distribution.

We start by writing the epoch-version of ADEL in Algorithm 4 for an arbitrary value of H . The epoch version of ADEL runs
an outer loop of epochs (line 3-10). The agent model is updated only at the end of an epoch. In the inner loop (line 5-9), the
agent samples a batch using the teacher model and the agent model. This is used to update the model at the end of the epoch.

At the start of the nth epoch, our sampling scheme in line 6-9 defines a procedure to sample (ê, d̂) from a distribution Dn

that remains fixed over this whole epoch. To define Dn, we first define Pn(e) = E(R,d,s1)∼P?(q) [Pn(e | s1, d)] where we
use the shorthand Pn(e | s1, d) to refer to Pπθn (e | s1, d). Note that ê ∼ Pn(e) in line 7. As d̂ ∼ P?(d | ê), therefore, we
arrive at the following form of Dn:

Dn(ê, d̂) = P?(d̂ | ê)Pn(ê). (8)

We will derive our theoretical guarantees for H = 1. This setting is known as the contextual bandit setting (Langford
& Zhang, 2008a), and while simpler than general reinforcement learning setting, it captures a large non-trivial class of
problems. In this case, an execution e = [s1, a1] can be described by the start state s1 and a single action a1 ∈ A taken by
the agent. Since there is a single state and action in any execution, therefore, for cleaner notations we will drop the subscript
and simply write s, a instead of s1, a1. For convenience, we also define a few extra notations. Firstly, we define the marginal
distribution Dn(s, d̂) =

∑
a′∈ADn([s, a′], d). Secondly, let P?(s) be the marginal distribution over start state s given by

E(R,d,s1)∼P?(q)[1{s1 = s}]. We state some useful relations between these probability distributions in the next lemma.

Algorithm 4 EPOCHADEL: Epoch Version of ADEL. We assume the teacher is consistent, i.e., PT (d | e) = P?(d | e) for every (d, e).

1: Input: teacher model P?(d | e) and task distribution model P?(q).
2: Initialize agent policy πθ1 : S × D → unf(A)
3: for n = 1, 2, · · · , N do
4: B = ∅
5: for m = 1, 2, · · · ,M do
6: World samples q = (R, d?, s1) ∼ P?(·)
7: Agent generates ê ∼ Pπθn (· | s1, d

?)

8: Teacher generates description d̂ ∼ P?(· | ê)
9: B ← B ∪

{(
ê, d̂
)}

10: Update agent policy using batch updates:

θn+1 ← arg max
θ′∈Θ

∑
(ê,d̂)∈B

∑
(s,as)∈ê

log πθ′(as | s, d̂)

where as is the action taken by the agent in state s in execution ê.
return πθ

Lemma 2. For any n ∈ N, we have:

Pn(e := [s, a]) = P?(s)Pn(a | s), where Pn(a | s) :=
∑
d

P?(d | s)Pn(a | s, d). (9)

Proof. We first compute the marginal distribution
∑
a′∈A Pn(e′ := [s, a′]) over s:∑

a′∈A
Pn(e′ := [s, a′]) =

∑
a′∈A

∑
R,d

P?(R, d, s)Pn(a′ | s, d) =
∑
R,d

P?(R, d, s) = P?(s).

Next we compute the conditional distribution Pn(a | s) as shown:

Pn(a | s) =
Pn([s, a])∑

a′∈A Pn([s, a′])
=
∑
R,d

P?(R, d, s)Pn(a | s, d)

P?(s)
=
∑
d

P?(s, d)Pn(a | s, d)

P?(s)
=
∑
d

P?(d | s)Pn(a | s, d).

This also proves Pn([s, a]) = P?(s)Pn(a | s).

Interactive Learning from Activity Description

For H = 1, the update equation in line 10 solves the following optimization equation:

max
θ′∈Θ

Jn(θ) where Jn(θ) :=
∑

(ê:=[s,a],d̂)∈B

lnπθ′(a | s, d̂). (10)

Here Jn(θ) is the empirical objective whose expectation over draws of batches is given by:

E[Jn(θ)] = E(ê=[s,a],d)∼Dn [lnπθ(a | s, d)] .

As this is negative of the cross entropy loss, the Bayes optimal value would be achieved for πθ(a | s, d) = Dn(a | s, d)
for all a ∈ A and every (s, d) ∈ suppDn(s, d). We next state the form of this Bayes optimal model and then state our key
realizability assumption.

Lemma 3. Fix n ∈ N. For every (s, d) ∈ suppDn(s, d) the value of the Bayes optimal model Dn(a | s, d) at the end of
the nth epoch is given by:

Dn(a | s, d) =
P?(d | [s, a])Pn(a | s)∑

a′∈A P?(d | [s, a′])Pn(a′ | s)
.

Proof. The Bayes optimal model is given by Dn(a | s, d) for every (s, d) ∈ suppDn(s, d). We compute this using Bayes’
theorem.

Dn(a | s, d) =
Dn([s, a], d)∑

a′∈ADn([s, a′], d)
=

P?(d | [s, a])Pn([s, a])∑
a′∈A P?(d | [s, a′])Pn([s, a′])

=
P?(d | [s, a])Pn(a | s)∑

a′∈A P?(d | [s, a′])Pn(a′ | s)
.

The last equality above uses Lemma 2.

In order to learn the Bayes optimal model, we need our policy class to be expressive enough to contain this model. We
formally state this realizability assumption below.

Assumption 1 (Realizability). For every θ ∈ Θ, there exists θ′ ∈ Θ such that for every start state s, description d we have:

∀a ∈ A, πθ′(a | s, d) =
P?(d | [s, a])Qθ(a | s)∑

a′∈A P?(d | [s, a′])Qθ(a′ | s)
, where Qθ(a | s) =

∑
d′

P?(d′ | s)πθ(a | s, d′).

We can use the realizability assumption along with convergence guarantees for log-loss to state the following result:

Theorem 4 (Theorem 21 of (Agarwal et al., 2020)). Fix m ∈ N and δ ∈ (0, 1). Let {(d(i), e(i) = [s(i), a(i)]}mi=1 be i.i.d
draws from Dn(e, d) and let θn+1 be the solution to the optimization problem in line 10 of the nth epoch of EPOCHADEL.
Then with probability at least 1− δ we have:

Es,d∼Dn
[
‖Dn(a | s, d)− Pπθn+1

(a | s, d)‖1
]
≤ C

√
1

m
ln |Θ|/δ, (11)

where C > 0 is a universal constant.

Please see Agarwal et al. (2020) for a proof. Lemma 4 implies that assuming realizability, as M → ∞, our learned
solution converges to the Bayes optimal model pointwise on the support over Dn(s, d). Since we are only interested in
consistency, we will assume M →∞ and assume Pn+1(a | s, d) = Dn(a | s, d) for every (s, d) ∈ suppDn(s, d). We will
refer to this as optimally performing the maximum likelihood estimation at nth epoch. If the learned policy is given by
Pn+1(a | s, d) = Dn(a | s, d), then the next Lemma states the relationship between the marginal distribution Pn+1(a | s)
for the next time epoch and marginal Pn(a | s) for this epoch.

Lemma 5 (Inductive Relation Between Marginals). For any n ∈ N, if we optimally perform the maximum likelihood
estimation at the nth epoch of EPOCHADEL, then for all start states s, the marginal distribution Pn+1(a | s) for the
(n+ 1)th epoch is given by:

Pn+1(a | s) =
∑
d

P?(d | [s, a])Pn(a | s)P?(d | s)∑
a′∈A P?(d | [s, a′])Pn(a′ | s)

.

Interactive Learning from Activity Description

Proof. The proof is completed as follows:

Pn+1(a | s) =
∑
d

P?(d | s)Pn+1(a | s, d) =
∑
d

P?(d | [s, a])Pn(a | s)P?(d | s)∑
a′∈A P?(d | [s, a′])Pn(a′ | s)

,

where the first step uses Lemma 2 and the second step uses Pn+1(a | s, d) = Dn(a | s, d) (optimally solving maximum
likelihood) and the form of Dn from Lemma 3.

A.1. Proof of Convergence for Marginal Distribution

Our previous analysis associates a probability distribution Pn(a | s, d) and Pn(a | s) with the nth epoch of EPOCHADEL.
For any n ∈ N, the nth epoch of EPOCHADEL can be viewed as a transformation of Pn(a | s, d) 7→ Pn+1(a | s, d) and
Pn(a | s) 7→ Pn+1(a | s). In this section, we show that under certain conditions, the running average of the marginal
distributions Pn(a | d) converges to the optimal marginal distribution P?(a | d). We then discuss how this can be used to
learn the optimal policy P?(a | s, d).

We use a potential function approach to measure the progress of each epoch. Specifically, we will use KL-divergence as our
choice of potential function. The next lemma bounds the change in potential after a single iteration.

Lemma 6. [Potential Difference Lemma] For any n ∈ N and start state s, we define the following distribution over
descriptions Pn(d | s) :=

∑
a′∈A P?(d | [s, a])Pn(a | s). Then for every start state s we have:

DKL(P?(a | s) || Pn+1(a | s))−DKL(P?(a | s) || Pn(a | s)) ≤ −DKL(P?(d | s) || Pn(d | s)).

Proof. The change in potential from the start of nth epoch to its end is given by:

DKL(P?(a | s) || Pn+1(a | s))−DKL(P?(a | s) || Pn(a | s)) = −
∑
a∈A

P?(a | s) ln

(
Pn+1(a | s)
Pn(a | s)

)
(12)

Using Lemma 5 and the definition of Pn(d | s) we get:

Pn+1(a | s)
Pn(a | s)

=
∑
d

P?(d | [s, a])P?(d | s)∑
a′∈A P?(d | [s, a′])Pn(a′ | s)

=
∑
d

P?(d | [s, a])
P?(d | s)
Pn(d | s)

.

Taking logarithms and applying Jensen’s inequality gives:

ln

(
Pn+1(a | s)
Pn(a | s)

)
= ln

(∑
d

P?(d | [s, a])
P?(d | s)
Pn(d | s)

)
≥
∑
d

P?(d | [s, a]) ln

(
P?(d | s)
Pn(d | s)

)
. (13)

Taking expectations of both sides with respect to P?(a | s) gives us:∑
a

P?(a | s) ln

(
Pn+1(a | s)
Pn(a | s)

)
≥
∑
a

∑
d

P?(a | s)P?(d | [s, a]) ln

(
P?(d | s)
Pn(d | s)

)
=
∑
d

P?(d | s) ln

(
P?(d | s)
Pn(d | s)

)
= DKL(P?(d | s) || Pn(d | s))

where the last step uses the definition of Pn(d | s). The proof is completed by combining the above result with Equation 12.

The Ps matrix. For a fixed start state s, we define Ps as the matrix whose entries are P?(d | [s, a]). The columns of this
matrix range over actions, and the rows range over descriptions. We denote the minimum singular value of the description
matrix Ps by σmin(s).

We state our next assumption that the minimum singular value of Ps matrix is non-zero.

Interactive Learning from Activity Description

Assumption 2 (Minimum Singular Value is Non-Zero). For every start state s, we assume σmin(s) > 0.

Intuitively, this assumption states that there is enough information in the descriptions for the agent to decipher probabilities
over actions from learning probabilities over descriptions. More formally, we are trying to decipher P?(a | s) using access
to two distributions: P?(d | s) which generates the initial requests, and the teacher model P?(d | [s, a]) which is used to
describe an execution e = [s, a]. This can result in an underspecified problem. The only constraints these two distributions
place on P?(a | s) is that

∑
a∈A P?(d | [s, a])P?(a | s) = P?(d | s). This means all we know is that P?(a | s) belongs to

the following set of solutions of the previous linear systems of equation:{
Q(a | s) |

∑
a∈A

P?(d | [s, a])Q(a | s) = P?(d | s) ∀d, Q(a | s) is a distribution

}
.

As P?(a | s) belongs to this set hence this set is nonempty. However, if we also assume that σmin(s) > 0 then the above set
has a unique solution. Recall that singular values are square root of eigenvalues of P>s Ps, and so σmin(s) > 0 implies that
the matrix P>s Ps is invertible. 7 This means, we can find the unique solution of the linear systems of equation by multiplying
both sides by (P>s Ps)−1P>s . Hence, Assumption 2 makes it possible for us to find P?(a | s) using just the information we
have. Note that we cannot solve the linear system of equations directly since the description space and action space can be
extremely large. Hence, we use an oracle based solution via reduction to supervised learning.

The next theorem shows that the running average of learned probabilities Pn(a | s) converges to the optimal marginal
distribution P?(a | s) at a rate determined by the inverse square root of the number of epochs of ADEL, the minimum
singular value of the matrix Ps, and the KL-divergence between optimal marginal and initial value.

Theorem 7. [Rate of Convergence for Marginal] For any t ∈ N we have:

‖P?(a | s)− 1

t

t∑
n=1

Pn(a | s)‖2 ≤
1

σmin(s)

√
2

t
DKL(P?(a | s) || P1(a | s)),

and if P1(a | s, d) is a uniform distribution for every s and d, then

‖P?(a | s)− 1

t

t∑
n=1

Pn(a | s)‖2 ≤
1

σmin(s)

√
2 ln |A|

t
.

Proof. We start with Lemma 6 and bound the right hand side as shown:

DKL(P?(a | s) || Pn+1(a | s))−DKL(P?(a | s) || Pn(a | s)) ≤ −DKL(P?(d | s) || Pn(d | s))

≤ −1

2
‖P?(d | s)− Pn(d | s)‖21,

≤ −1

2
‖P?(d | s)− Pn(d | s)2‖22

= −1

2
‖Ps {P?(a | s)− Pn(a | s)} ‖22,

≤ −1

2
σmin(s)2‖P?(a | s)− Pn(a | s)‖22,

where the second step uses Pinsker’s inequality. The third step uses the property of p-norms, specifically, ‖ν‖2 ≤ ‖ν‖1
for all ν. The fourth step, uses the definition of P?(d | s) =

∑
a′∈A P(d | s, a′)P?(a′ | s)) and Pn(d | s) =

∑
a′∈A P(d |

s, a′)Pn(a′ | s). We interpret the notation P?(a | s) as a vector over actions whose value is the probability P?(a | s).
Therefore, PsP?(a | s) represents a matrix-vector multiplication. Finally, the last step, uses ‖Ax‖2 ≥ σmin(A)‖x‖2 for any
vector x and matrix A of compatible shape such that Ax is defined, where σmin(A) is the smallest singular value of A.

Summing over n from n = 1 to t and rearranging the terms we get:

DKL(P?(a | s) || Pt+1(a | s)) ≤ DKL(P?(a | s) || P1(a | s))− 1

2
σmin(s)2

t∑
n=1

‖P?(a | s)− Pn(a | s)‖22.

7Recall that a matrix of the form A>A always have non-negative eigenvalues.

Interactive Learning from Activity Description

As the left hand-side is positive we get:

t∑
n=1

‖P?(a | s)− Pn(a | s)‖22 ≤
2

σmin(s)2
DKL(P?(a | s) || P1(a | s)).

Dividing by t and applying Jensen’s inequality (specifically, E[X2] ≥ E[|X|]2) we get:

1

t

t∑
n=1

‖P?(e)− Pn(e)‖2 ≤
1

σmin(s)

√
2

t
DKL(P?(a | s) || P1(a | s)) (14)

Using the triangle inequality, the left hand side can be bounded as:

1

t

t∑
n=1

‖P?(a | s)− Pn(a | s)‖2 ≥ ‖P?(a | s)−
1

t

t∑
n=1

Pn(a | s)‖2 (15)

Combining the previous two equations proves the main result. Finally, note that if P1(a | s, d) = 1/|A| for every value of
s, d, and a, then P1(a | s) is also a uniform distribution over actions. The initial KL-divergence is then bounded by ln |A| as
shown below:

DKL(P?(a | s) || P1(a | s)) = −
∑
a∈A

P?(a | s) ln
1

|A|
+
∑
a∈A

P?(a | s) lnP?(a | s) ≤ ln |A|,

where the second step uses the fact that entropy of a distribution is non-negative. This completes the proof.

A.2. Proof of Convergence to Near-Optimal Policy

Finally, we discuss how to learn P?(a | s, d) once we learn P?(a | s). Since we only derive convergence of running average
of Pn(a | s) to P?(a | s), therefore, we cannot expect Pn(a | s, d) to converge to P?(a | s, d). Instead, we will show that
if we perform line 4-10 in Algorithm 4 using the running average of policies, then the learned Bayes optimal policy will
converge to the near-optimal policy. The simplest way to accomplish this with Algorithm 4 is to perform the block of code
in line 4-10 twice, once when taking actions according to Pn(a | s, d), and once when taking actions according to running
average policy P̃n(a | s, d) = 1

n

∑n
t=1 P̃t(a | s, d). This will give us two Bayes optimal policy in 10 one each for the

current policy Pn(a | s, d) and the running average policy P̃n(a | s, d). We use the former for roll-in in the future and the
latter for evaluation on held-out test set.

For convenience, we first define an operator that denotes mapping of one agent policy to another.

W operator. Let P(a | s, d) be an agent policy used to generate data in any epoch of EPOCHADEL (line 5-9). We define
the W operator as the mapping to the Bayes optimal policy for the optimization problem solved by EPOCHADEL in line 10
which we denote by (WP). Under the realizability assumption (Assumption 1), the agent learns the WP policy when
M →∞. Using Lemma 2 and Lemma 3, we can verify that:

(WP)(a | s, d) =
P?(d | [s, a])P(a | s)∑

a′∈A P?(d | [s, a′])P(a′ | s)
, where P(a | s) =

∑
d

P?(d | s)P(a | s, d).

We first show that our operator is smooth around P?(a | s).

Lemma 8 (Smoothness of W). For any start state s and description d ∈ supp P?(d | s), there exists a finite constant Ks

such that:

‖WP(a | s, d)−WP?(a | s, d)‖1 ≤ Ks‖P(a | s)− P?(a | s)‖1.

Interactive Learning from Activity Description

Proof. We define P(d | s) =
∑
a′∈A P?(d | s, a′)P(a′ | s). Then from the definition of operator W we have:

|WP(a | s, d)−WP?(a | s, d)|1

=
∑
a∈A

∣∣∣∣P?(d | [s, a])P(a | s)
P(d | s)

− P?(d | [s, a])P?(a | s)
P?(d | s)

∣∣∣∣
=
∑
a∈A

P?(d | [s, a])
|P(a | s)P?(d | s)− P?(a | s)P(d | s)|

P(d | s)P?(d | s)

≤
∑
a∈A

P?(d | [s, a])P(a | s) |P
?(d | s)− P(d | s)|
P(d | s)P?(d | s)

+
∑
a∈A

P?(d | [s, a])
|P(a | s)− P?(a | s)|

P?(d | s)

=
|P?(d | s)− P(d | s)|

P?(d | s)
+
∑
a∈A

P?(d | [s, a])
|P(a | s)− P?(a | s)|

P?(d | s)

≤ 2
∑
a∈A

P?(d | [s, a])
|P(a | s)− P?(a | s)|

P?(d | s)
, (using the definition of P(d | s))

≤ 2

P?(d | s)
‖P(a | s)− P?(a | s)‖1.

Note that the policy will only be called on a given pair of (s, d) if and only if P?(d | s) > 0, hence, the constant is bounded.
We define Ks = maxd

2
P?(d|s) where maximum is taken over all descriptions d ∈ supp P?(d | s).

Theorem 9 (Convergence to Near Optimal Policy). Fix t ∈ N, and let P̃t(a | s, d) = 1
t

∑t
n=1 Pn(a | s, d) be the average

of the agent’s policy across epochs. Then for every start state s and description d ∈ supp P?(d | s) we have:

lim
t→∞

(W P̃t)(a | s, d) = P?(a | s, d).

Proof. Let P̃t(a | s) =
∑
d P?(d | s)P̃t(a | s, d). Then it is easy to see that P̃t(a | s) = 1

t

∑t
n=1 Pn(a | s). From Theo-

rem 7 we have limt→∞ ‖P̃t(a | s)− P?(a | s)‖2 = 0. As A is finite dimensional, therefore, ‖ · ‖2 and ‖ · ‖1 are equivalent,
i.e., convergence in one also implies convergence in the other. This implies, limt→∞ ‖P̃t(a | s)− P?(a | s)‖1 = 0.

From Lemma 8 we have:

lim
t→∞

‖(W P̃t)(a | s, d)− (WP?)(a | s, d)‖1 ≤ Ks lim
t→∞

‖P̃t(a | s)− P?(a | s)‖1 = 0.

This shows limt→∞(W P̃t)(a | s, d) = (WP?)(a | s, d). Lastly, we show that the optimal policy P?(a | s, d) is a fixed
point of W :

(WP?)(a | s, d) =
P?(d | s, a)P?(a | s)∑

a′∈A P?(d | s, a′)P?(a′ | s)
=

P?(d, a | s)∑
a′∈A P?(d, a′ | s)

=
P?(d, a | s)
P?(d | s)

= P?(a | s, d).

This completes the proof.

B. Problem settings
Figure 3 illustrates the two problems that we conduct experiments on.

B.1. Vision-Language Navigation

Environment Simulator and Data. We use the Matterport3D simulator and the Room-to-Room dataset8 developed by
Anderson et al. (2018). The simulator photo-realistically emulates the first-person view of a person walking in a house.
The dataset contains tuples of human-generated English navigation requests annotated with ground-truth paths in the

8https://github.com/peteanderson80/Matterport3DSimulator/blob/master/ tasks/R2R/data/download.sh

https://github.com/peteanderson80/Matterport3DSimulator/blob/master/tasks/R2R/data/download.sh

Interactive Learning from Activity Description

Bathroom Living room

Bedroom

Kitchen

Office

Exit the
bedroom and

turn right. Enter
the living room

and stop next to
the sofa.

(a) Vision-language navigation (NAV): a (robot) agent fulfills a navi-
gational natural-language request in a photo-realistic simulated house.
Locations in the house are connected as a graph. In each time step, the
agent receives a photo of the panoramic view at its current location (due
to space limit, here we only show part of a view). Given the view and
the language request, the agent chooses an adjacent location to go to.
On average, each house has about 117 locations.

(b) Word modification (REGEX): an agent is given an input
word and a natural-language request that asks it to modify
the word. The agent outputs a regular expression that follows
our specific syntax. The regular expression is executed by the
Python’s re.sub() method to generate an output word.

Figure 3. Illustrations of the two request-fulfilling problems that we conduct experiments on.

environments. To evaluate on the test set, the authors require submitting predictions to an evaluation site9, which limits the
number of submissions to five. As our goal is not to establish state-of-the-art results on this task, but to compare performance
of multiple learning frameworks, we re-split the data into 4,315 simulation, 2,100 validation, and 2,349 test data points. The
simulation split, which is used to simulate the teacher, contains three requests per data point (i.e. |D?n| = 3). The validation
and test splits each contains only one request per data point. On average, each request includes 2.5 sentences and 26 words.
The word vocabulary size is 904 and the average number of optimal actions required to reach the goal is 6.

Simulated Teacher. We use SDTW (Magalhaes et al., 2019) as the perf metric and set the threshold τ = 0.5. The
SDTW metric re-weights success rate by the shortest (order-preserving) alignment distance between a predicted path and a
ground-truth path, offering more fine-grained evaluation of navigation paths.

Approximate marginal Pπω (e | s1). The approximate marginal is a function that takes in a start location s1 and randomly
samples a shortest path on the environment graph that starts at s1 and has (unweighted) length between 2 and 6.

B.2. Word Modification

Regular Expression Compiler. We use Python 3.7’s re.sub(pattern, replace, string) method as the
regular expression compiler. The method replaces every substring of string that matches a regular expression pattern
with the string replace. A regular expression predicted by our agent â1:H has the form “pattern@replace”, where
pattern and replace are strings and @ is the at-sign character. For example, given the word embolden and the request
“replace all n with c”, the agent should ideally generate the regular expression “()(n)()@c”. We then split the regular
expression by the character @ into a string pattern = “()(n)()” and a string replace = “c”. We execute the
Python’s command re.sub(‘()(n)()’, ‘c’, ‘embolden’) to obtain the output word emboldec.

Data. We use the data collected by Andreas et al. (2018). The authors presented crowd-workers with pairs of input and
output words where the output words are generated by applying regular expressions onto the input words. Workers are asked
to write English requests that describe the change from the input words to the output words. From the human-generated
requests, the authors extracted 1,917 request templates. For example, a template has the form add an AFTER to the start of
words beginning with BEFORE, where AFTER and BEFORE can be replaced with latin characters to form a request. Each
request template is annotated with a regular expression template that it describes. Since the original dataset is not designed to

9https://eval.ai/web/challenges/challenge-page/97/overview

https://docs.python.org/3.9/library/re.html#re.sub
https://eval.ai/web/challenges/challenge-page/97/overview

Interactive Learning from Activity Description

Algorithm 5 ADEL: Learning from Activity Describers via Semi-Supervised Exploration (experimental version).

1: Input: teacher model PT (d | e), approximate marginal Pπω (e | s1), mixing weight λ ∈ [0, 1]
2: Initialize policy πθ : S × D → ∆(A)
3: Initialize policy πβ : S × D → ∆(A)
4: for n = 1, 2, · · · , N do
5: Word samples q = (R, s1, d

?) ∼ P?(·)
6: Agent generates ê ∼ Pπβ (· | s1, d

?)

7: Teacher generates d̂ ∼ PT (· | ê)
8: Agent samples ẽ ∼ Pπω (· | s1)
9: Compute losses:

L(θ) =
∑

(s,âs)∈ê

log πθ(âs | s, d̂)

L(β) = λ
∑

(s,ãs)∈ẽ

log πβ(ãs | s, d̂) + (1− λ)
∑

(s,âs)∈ê

log πβ(âs | s, d̂)

10: Compute gradients∇L(θ) and ∇L(β)
11: Use gradient descent to update θ and β with∇L(θ) and ∇L(β), respectively

return π : s, d 7→ argmaxa πθ(a | s, d)

evaluate generalization to previously unseen request templates, we modified the script provided by the authors to generate a
new dataset where the simulation and evaluation requests are generated from disjoint sets of request templates. We select 110
regular expressions templates that are each annotated with more than one request template. Then, we further remove pairs of
regular expression and request templates that are mistakenly paired. We end up with 1111 request templates describing
these 110 regular expression templates. We use these templates to generate tuples of requests and regular expressions. In the
end, our dataset consists of 114,503 simulation, 6,429 validation, and 6,429 test data points. The request templates in the
simulation, validation, and test sets are disjoint.

Simulated Teacher. We extend the performance metric perf in §4.1 to evaluating multiple executions. Concretely, given
executions {winp

j , ŵout
j }Jj=1, the metric counts how many pairs where the predicted output word matches the ground-truth:∑J

j=1 1
{
ŵout
j = wout

j

}
. We set the threshold τ = J .

Approximate marginal Pπω (e | s1). The approximate marginal is a uniform distribution over a dataset of (unlabeled)
regular expressions. These regular expressions are generated using the code provided by Andreas et al. (2018).10

C. Practical Implementation of ADEL

In our experiments, we employ the following implementation of ADEL (Alg 5), which learns a policy πβ such that
Pπβ (e | s1, d) approximates the mixture P̃(e | s1, d) in Alg 3. In each episode, we sample an execution ê using the policy
πβ . Then, similar to Alg 3, we ask the teacher PT for a description of ê and the use the pair (ê, d̂) to update the agent policy
πθ. To ensure that Pπβ approximates P̃, we draw a sample ẽ from the approximate marginal Pπω (e | s1) and update πβ
using a λ-weighted loss of the log-likelihoods of the two data points (ẽ, d̂) and (ê, d̂). We only use (ê, d̂) to update the agent
policy πθ.

An alternative (naive) implementation of sampling from the mixture P̃ is to first choose a policy between πω (with probability
λ) and πθ (with probability 1 − λ), and then use this policy to generate an execution. Compared to this approach, our
implementation has two advantages:

1. Sampling from the mixture is simpler: instead of choosing between πθ and πω , we always use πβ to generate executions;

2. More importantly, samples are more diverse: in the naive approach, the samples are either completely request-agnostic

10https://github.com/ jacobandreas/ l3/blob/master/data/re2/generate.py

https://github.com/jacobandreas/l3/blob/master/data/re2/generate.py

Interactive Learning from Activity Description

NAV REGEX

Anneal λ every L steps Success rate (%) ↑ Sample complexity ↓ Success rate (%) ↑ Sample complexity ↓

L = 2000 31.4 304K 87.7 368K
L = 5000 32.5 384K 86.4 448K
No annealing (final) 32.0 384K 88.0 608K

Table 5. Effects of annealing the mixing weight λ. When annealed, the mixing weight is updated as λ← max(λmin, λ · β), where the
annealing rate β = 0.5 and the minimum mixing rate λmin = 0.1. Initially, λ is set to be 0.5. All results are on validation data. Sample
complexity is the number of training episodes required to reach a success rate of at least c (c = 30% in NAV, and c = 85% in REGEX).

(if generated by πω) or completely request-guided (if generated by πθ). As a machine learning-based model that learns
from a mixture of data generated by πω and πθ, the policy πβ can generalize and generate executions that are partially
request-agnostic.

Effects of the Annealing Mixing Weight. We do not anneal the mixing weight λ in our experiments. Table 5 shows the
effects of annealing the mixing weight with various settings. We find that annealing improves the sample complexity of the
agents, i.e. they reach a substantially high success rate in less training episodes. But overall, not annealing yields slightly
higher final success rates.

D. Training details
Reinforcement learning’s continuous reward. In REGEX, the continuous reward function is

|wout| − editdistance (ŵout, wout)

|wout|
(16)

where wout is the ground-truth output word, ŵout is the predicted output word, editdistance(.,.) is the string edit
distance computed by the Python’s editdistance module.

In NAV, the continuous reward function is

shortest (s1, sg)− shortest (sH , sg)

shortest (s1, sg)
(17)

where s1 is the start location, sg is the goal location, sH is the agent’s final location, and shortest(., .) is the shortest-path
distance between two locations (according to the environment’s navigation graph).

Model architecture. Figure 4 and Figure 5 illustrate the architectures of the models that we train in the two problems,
respectively. For each problem, we describe the architectures of the student policy πθ(a | s, d) and the teacher’s language
model P̃(d | e). All models are encoder-decoder models but the NAV models use Transformer as the recurrent module while
REGEX models use LSTM.

Hyperparameters. Model and training hyperparameters are provided in Table 6. Each model is trained on a single
NVIDIA V100 GPU, GTX 1080, or Titan X. Training with the ADEL algorithm takes about 19 hours for NAV and 14 hours
for REGEX on a machine with an Intel i7-4790K 4.00GHz CPU and a Titan X GPU.

E. Qualitative examples
Figure 6 and Table 7 show the qualitative examples in the NAV and REGEX problems, respectively.

https://pypi.org/project/editdistance/

Interactive Learning from Activity Description

Repeat H steps

Request
embedding

Request
encoder

(Transformer)

Encoded
Request

Decoder I
(Transformer)

Request

Previous action
embedding

(features of view angle
corresponding to previous action)

Decoder hidden

Decoder logit

Action dist.
(view angles corresponding to

adjacent locations)

View features
(36 camera angles x

feature_size)

Previous
decoder hidden

Attended view

Decoder II
(Transformer)

Attended
next view

DotAttention

Multi-headedAttention

DotAttention

Time
embedding

(a) Student model

Execution
encoder

(Transformer)

Encoded
execution

Decoder
(Transformer)

Previous
word

View
embedding

Previous word
embedding

Decoder hidden

Decoder logit

Action dist.
(words)

Action
embedding

Time
embedding

Repeat L steps
(L is description length)

Repeat H steps

Multi-headed
Attention

(b) Teacher model

Figure 4. Student and teacher models in NAV.

Input-word
encoder

(LSTM)

Input word
embedding

Request
embedding

Request
encoder

(LSTM)

Encoded
input word

Encoded
request

Decoder
(LSTM)

Previous
characterInput word Request

Previous char.
embedding

DotAttention

DotAttention

Decoder hidden

Decoder logit

Action dist.
(characters)

Initialize
(first step only)

Repeat H steps

(a) Student model

K embeddings
(K x len x embed_size)

Execution
encoder

(LSTM)

Encoded
execution

Decoder
(LSTM)

Previous
wordK pairs of input and

output words
(each concatenated as ‘input@output’)

(K x len)

Previous word
embedding

Decoder hidden

Decoder logit

Action dist.
(words)

Mean
embedding

(K x embed_size)

DotAttention

Initialize
(first step only)

Repeat H steps

(b) Teacher model

Figure 5. Student and teacher models in REGEX.

Interactive Learning from Activity Description

Hyperparameter NAV REGEX

Student policy πθ and Teacher’s describer model P̃T
Base architecture Transformer LSTM
Hidden size 256 512
Number of hidden layers (of each encoder or decoder) 1 1
Request word embedding size 256 128
Character embedding size (for the input and output words) - 32
Time embedding size 256 -
Attention heads 8 1
Observation feature size 2048 -

Teacher simulation
perf metric STDW (Magalhaes et al., 2019) Number of output words matching ground-truths
Number of samples for approximate pragmatic inference (|Dcand|) 5 10
Threshold (τ) 0.5 J = 5

Training
Time horizon (H) 10 40
Batch size 32 32
Learning rate 10−4 10−3

Optimizer Adam Adam
Number of training iterations 25K 30K
Mixing weight (λ, no annealing) 0.5 0.5

Table 6. Hyperparameters for training with the ADEL algorithm.

Input word Output word Description generated by P̃(d | e)

attendant xjtendxjt replace [a] and the letter that follows it with an [x j]
disclaims esclaims if the word does not begin with a vowel , replace the first two letters with [e]
inculpating incuxlpating for any instance of [l] add a [x] before the [l]
flanneling glanneling change the first letter of the word to [g]
dhoti jhoti replaced beginning of word with [j]
stuccoing ostuccoing all words get a letter [o] put in front
reappearances reappearanced if the word ends with a consonant , change the consonant to [d]
bigots vyivyovyvy replace each consonant with a [v y]

Table 7. Qualitative examples in the REGEX problem. We show pairs of input and output words and how the teacher’s language model
P̃(d | e) describes the modifications applied to the input words.

Interactive Learning from Activity Description

Walk towards the desk
and turn left. Walk
towards the desk and
turn left. Walk towards
the large table and stop.

Turn right and go
towards the table.
Stop at the top of
the stairs.

Walk across work room
to table with yellow
chairs. Stop at the
yellow chairs .

(a)

Walk out of the stairs and
face the counter. Turn
right and enter the stairs
by the chair and wait in
the bathroom door.

Walk through the dining
room and past the table.
Walk past the table and
chairs and stop in front of
the table with the glass
table with the glass doors.

Walk up the small set of
stairs in the living room. Stay
left and enter the door to your
left. Turn left down the
hallway and enter the room.
Wait beside the white lamp .

Bathroom

Dining room

(b)

Figure 6. Qualitative examples in the NAV problem. The black texts (no underlines) are the initial requests d? generated by humans. The
paths are the ground-truth paths implied by the requests. and are some paths are taken by the agent during training. Here, we only

show two paths per example. The red texts are descriptions d̂ generated by the teacher’s learned (conditional) language model P̃(d | e).
We show the bird-eye views of the environments for better visualization, but the agent only has access to the first-person panoramic views
at its locations.

