Tight Bounds on the Smallest Eigenvalue of the Neural Tangent Kernel for Deep ReLLU Networks

A. Additional Notations

Given a sub-exponential random variable X, let || X ||, = inf{t > 0 : Elexp(|X|/t)] < 2}. Similarly, for a sub-gaussian
random variable, || X ||y, = inf{t > 0 : Elexp(X?/t?)] < 2}.

B. Proof of Theorem 3.2

Let us first get some useful estimates from the data. By Assumptions 2.1 and 2.2, we have [|z;[5 = ©(d) for all
1 € [N]wp.>1-— Ne=D_ For a given pair i # j, let x; be fixed and z; be random, then (x;,x;) is Lipschitz
continuous w.r.t. z;, where the Lipschitz constant is given by ||z;|, = O(V/d). Thus, it follows from Assumption 2.2
that P(|(x;, z;)| > t) < 2¢=1"/0(d By picking t = dN~'/("=9-%) and doing a union bound over all data pairs, we get
max;z; (x5, 2;)|" < AN~V (=05 wp atleast 1 — N2~ UaN=/0709)
following hold

. Combining these two events, we obtain that the

lzill3 = ©(d), Vi € [N],
(i, 25)|" < ANV, i £ (37)
with the same probability as stated in the theorem.

‘We have from Lemma 3.1 that

L
K®) = 3760 o G+ o G oo GO,
=1

One also observes that all the matrices G, G, G are positive semidefinite. Recall that, for two p.s.d. matrices
P,Q € R™*™, one has Apin (P 0 Q) > Amin (P) min;ep,) Qi (Schur, 1911). Thus, it holds

M (KP) 2 éAmm (G) minger, 1 (@) - éxmm (¢).

p=Il+1

where the last equality follows from the fact that (G®);; = 1forall p € [2,L],i € [N]. From here, it suffices to bound
Amin (G@) . Let D = diag([[|2;||,];) and X = D~ X. Then, by the homogeneity of o, we have o(Xw) = o(DXw) =
Da(f(w), and thus

Amin (G(Z)) = Anin (DE [U(Xw)cr(Xw)T] D)

= )\min (D

> 1-(0)* Main (D(X*T)(XW)TD)

po(0)’1n1g + Zus(a)Q(f(*s)(X*s)T] D)

= 1 (0)* Amain (D_(T_l) (X*")(X*’“)TD—(T—D)
A (X7 (X))

. b
max;e () [|lzi[3" Y

> pr(0) (38)

where the second step uses the Hermite expansion of o (for the proof see Lemma D.3 of (Nguyen & Mondelli, 2020)). By
Gershgorin circle theorem, one has

Amin (X™)(XC)T) = mingepy fally” — (N = 1) maxizg | (23, 2;)|" > Q(d),

where the last estimate follows from (37). Plugging this and the estimate of (37) into the inequality (38) proves the lower
bound on the smallest eigenvalue of the NTK. For the upper bound, note that

N L
Amin (K(L)> < 7tr(I](\'[(L)) = %ZZ(G(D)M H (GP)ii.
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One observes that (G());; = 2E g A0, (G 1)in) [0(9)*] = (GU=1)),;. Tterating this argument gives (G(1));; = (GM);; =
|| ||§ . Thus, it follows that

Amin (K0 < 2 tr(G0) anlnfw)

where we used again (37) in the last estimate.

C. Some Useful Estimates
Lemma C.1 Fixany0 < k < L — 1 and x ~ Px. Then, we have
k
i) = © (deB?>
=1

w.p. at least 1 — Ele exp (—Q (n;)) — exp(—Q (d)) over (W})F_, and x. Moreover,

E, ||fx(@)]5 = (dHnlﬁz>
wp. 1 — Zl Lexp (=82 (ny)) over (W))F_
Lemma C.2 Fix any k € [L — 1]. Then, we have

k
1B [fx(2)]ll3 = © <dH nzﬁf)

=1

w.p. at least 1 — Zl Lexp (=2 (ny)) over (W))F_

Lemma C.3 Fixany k € [L — 1]. Assume H;:ll log(ni) = o (minse(o,4) ) - Then, we have

k
I fx(x:) = Balfu(@)]5 = © (dHn1512> , Vie[N] (39)
=1

w.p. at least
. k
1— Nexp (—Q (W)) - Zexp(—
=1 log(m) 1=1
Lemma C4 Fix any k € [L — 1]. Then, we have
k
E. ||fi(2) - Exlfx(@)]5 = © <dHn1512>
=1
w.p. at least 1 — Ele exp (—Q (ny)) over (W))F_,
Lemma C.5 Fix any k € [L — 1], and = ~ Px. Then, we have that ||Zk(x)||§ = O(ng) wp. at least 1 —
Zle exp (—Q (ny)) — exp(—Q (d)) over (W))F_, and x.
Lemma C.6 Fixanyk € [L — 1],k <p < L — 1, and x ~ Px. Then, we have that

p
H WL (x —®<”k H 711512)

l=k+1 I=k+1

w.p. at least 1 — >"7_, exp (= (n;)) — exp(—Q (d)) over (W))}_, and .
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C.1. Proof of Lemma C.1

The proof works by induction over k. Note that the statement holds for ¥ = 0 due to Assumptions 2.1 and 2.2. Assume that
the lemma holds for some k& — 1, i.e. ka,l(x)Hg = (de 1 nlﬁl) w.p. at least 1 — Zf:ll Nexp(—Q(n)) —

Nexp (—Q(d)). Let us condition on this event of (W;)F~' and study probability bounds over Wj. Let W, =

(w1, ..., wn,]" where w; ~ N (0,32 L, ,). Note that
e
I fe@)lly = fry (@), (40)
j=1

and that

2 k
Ew, |l fx(x)3 = ZEwJ [fr,(2)?] = nkfk I fe-1(z)]3=© (dHnﬁ?) :

=1

where the last equality follows from the induction assumption. Furthermore,

k—1
([ fri (@), = | fii @3, < cBt [ faa(@)]3 =0 (5/365 11 mﬁf) :

=1

where c is an absolute constant. Thus, by applying Bernstein’s inequality (see Theorem 2.8.1 of (Vershynin, 2018)) to the
sum of i.i.d. random variables in (40), we have

1

“Ew, | fe(@)l3 < I fe(z)

3
. Ew, || ()3

||2—2

w.p. at least 1 — exp (—2 (ny)) . Taking the intersection of the two events finishes the proof for || fx(x) ||§ . The proof for
E. || fx (x)Hg can be done by following similar passages and using that ||E,[f,; ()] ||w1 < Eg || frj(2)? ||¢1.

C.2. Proof of Lemma C.2
The upper bound follows from Lemma C.1 via Jensen’s inequality The proof for the lower bound works by induction on k
Assume it holds for k — 1 that ||E,[f_1(2)]|3 = (de 1 nlﬂl> w.p. at least 1 — Zz L exp (—$2 () over (Wy)F=

Let us condition on the intersection of this event and that of Lemma C.1 for (I/Vl) CLet Wy = [wy,..., wy, ] where
wj ~N(0,B21,,_,). Forevery j € [n],

k—1
[Balfis @D, = IEelfuy @)y, < Bollfeg @I, < cBiEa |l fimr(@)ll; = O (dﬁﬁ II mﬁ?) ,

=1
where c is an absolute constant and the last equality follows from the above conditional event from Lemma C.1. Moreover,
Nk Nk

Ew, [|Ex[fi(x HQ—ZEW o fii (@ >;E oBaw, [f15 (2)])? :"’;5’“ (Eq [l frmr (2)]])?

k
> n;fk B[ fr—1(2)]]3 = © (danﬁz2> ;

=1

where the last estimate follows from our induction assumption. By Bernstein’s inequality (see Theorem 2.8.1 of (Vershynin,
2018)), we have

k
Bl @I 2 5B, [Elf @I = (deﬁf>

=1

w.p. at least 1 — exp (—ny,) over Wy,. Taking the intersection of all these events finishes the proof.
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C.3. Proof of Lemma C.3

Let Z : R? — R be a random function over z; defined as Z(z;) = || fx(2;) — Ey[fx(2)] ||, - It follows from Theorem 6.2
that w.p. at least 1 — >F_, exp (=9 (ny)) over (W))E_,,

k- k k
1Z)15, = © Hf:ionl 1—[1108;(”1) [182) =o(d][]ms?)- (41)
’ THeo,k] 2y 1=1 1=1

Below, let us denote the shorthand
E[Z] =E,,[Z(x;)] = /d Z(x;)dPx (x;).
R
It holds
E[Z)® = E[2%] - E[|Z — EZ

> E[Z2?] — /Ooo P(|Z —EZ| > Vt)dt

oo (42)
> E[Z?] —/ 2 exp (—%) dt
0 1Z1I%p

2 2
- 5l2% - 2) 213,

where the 2nd inequality follows from Assumption 2.2. By Lemma C.4, we have w.p. at least 1 — 25:1 exp (—€2 (n;)) over
(Wi)j; that

k
E[Z%]=© (danﬁ?) : (43)
=1

By combining (41), (42) and (43), we obtain that E[Z] = Q (\/dnle nlﬂl2> . Moreover, E[Z] < /E[Z?] =

O (\/dl—[f_l nlﬁf) . As a result, we have that E[Z] = © <\ / dHf:1 nlﬁ12> w.p. at least 1 — 25:1 exp(— (n;)) over

(VVl)f:l. Let us condition on this event and study probability bounds over the samples. Using Assumption 2.2, we have

1E[Z] £ Z < 3E[Z], hence Z = © (y/dl_[f_l nlﬂf) , W.p. at least

- (_Q (m;ngewﬁm i )) |
1—1 log(ny)

Taking the union bound over N samples, followed by an intersection with the above event over the weights, finishes the
proof.

C.4. Proof of Lemma C.4

The proof works by induction on k. Note that the statement holds for £ = 0 due to Assumption 2.1. Let us assume for now
that the result holds for the first k layers. To prove it for layer k, we condition on the intersection of this event and the
event of Lemma C.1 for (Wl)fz_ll, and study probability bounds over Wy,. Define Wy, = [wy, ..., wy, | € R™-1X" where
wj ~N(0, 821, ,). Recall that by definition, fy, ;(z) = o((w;, fr—1(z))) for j € [n)]. We have that

2

By 11(@) = Ealfe@)l; = 3B (@) = Balfis(@)]) .
j=1

2
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Taking the expectation over Wy, we have

Ew, Ex || fr(z) — Eol fi(2)]ll5
= Ew, Eq || fx(@)]1; — Ew, [1Ealfr(2)]ll5

ni g, 1fr-1(@)5 = EoEy D Euyo ((w), fima(2))) o (wj, fr-1(y)))

2 °
j=1

2 [e%S) T
B s @I e L@l Wis )l 3o (e T )

[ fe—1(@)lly" | fr—1(y

2
> "R g, | fua @)~ i (0)? maBR [Ealfir @)1 — e} Zur (B fea ())*
T;él
2 2 2
= R, fir @)~ Bl s @)~ " (e s @)

where in the last step we use that y;(0)? = 1/4 and that Y p,.(0)? = 1/4. Furthermore, the RHS of the last expression
s
can be lower bounded by

2 n ) k
BB (8, fomr @ = Bl fics @) = 5 B, [ (o) = m[fk—l(x)]llng?(dnmﬁ?),

=1

where the last step follows by induction assumption. Moreover, it follows from above that

Ewi. (@) — B L@ < ", o >|2—‘°<danm>

=1

where the last estimate follows from Lemma C.1. For every j € [ny],

B (Fes) ~ Eelfis ) | B | (o) - Belfis@))
= By [|fr () — Balfi s @)]I[5,

< By | fi ()2,
< B, (| fo(e) — Bu, [fk,j<z>1||i + [Eu, [fe @)]]%)
< oE, (5,3 s @)y + 2 | s >|§)

< BB || fr-1 ()13

k—1
=0 (ﬂﬁd 11 /%) :

1

where c is an absolute constant (which is allowed to change from line to line) and the last step uses Lemma C.1. By
Bernstein’s inequality (see Theorem 2.8.1 of (Vershynin, 2018)),

SEWEe @) ~ oL@l < Ee | fee) ~ Bl < SEw,Ee |fule) ~ Eolf(@)] 3,

w.p. at least 1 — exp (—€2 (ng)) over Wy,. Thus, with that probability, we have that

k

=1

Taking the intersection of all the events finishes the proof.
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C.5. Proof of Lemma C.5
Proof: By Lemma C.1, we have f;_1(x) # 0 w.p. at least 1 — Z;:ll exp (—Q (n;)) — exp(—Q (d)) over (Wl)f;f and
x. Let us condition on this event and derive probability bounds over Wy,. Let Wy, = [w1, ..., wy,|. Then, ||Zx(z) ||§7 =

ZJ 10" ((fr—1(x),w;)). Thus,

Ew, [IZk(@)|F = niBu, [0' (= (frm1(2),w1))] = B, [(1 = o' (o1 (@), w01)))] = 1 = By, [ Si(@) 17

where we used the fact that w; has a symmetric distribution, ¢’(t) = 1 — o/(—t) for t # 0, and the set of w; € R™~*
for which (fr_1 (), w;) = 0 has measure zero. This implies that Eyy, ||X(x) ||§, = ny,/2. By Hoeffding’s inequality on
bounded random variables (see Theorem 2.2.6 of (Vershynin, 2018)), we have

2t?
P (1=l - Ewe 1@ > 1) < 2exp (-2).

Picking t = ny,/4 finishes the proof. 0

C.6. Proof of Lemma C.6

The proof works by induction on p. First, Lemma C.5 implies that the statement holds for p = k. Suppose it holds for some
p — 1. Note that this implies f,_1(x) # 0 because otherwise ¥,,_1 (x) = 0, which contradicts the induction assumption.
Let S, = Xp () [T/ 11 WiXi(2). Then, S, = S, -1 W, X, (z). Let W), = [wy, ..., w,,]. Then,

Np Np

155115 = D 15p-1w;15 0" (9,3 (2 ZHS —1willy o' ({fo-1(2), wy)).
j=1

We have

Ew, 1S5 = npEu, [Sp1w1 30" ((fp-1(x), w1))
= npEu, |Sp-1(—w1)]l5 0" ((fp-1(2), (—w1)))
= npBu, |Sp-1willy (1= o' ({fp-1(z),w1)))
= npEu, |Sp-1w1ll; — Ew, [1S,]1%
= B2 1Sp—1117 — Ew, 1Syl »

where the second step uses that w; has a symmetric distribution, the third step uses the fact that o’ (¢) = 1 — o’(—t) for
t # 0 and the set of wy for which (f,_1(z),w1)) = 0 has measure zero. Thus,

p
2 n 2
Ew, [Spllp = 5785 [1Sp-1ll = © (nk 11 nﬁf) :
l=k+1

where the last equality holds by induction assumption. Moreover,
2 2 2
[1Sp-rsliz o’ (ps (@) i) < e 1Spruesls]f, < B3 1Sl

where c is an absolute constant (which is allowed to change from passage to passage). By Bernstein’s inequality (see
Theorem 2.8.1 of (Vershynin, 2018)), we have

1 2 2 3 2
§EW,, ||SP||F < ”S;DHF < §EWP ||SPHF

w.p. at least 1 — e~("»)_ Taking the intersection of all the events finishes the proof.
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D. Missing Proofs from Section 4

D.1. Proof of Corollary 4.2

Let p = ZlL:l nn;_1. Let ‘98% € RY*P denote the true Jacobian of Fy, (without the convention that o’(0) = 0) at

a differentiable point 6. Note that, by Lemma B.2 of (Nguyen & Mondelli, 2020), F,(6) is locally Lipschitz, thus a.e.
differentiable. Let J(#) € RY*P be the Jacobian matrix defined in (2) (with the convention that ¢’(0) = 0). Let

0y = {0 € R? | rank(J(0)) = N}

and
Qo={0eRP | e[L-1],j€[m),iec[N]:g;z)=0}.

Let ), denote the Lebesgue measure in R”. Pick an even integer r s.t. 7 > 0.1 + 2/¢’. Then, Theorem 4.1 implies that,
with high probability (as stated in the corollary) over the training data, we have \,(£21) > 0. For every 6 € (, it holds
that f;(0,2;) # 0forall 0 <[ < L — 2,i € [N], because otherwise .J();. = 0 (which leads to a contradiction). Thus,
every 6 € Q1 N Qo must satisfy 0 = g;;(0,x;) = (fi—1(0,2;),(W;).;) forsome | € [L —1],j € [ny],i € [N]. The set
of W, which satisfies this equation has measure zero, and thus it holds A, (€ N ) = 0. Combining these facts, we

get A\p(Q1\ Qo) > 0. Pick some 6y € € \ Q. Then clearly, we have the following: (i) J(6y) = Ba% oo and (ii)
0

rank(J(fp)) = N. This implies that there exists #’ € RP such that <6F L

((0F N/ ofL(0.2)
vi= (((99’9—90>0>i _< o0

The result follows by noting that h.(;) can be implemented by a network of the same depth with twice more neurons at
every hidden layer.

) 0’ =Y and thus,

Vi e [N].

0,> — lim Jfr(0o + €0, x;) — fr(0o, x;)
90’ b

e—0 €

=the(w;)

D.2. Proof of Lemma 4.3

By a change of index k 4+ 1 — £, it is equivalent to prove the following:

1‘) ( ]j lel($)> WL

I=k+1

2

L—-1
=e<5,%nk 10 nzﬁ?)-
2

I=k+1

Let B = X(z) (]_[lL:_kl+1 WlZl(x)> . By Lemma C.6, ||B||2F = 0 (nk HlL:_le mﬁf) w.p. at least 1 —
ZIL:_ll exp (—Q (n)) — exp (—Q (d)) . Moreover, one can also show that with a similar probability,

B|? = _
” HOP O(minl [k,L—1] H mﬁl)

l k+1

The proof of this is postponed below. Let us condition on the intersection of these two events of (Wl) 1 . Then, by
Hanson-Wright inequality (see Theorem 6.2.1 of (Vershynin, 2018)), we have

1 3
SEw, IBWLI3 < |BWe|} < SEw, | BWL3.

w.p. at least 1 — e~ IBIZ/IBIZ) gyer W1,. Plugging the above bounds leads to the desired result.

In the remainder of this proof, we verify the above bound of || B ||C2)p. Concretely, we want to show that for every p, g € [L—1],
the following holds w.p. at least 1 — E?:pq exp (—Q (ny))

2

1 || A

[w= - LS || , 44

= ! l(x) © mlnlEp 1q ﬁl ( )
op
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Given that, the bound of ||BH§p follows immediately by letting p = k + 1,¢ = L — 1, and noting || X (z)|,, < 1. The
proof of (44) is by induction over the length s = ¢ — p. First, (44) holds for s = 0 since ||W,X,(x) 2 < ||I/Vp||ip =

llop
@) (65 max(ny, np_l)) where the last estimate follows from the standard bounds on the operator norm of Gaussian matrices
(see Theorem 2.12 of (Davidson & Szarek, 2001)). Suppose that (44) holds for p, ¢ such that ¢ — p < s — 1, and we want to
prove it for all pairs p, ¢ with ¢ — p = s. It suffices to provide bound for one pair of (p, ¢) and then do a union bound over

all possible pairs. In the following, let

j=argminn;, t= argmin n;.
l€[p—1,q] lelp—1,a]\{5}

We analyze three cases below. In the first case, namely j € [p, ¢ — 1], then

2 ) 2 2

HW[Z[(.’L‘) < HVVlEl(x) H W, () -0 Hl =p—1"U Hl =; T Hﬁl
l=p

1=j+1 mlnle[p 1,4] ny mlIlle[J q

op - op op
Hl 1 Hl 1
1) o (i

where the first equality follows from our induction assumption, the second equality follows from the current choice of j. In
the second case, if j = g and ¢ € [p, ¢ — 1], then similarly one has

-0 Hf:pfl i [T, ﬁ 32

. . l
Mine(p—1,4 ™ Mgt q] 70

2 2 9
q t q
[Twzi@)| <|]]WiEu=) 1T Wisu=)
I=p I=t+1

op — op op

l=p

-0 HlpllHltanﬂl -0 Hlpl HB[

Tt —p mlnle [p—1,q

It remains to handle the case in which either (j = p — 1) or (j = gand ¢t = p — 1). To do so, we use an e-net argument.
Since [[Xq(2)]|,, < 1, it holds that

2 2
q g—1
[TwE@)|  <|[{ []WSu) | w,| - (45)
l=p op l=p op

Furthermore, by using Lemma 4.4.1 of (Vershynin, 2018),

2

q—1 2 g—1
[IWizi@) | wo|| <4 sup ||y" | [[WiZi(x) | Wql| , (46)

p—1
l=p op yeNT ,

=:2T 2

where N’l’ /2 lisa §—net of the unit sphere in R"»-1. Fix y € N1 /2 and let z be defined as above, then clearly z is independent
of W, and it holds by induction assumption

2 Hz =p—1TU p 2
Izl =0 | =———=—— 1] #i (47)
mlnle[pfl,qfl] l =p

w.p. at least 1 — Z?:_; exp (—Q (ny)) over (W;)¢Z]". Conditioned on this event of the first ¢ — 1 layers, let us study

concentration bound for ||z W, Hz where the only randomness is over W,. Note that ||z, Hz =301 (2 (W) ;) and
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H (z, (Wq):j>2 le <caf ||z||§ . Thus by Bernstein’s inequality (see Theorem 2.8.1 of (Vershynin, 2018)),

2
IF’( 2TW, ) . 2TW, 2‘>t>§exp <—c min< ! t ))
127 Wally = Ew, |27 Wl i | R AT

for some constant cy. By plugging ¢t = Cemax(ng,ny_1)5; ||z||§/02 for some C > max(cq,logh), and
Ey, HZTWqH; =ngBZ |z g one obtains ||zTWq||; =0 (max(nq,np,l)ﬁg HzHg) w.p. at least 1 — e~ Cmax(ng.np—1),

Taking the union bound over y € N’f/}l, we get

2

q—1
sup Hz W, ||2 sup ||y H WiE(z) | Wy|| =0 (max(nq,np_l)ﬁg ||z||2)
yeNl/Q yeNllj/}1 l=p

2

w.p. at least 1 — N1/2 ‘ e~ Cmax(ngnp—1) — 1 _ g=max(ng,np-1))  where we used the fact that
C > log 5. This combined with (45),(46) and (47) implies

Nf/;’ < 5™-1 and

2

q 1= a-1 [T} n
I=p—1 l=p—1
HWIEZ(;L') =0 max(nq,npfl) gp— HB[Q =0 pinﬂl ’
i mlnle[p,Lq,l] ng i—p mlnle[p 1,q
op

where the last estimate follows from the current conditions on (j, t). To summarize, we have shown that (44) holds for every
given pair (p, ¢) such that ¢ — p = s. Taking the union bound over all these pairs finishes the proof. Finally, note that doing
the union bound above does not affect the probability of the final result since the number of all possible pairs is only a
constant.

E. Missing Proofs from Section 5
E.1. Proof of Lemma 5.2

For a subgaussian random variable Z, recall that P(Z > t) < exp(—ct?/||Z ||sz)’ where ¢ is an absolute constant. In the

2 2
following, let ¢ = W\/max (1, log W) Let us denote the shorthand Wy = [wy, ..., wy,,] € R 177k,

and denote by A € RY*™* a matrix such that A.; = o(Fy_jw,) Lo (Fy_yw;)|l,<t forall j € [ng]. Let

G =Eynop1, ) [0(Fw)o(Frw)'],

G = Ewrv]\/'(O,/J’;‘; T, ) [U(kalw)U(Fk,lw)T ]l|‘U(Fk71w)||2St .

Note A = Anin (G), Amin (FkFE) > Amin (AAT) and Apax (A:jA?;-) < t2. By Matrix Chernoff inequality (see Theorem
1.1 of (Tropp, 2012)), it holds for every € € [0, 1)

o } Amin (EAAT) /82

P(Anin (447) < (1= OAwin (EAAT) ) < N [(1_6)1_

Pick e = 1/2. Then,

P ()\min (AAT) < N Amin (G‘) /2) < exp (—01 Tk Amin (G’) /t? 4 log N) .
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Nk Amin (G)

Thus, for n; > 5

log we have A\, (AAT) > w.p. > 1 — 4. Moreover,

Cl)\mm(G)
|6 - ¢, <E|oBw)oBrrw)” Lo, < — o(Frow)o(Few)” |
=E [IIU(Fk—lw)llg lna(kalw)Hpt}

— [ PlotFiaw)lly Lot > V5) ds

=0

= [ B llotFisw)ly > 0B (lo(Fe-rw)l, > V) d

5=0
o] t2
S / exp <—02—i_s2> ds
s=0 4p;; ”Fk*lHF
<A2,

where the second inequality uses the fact that ||||o(Fj—1w) < 2B || Fr—1|| o - It follows that Ay (é) > A\/2.In

lall,, <
total, for ny > 3% log &, it holds w.p. at least 1 — § that

Omin (Fk)2 = )\min (FkF]?) Z >\min (AAT) Z nk)\min (é> /2 Z leA/4,
where we used the condition n;, > NN in the above equality.

E.2. Proof of Lemma 5.3
Let D = diag(||(Fx)1:|lg - -, | (F&)n:|5) and E}, = D1Fy. Then, by the homogeneity of o, we have

Amin (E[J(ka)U(ka)TD = Amin ( [0 ka ka) } D)

- Bk-‘,—l/\mm (D lNl + Z,Us F*S F*S)T

’)
> Bit 1 1(9)* Anin (D(F,;”’)(F;’")T D)
= Bit1 1(9)* i (D‘(’"‘”(F,:’“)(F,C*T)TD—(r—n)

2 /\min ((FI:T)(F*T)T)

2(r—1
maxeqn || (F)icll30 Y

> 513+1 pr (o)

where the second equality uses the Hermite expansion of o (for the proof see Lemma D.3 of (Nguyen & Mondelli, 2020)).

E.3. Proof of Lemma 5.4

Let ju = E,[fx(z)] € R™. Denote A = Fy, and A = F}, = A — 1yu” where 15 € RY is the all-one vector. By Lemma
C.2, it holds w.p. at least 1 — Zz Lexp (—=Q (ny)) over (W;)E_| that

k

lull; = © (danﬁl?). (48)
=1

Also, Theorem 6.2 shows that w.p. at least 1 — Ele exp (= (n;)) over (W))F_,,

1, = 0 (0™ TTognn) T 2 49)
EllLip = minc .4 0glry v

=1 =1
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Let us condition on the intersection of these two events of the weights and study probability bounds over the data. We have
(F) (Fp)T = (AAT) 0. .0 (AAT), (50)
where the Hadamard product is repeated r times. By definition, it holds
AAT = AAT 4 ||ull3 1R + (™) AT + ALy p™)”

-~ ~ T
= AAT 4 a3 in1E + 1y (Ap— l3 1n) + (A= lul3in) 1

2 2
= AAT + 1515 <A+ HM2HQ> + <A+ /;”2> Iyl

where A = diag(Ap — ||1]|21x). Let  : RY — R be a function over a random sample z, defined as h(z) = (fx(x), 1) .
Then, Ais = h(z:) — E,[a(2)). Since |52, < ]2 | el it holds

tQ
P(|As| > 1) < exp (—22> . 51)
2 all 1 fxlITip

Pick ¢ = ||u||?/2. Then, taking the union bound over all the samples, we have

2
mine(ny Ais > — ||H2||2 —  AAT = AAT

ll? )
1— Nexp - |-
( 8I1fxl12,

Taking the intersection with (48), (49) and plugging the bounds leads to the desired result.

w.p. at least

E.4. Proof of Lemma 5.5

From Gershgorin circle theorem, one obtains

A ((FED)EED)T) = mim (P 37— N mas [(Fee, (Fe)) (52)
A ((FED)FE)T) < i [ (Fi)e 3+ N mae [((Fie, (P (53)

By Lemma C.3, it holds w.p. at least 1 — N exp (—Q (W)) Zz 1 exp(—Q (n;)) that
1=1 (] ’I’Ll

1(Fe)all3" = <<d1‘[mﬁl> ) Vi€ [N]. (54)

In the following, we bound the second term on the RHS of (53). For a fixed j € [IN], Lemma C.3 implies that w.p. at least
1—exp (—Q <M>) Zz Lexp(—Q (ny)) over (W;)F_, and x;, we have

I1;- log(n)
i 0 (aTTmst). 59

=1

Moreover, Theorem 6.2 implies that w.p. at least 1 — Zl Lexp (—=Q (ny)) over (W))F_,,

k k-1 K
. 2 Hz:o ny 2
[ fr(x) = Ex fr(2)|1sp = O (miﬂze[o,k] . 1 tos(m) Hﬂz) : (56)

=1 =1
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Let us condition on the intersection of these two events of (I/Vl){“:1 and x;, and derive probability bounds over z;, for every
1 # j. Let h(x;) = <(Fk)2, (Fk)j;> be a function of z;, then

2
[T~ log(m)

h 2' S H F‘k B "
I, < B, ST

) k
2||fk($i)—wak(mi)\\iipzo <danﬁl2>
=1

where the last estimate follows from (55) and (56). Using Assumption 2.2, followed by a union bound over {z; } it WE
have for every ¢ > 0 that

t2
ol (art )’ T lostn)
Hlil nlﬁl min; e,k

Pick t = N—1/(r=0.1) (d Hle n 612) Then, taking the intersection bound with (55) and (56) yields

d kfln 2 r k r
N max [(Fy)i, (Fr)j)l" <NM=0<<dan65> ) (58)
=1

P (maxie[NL#j ‘<(ﬁk)i:, (Fk)jz>‘ > t) < (N — 1)exp (57)

16[N]717’5] N’I“/(’I"*O.l)

w.p. at least

. k
minge[o k] M
1—(N—1)exp <—Q ( =Y >> - E exp (=2 (ng)) .
N2/(r=0.1) TR =

| log(ny)

Since this holds for every given x;, taking the union bound over j € [N] yields that

k T
N max | (F)se, (Fr);)|" = o ((deB?> ) (59)
=1

w.p. at least

. k
My eo,k] ™
1—N2exp [ -0 —NE exp (= (ny)).
P< <N2/(r_0'1) Hfz_ll IOg(”l)>> 1=1 P im)

Combining (52), (53), (54), (59) finishes the proof.

F. Missing Proofs from Section 6

Definition F.1 A subset A C R" is called a polyhedron if it is the intersection of a finite family of (closed) half-spaces. A
Sfunction f : R™ — R™ is called piecewise linear if there exist a finite family of polyhedra {R‘};:l such that R™ = U;_ P;
and f coincides with a linear function on each P;.

The following lemma establishes a formal connection between ReLU networks and PWL functions. Its proof is contained in
Appendix F.3.

Lemma F.2 Forevery k € [L), fx,gx : R? — R as defined in (1) are piecewise linear functions.
An equivalent way of defining piecewise linear maps is the following, see e.g. (Gorokhovik, 2011).

Lemma F.3 A function f : R™ — R™ is piecewise linear if and only if there exist a finite family of polyhedra {Pi}iT:1 and
matrices {Ai}iT:1 € R™™ such that:

L R" = U?:l b,
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2. int(P) #0, Vielll,
3. int(P;) Nint(P;) =0 Vi #j,
4. f(x) = A;x for every x € P;.

F.1. Proof of Theorem 6.2
Let hypq : R™ — R™ be defined as
hpsq=Aq004-10A4-10...00p410Apt1,
where the mapping 4; : R™-1 — R™ is given by A;(x) = Wz, and the mapping 6; : R™ — R™ is given by

6(x) = [o(z1),...,0(zy,)]T for every x € R™. By definition, it holds gx(z) = ho— k(). In the following, we prove that
forevery 0 < p < g < L, itholds w.p. > 1 — Z?:pq exp (—Q (n;)) that

Hq: n q—1
[hp—qllp, = O —=2 T log(m) H B - (60)

min n
lelp,q] U I=p+1 l=p+1

The desired result follows by letting p = 0, ¢ = k. The proof of (60) is by induction over the length s = ¢ — p. First, (60)
holds for s = 1. Suppose that (60) holds for all (p, ¢) such that ¢ — p < s — 1, and we want to prove it for all (p, ¢) with
q — p = s. It suffices to show the result for one pair and then do a union bound over all the possible pairs. Let us define

j =argminn;, t= argmin n;.
l€lp,q] l€[p,al\{s}

Consider three cases below. In the first case, j € [p + 1, ¢ — 1]. By noting that
hp—sq=hjsq00;0hy;
and using the Lipschitz property of a composition of Lipschitz continuous functions, one obtains

||hp—>q||Lip < ||hp—>j||Lip ||é.j||Lip ||hj—>qHLip

S | R L | O
lelp,g] ™ I=p+1 l1€[,q) T I=j+1 I=p+1

[T i
=0 _Ali=p™ log(n 62,
el § QLG R

l=p+1 I=p+1

where the first equality follows from induction assumption and ||c§r||LilD < 1, the second equality follows from definition of j.
In the second case, j = gand t € [p + 1, ¢ — 1], then similarly,

1Pp—sqllyip < Whpellip 16l i Pegllg,

t—1 g—1 q
-0 [T Al H log(n ,H?:t i H log(n;) H Bt

min, n mln n
lelp,t] T4 l=p+1 left,q] T I=t+1 I=p+1

qg—1
iz Hl p H log nl H Bl

nen,
thq l=p+1 l=p+1

q q—1
—o [ A= T gy Hﬁl

min n
le[p,q] "W I=p+1 l=p+1
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It remains to handle the case where either (j = p) or (j = ¢ and t = p). By Lemma 6.1, it holds w.p. 1 over (VVI)?;; 4 that

there exists a set of R tuples of diagonal matrices, say D = {(3}, ..., 50 1),..., (5 ,..., 8 )}, with 0-1 entries
on the diagonals such that

qg—1
h < Wi | W . 61
eosalosp < (Ep+1,.1.11%}§71)€77 11111 - ! v

op

According to Lemma 6.1, R can be interpreted as the maximum number of activation patterns of a ¢ — p layer network
with layer widths (np,np41,...,nq), where every hidden neuron has a definite sign pattern {—1,+1}. Let nyax =
maxje(p41,q—1] M- then R = O ((nmax)"?) (see e.g. (Hanin & Rolnick, 2019; Serra et al., 2018)). Using the definition of
operator norm and an e-net argument, the inequality (61) becomes

1Bp—gllpip < max sup [y | J] wim | Wy
(Ept1548q-1)€D |1y ,=1 I=pi1 ,
2
< max 2 sup ||yT wE | woll (62)
B L
=:2T 2
where N¥ /2 isa %—net of the unit sphere in R"» and the last inequality follows from Lemma 4.4.1 in (Vershynin, 2018). Fix

Yy € N1 /20 and let z be defined as above. Note that z is independent of W,. From the proof of Lemma 4.3, we have

2

q—1
[El= Hlez o s Hﬁl (63)

= mine(p,q—1] M -
=p+1 op =p+1

w.p. at least 1 — qul exp (= (ng)) over (W)[Z, +1 Conditioned on the intersection of this event with the event
(61) of (W;)iZ » +1’ let us now study a concentration bound for HZTW ||2 where the only randomness is W,. We have
[T W12 = S5, (o (W,)0?
of (Vershynin, 2018)),

t2
]P’(‘ TW, 2—1[*3 Tw 2‘ >t) < exp | —co min
5 ally = "Wl i w 2115 nact B 1l

for some constant cy. Let C' = max(cq, 2). Then by substituting to the above inequality the values

Ccy log( )

t = — max(ng, np)
2

(z, (Wy):5) Hw <af HZH2 . Thus by Bernstein’s inequality (see Theorem 2.8.1
1

B2II213,  Ew, |27 Walls = naB2 1213,

we have w.p. at least 1 — e~ C max(ng.np)log(R)/np that

1
!IzTWq!E:O(maxmq,np) 0 52 a13)

Now taking the union bound over y € N7 1/2 and all tuples from D, the RHS of (62) is bounded as

log( ) 42
max 2 sup ||[z'W (max Ng, N B,
(Zpt1,--2q-1)€ED Nf/zu ||2 ( a p) H ||2

O (max(nq,np) log(nmax)ﬁg ||Z||§)
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w.p. at least

1 (R)
o > 1 _ e max(ngny)

—C max(ng,np)
~ R[N ’

where we used }Nl/Ql < 5", R= O ((Nmax)™) and C' > 1. This combined with (62), (63) implies

q— 1
=
||hp—>q||Lip =0 max(nq,np) log(nmax) 2 min p H Bl
le[p,q—1] "4 = 1
q
l=p ! 2
=0 | ———— log(max; _nng H I5;
Minserp.q 1 ( €[p+1,9—1] ) 1

l=p+1

=0 log(n ,
mlnzepq]m H g(n1) H 51

l=p+1 l=p+1

where the second estimate follows from the current value of (j,¢). So, we have shown that (60) holds for every pair (p, q)
with ¢ — p = s. Taking the union bound over all these pairs finishes the proof. Note that this last step does not affect the
final probability as the number of pairs is only a constant.

F.2. Proof of Lemma 6.1

Let 4 be the Lebesgue measure in R%. Let us associate to g, : R? — R™ a set of polyhedra {Pi}iT=1 and matrices
{A;}]_, € R™*"4 a5 in Lemma F.3. First, let us show that

19k l1ip = maxiery || Aillop, - (64)

Pick any z,y € R%. By intersecting the line segment [z, y] with the polyhedra, there exists a finite set of points {u;};_, on
[z, y] such that: (i) ug = z,u, =y, (ii) ||z — y||, = Zi:o |wi — wit1ll,. and (iii) [u;, u;41] is contained in P;, for some
Jji € [T]. This implies

r—1 r—1 r—1
gk (@) = gk @W)lly <> llgr(ui) = g (wig)lly = D IAG (i = wig)lly <A o llui — wirally
1=0 =0 =0

< max;err) [|Aillop 12 = ylly,

which means

g () — gr(y)

||2 < mang 1) ||A||
B4 —yllz

HngLip = sup
.y
To show that the above inequality can be attained, let i, = arg [%?x [ Ailp, - Since int(£;,) # 0, it holds
i€
r—y
{ =yl
where S~ ! denotes the unit sphere in R™, and thus

o loe@) —ge@lly o loe(@) —ge@ll, 0 1As (= 9)ll; _

= || A,

xayep’i*} :Sn_la

sy =yl syeb, T =ylly wger. oyl o

This proves the equation (64). Next, let us define the following sets:
S={zeR?| fr1(z) =0},
B={zeR!\S|3lelk—1],i € [n]:g(z) =0},
G=R*\ (BUS).
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Let S = S\ int(S). Then clearly, R? = G U B U dS U int(S). Let us show that v4(B) = 74(9S) = 0. By Lemma F.2,
fr_1 is a PWL function, thus every level set of f;,_; can be written as a union of finitely many polyhedra in R?. This means
that 0. is a union of finitely many polyhedra with dimension at most d — 1, thus v4(9S) = 0. Concerning the set B, note
that for every [ € [k — 1],4; € [n],

ni—1

-1
TREED 3D SR 3 | EXUATIN | cHReS
q=1

io=11i1=1 i1—1=1p=1

By definition, any = € B satisfies f;(x) # 0 for all [ € [k — 1]. This implies that at each layer ¢ € [k — 1], there exists at
least one active neuron, i.e. some iq € [ny] such that g, ; () > 0. Let Z; denote the set of active neurons that an input
x € B may have at layer [ € [k — 1]. Then it holds

e U U U U {eer!| Y 0 S [Lea® s —0

lelk—1] 41€[ng] Z1CIng] Z,_1CIng_q] io=141€Z1 1€ 1 p=1
117&@ I 1#@

With probability 1 over (1;)%~. = 1 , the set of zeros of each polynomial inside the bracket above has measure zero. Since there
are only finitely many such polynomials, one obtains v4(B) =0 .

We are now ready to prove the lemma. From int(P;) # @) and (B U 9S) = 0, it follows that
int(P;) N (G Uint(S)) = int(P;) N (RY\ (BUAS)) # 0.
For every i € [T, let z; € int(P;) N (G Uint(S)). Since z; € int(P;), it follows from (64) that

HngLip = ma‘XiG[T] ||Ai||op = ma‘XiG[T] ||J<gk)(z’b)||op .
Now if z; € int(S), then J(gx)(2;) = 0, as g, is constant zero in a neighborhood of z;. Otherwise, we must have z; € G,

which implies A; 5 1(z) € {—1, _;_1}2;:11 " . Combining all these facts, we get

ol = max @)@,
z: Al—»k—l(z)E{*L+1}El=l ™

Finally, the inequality || fx|ly;, < [[gxl|1;, follows from the 1-Lipschitz property of ReLU.

F.3. Proof of Lemma F.2

Let T = 2% ™ | and {Ai,..., Ar} € {-1, +1}Z§“:1 " denote the set of all possible binary strings of dimension
Zle ny, where each entry takes value —1 or +1. Let us index the entries of each string by A; = {4, ;, }le[k] ey - Let

P; C R? be the set of inputs where the activation pattern of all neurons up to layer k& matches perfectly with A;, namely

P; = ﬂ m {xeRd‘gm(x) J“l_O}

le[k] i1€[ny]
np—1 -1
d
SO N e | Y T I a0 A 20
le[k] di1€[n) io=11i1=1 i—1=1p=1 p=1

It is clear that P; is a polyhedron. Also, every coordinate function f, ;, admits the following linear representation on P;

MNk—1

fk Zk Z Z Z H xlo zp 1,0p ]]‘-Aj,p,ip>0a Ve Pj.

io=111=1 ij—1=1p=1

This implies that f;, coincides with a linear function on P;. As every input must take one of the 7" strings as an activation
pattern, we also have R? = UL, P;. Thus according to Definition F.1, f5, is a PWL function. Similarly, gy, is also piecewise
linear.



