
Tight Bounds on the Smallest Eigenvalue of the Neural Tangent Kernel for Deep ReLU Networks

A. Additional Notations
Given a sub-exponential random variable X , let ‖X‖ψ1

= inf{t > 0 : E[exp(|X|/t)] ≤ 2}. Similarly, for a sub-gaussian
random variable, ‖X‖ψ2 = inf{t > 0 : E[exp(X2/t2)] ≤ 2}.

B. Proof of Theorem 3.2
Let us first get some useful estimates from the data. By Assumptions 2.1 and 2.2, we have ‖xi‖22 = Θ(d) for all
i ∈ [N ] w.p. ≥ 1 − Ne−Ω(d). For a given pair i 6= j, let xj be fixed and xi be random, then 〈xi, xj〉 is Lipschitz
continuous w.r.t. xi, where the Lipschitz constant is given by ‖xj‖2 = O(

√
d). Thus, it follows from Assumption 2.2

that P(|〈xi, xj〉| > t) ≤ 2e−t
2/O(d). By picking t = dN−1/(r−0.5) and doing a union bound over all data pairs, we get

maxi 6=j |〈xi, xj〉|r ≤ dN−1/(r−0.5) w.p. at least 1−N2e−Ω(dN−2/(r−0.5)). Combining these two events, we obtain that the
following hold

‖xi‖22 = Θ(d), ∀ i ∈ [N ],

|〈xi, xj〉|r ≤ dN−1/(r−0.5), ∀ i 6= j (37)

with the same probability as stated in the theorem.

We have from Lemma 3.1 that

K(L) =

L∑
l=1

G(l) ◦ Ġ(l+1) ◦ Ġ(l+2) ◦ . . . ◦ Ġ(L).

One also observes that all the matrices G(l), Ġ(l), G(l) are positive semidefinite. Recall that, for two p.s.d. matrices
P,Q ∈ Rn×n, one has λmin (P ◦Q) ≥ λmin (P ) mini∈[n]Qii (Schur, 1911). Thus, it holds

λmin

(
K(L)

)
≥

L∑
l=1

λmin

(
G(l)

)
mini∈[N ]

L∏
p=l+1

(Ġp)ii =

L∑
l=1

λmin

(
G(l)

)
,

where the last equality follows from the fact that (Ġ(p))ii = 1 for all p ∈ [2, L], i ∈ [N ]. From here, it suffices to bound
λmin

(
G(2)

)
. LetD = diag([‖xi‖2]Ni=1) and X̂ = D−1X. Then, by the homogeneity of σ, we have σ(Xw) = σ(DX̂w) =

Dσ(X̂w), and thus

λmin

(
G(2)

)
= λmin

(
DE

[
σ(X̂w)σ(X̂w)T

]
D
)

= λmin

(
D

[
µ0(σ)21N1TN +

∞∑
s=1

µs(σ)2(X̂∗s)(X̂∗s)T

]
D

)
≥ µr(σ)2λmin

(
D(X̂∗r)(X̂∗r)TD

)
= µr(σ)2λmin

(
D−(r−1)(X∗r)(X∗r)TD−(r−1)

)
≥ µr(σ)2λmin

(
(X∗r)(X∗r)T

)
maxi∈[N ] ‖xi‖

2(r−1)
2

, (38)

where the second step uses the Hermite expansion of σ (for the proof see Lemma D.3 of (Nguyen & Mondelli, 2020)). By
Gershgorin circle theorem, one has

λmin

(
(X∗r)(X∗r)T

)
≥ mini∈[N ] ‖xi‖

2r
2 − (N − 1) maxi 6=j |〈xi, xj〉|r ≥ Ω(d),

where the last estimate follows from (37). Plugging this and the estimate of (37) into the inequality (38) proves the lower
bound on the smallest eigenvalue of the NTK. For the upper bound, note that

λmin

(
K(L)

)
≤ tr(K(L))

N
=

1

N

N∑
i=1

L∑
l=1

(G(l))ii

L∏
p=l+1

(Ġp)ii.



Tight Bounds on the Smallest Eigenvalue of the Neural Tangent Kernel for Deep ReLU Networks

One observes that (G(l))ii = 2Eg∼N (0,(Gl−1)ii)[σ(g)2] = (G(l−1))ii. Iterating this argument gives (G(l))ii = (G(1))ii =

‖xi‖22 . Thus, it follows that

λmin

(
K(L)

)
≤ L

N
tr(G(1)) =

L

N

N∑
i=1

‖xi‖22 = LO(d),

where we used again (37) in the last estimate.

C. Some Useful Estimates
Lemma C.1 Fix any 0 ≤ k ≤ L− 1 and x∼ PX . Then, we have

‖fk(x)‖22 = Θ

(
d

k∏
l=1

nlβ
2
l

)

w.p. at least 1−
∑k
l=1 exp (−Ω (nl))− exp(−Ω (d)) over (Wl)

k
l=1 and x. Moreover,

Ex ‖fk(x)‖22 = Θ

(
d

k∏
l=1

nlβ
2
l

)

w.p. 1−
∑k
l=1 exp (−Ω (nl)) over (Wl)

k
l=1.

Lemma C.2 Fix any k ∈ [L− 1]. Then, we have

‖Ex[fk(x)]‖22 = Θ

(
d

k∏
l=1

nlβ
2
l

)

w.p. at least 1−
∑k
l=1 exp (−Ω (nl)) over (Wl)

k
l=1.

Lemma C.3 Fix any k ∈ [L− 1]. Assume
∏k−1
l=1 log(nl) = o

(
minl∈[0,k] nl

)
. Then, we have

‖fk(xi)− Ex[fk(x)]‖22 = Θ

(
d

k∏
l=1

nlβ
2
l

)
, ∀ i ∈ [N ] (39)

w.p. at least

1−N exp

(
−Ω

(
minl∈[0,k] nl∏k−1
l=1 log(nl)

))
−

k∑
l=1

exp(−Ω (nl)).

Lemma C.4 Fix any k ∈ [L− 1]. Then, we have

Ex ‖fk(x)− Ex[fk(x)]‖22 = Θ

(
d

k∏
l=1

nlβ
2
l

)

w.p. at least 1−
∑k
l=1 exp (−Ω (nl)) over (Wl)

k
l=1.

Lemma C.5 Fix any k ∈ [L − 1], and x ∼ PX . Then, we have that ‖Σk(x)‖2F = Θ (nk) w.p. at least 1 −∑k
l=1 exp (−Ω (nl))− exp(−Ω (d)) over (Wl)

k
l=1 and x.

Lemma C.6 Fix any k ∈ [L− 1], k ≤ p ≤ L− 1, and x∼ PX . Then, we have that∥∥∥∥∥Σk(x)

p∏
l=k+1

WlΣl(x)

∥∥∥∥∥
2

F

= Θ

(
nk

p∏
l=k+1

nlβ
2
l

)

w.p. at least 1−
∑p
l=1 exp (−Ω (nl))− exp(−Ω (d)) over (Wl)

p
l=1 and x.
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C.1. Proof of Lemma C.1

The proof works by induction over k. Note that the statement holds for k = 0 due to Assumptions 2.1 and 2.2. Assume that
the lemma holds for some k − 1, i.e. ‖fk−1(x)‖22 = Θ

(
d
∏k−1
l=1 nlβ

2
l

)
w.p. at least 1 −

∑k−1
l=1 N exp (−Ω (nl)) −

N exp (−Ω (d)) . Let us condition on this event of (Wl)
k−1
l=1 and study probability bounds over Wk. Let Wk =

[w1, . . . , wnk ]T where wj ∼N (0, β2
k Ink−1

). Note that

‖fk(x)‖22 =

nk∑
j=1

fk,j(x)2, (40)

and that

EWk
‖fk(x)‖22 =

nk∑
j=1

Ewj [fk,j(x)2] =
nkβ

2
k

2
‖fk−1(x)‖22 = Θ

(
d

k∏
l=1

nlβ
2
l

)
,

where the last equality follows from the induction assumption. Furthermore,

∥∥fk,j(x)2
∥∥
ψ1

= ‖fk,j(x)‖2ψ2
≤ cβ2

k ‖fk−1(x)‖22 = O

(
β2
kd

k−1∏
l=1

nlβ
2
l

)
,

where c is an absolute constant. Thus, by applying Bernstein’s inequality (see Theorem 2.8.1 of (Vershynin, 2018)) to the
sum of i.i.d. random variables in (40), we have

1

2
EWk

‖fk(x)‖22 ≤ ‖fk(x)‖22 ≤
3

2
EWk

‖fk(x)‖22

w.p. at least 1− exp (−Ω (nk)) . Taking the intersection of the two events finishes the proof for ‖fk(x)‖22 . The proof for
Ex ‖fk(x)‖22 can be done by following similar passages and using that

∥∥Ex[fk,j(x)2]
∥∥
ψ1
≤ Ex

∥∥fk,j(x)2
∥∥
ψ1

.

C.2. Proof of Lemma C.2

The upper bound follows from Lemma C.1 via Jensen’s inequality. The proof for the lower bound works by induction on k.
Assume it holds for k − 1 that ‖Ex[fk−1(x)]‖22 = Ω

(
d
∏k−1
l=1 nlβ

2
l

)
w.p. at least 1−

∑k−1
l=1 exp (−Ω (nl)) over (Wl)

k−1
l=1 .

Let us condition on the intersection of this event and that of Lemma C.1 for (Wl)
k−1
l=1 . Let Wk = [w1, . . . , wnk ] where

wj ∼N (0, β2
k Ink−1

). For every j ∈ [nk],

∥∥(Ex[fk,j(x)])2
∥∥
ψ1

= ‖Ex[fk,j(x)]‖2ψ2
≤ Ex ‖[fk,j(x)]‖2ψ2

≤ cβ2
k Ex ‖fk−1(x)‖22 = O

(
dβ2

k

k−1∏
l=1

nlβ
2
l

)
,

where c is an absolute constant and the last equality follows from the above conditional event from Lemma C.1. Moreover,

EWk
‖Ex[fk(x)]‖22 =

nk∑
j=1

Ewj (Ex[fk,j(x)])2 ≥
nk∑
j=1

(ExEwj [fk,j(x)])2 =
nkβ

2
k

2π
(Ex ‖fk−1(x)‖)2

≥ nkβ
2
k

2π
‖Ex[fk−1(x)]‖22 = Ω

(
d

k∏
l=1

nlβ
2
l

)
,

where the last estimate follows from our induction assumption. By Bernstein’s inequality (see Theorem 2.8.1 of (Vershynin,
2018)), we have

‖Ex[fk(x)]‖22 ≥
1

2
EWk

‖Ex[fk(x)]‖22 = Ω

(
d

k∏
l=1

nlβ
2
l

)

w.p. at least 1− exp (−nk) over Wk. Taking the intersection of all these events finishes the proof.
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C.3. Proof of Lemma C.3

Let Z : Rd → R be a random function over xi defined as Z(xi) = ‖fk(xi)− Ex[fk(x)]‖2 . It follows from Theorem 6.2
that w.p. at least 1−

∑k
l=1 exp (−Ω (nl)) over (Wl)

k
l=1,

‖Z‖2Lip = O

( ∏k
l=0 nl

minl∈[0,k] nl

k−1∏
l=1

log(nl)

k∏
l=1

β2
l

)
= o

(
d

k∏
l=1

nlβ
2
l

)
. (41)

Below, let us denote the shorthand

E[Z] = Exi [Z(xi)] =

∫
Rd
Z(xi)dPX(xi).

It holds

E[Z]2 = E[Z2]− E[|Z − EZ|2]

≥ E[Z2]−
∫ ∞

0

P(|Z − EZ| >
√
t)dt

≥ E[Z2]−
∫ ∞

0

2 exp

(
− c t

‖Z‖2Lip

)
dt

= E[Z2]− 2

c
‖Z‖2Lip ,

(42)

where the 2nd inequality follows from Assumption 2.2. By Lemma C.4, we have w.p. at least 1−
∑k
l=1 exp (−Ω (nl)) over

(Wl)
k
l=1 that

E[Z2] = Θ

(
d

k∏
l=1

nlβ
2
l

)
. (43)

By combining (41), (42) and (43), we obtain that E[Z] = Ω

(√
d
∏k
l=1 nlβ

2
l

)
. Moreover, E[Z] ≤

√
E[Z2] =

O
(√

d
∏k
l=1 nlβ

2
l

)
. As a result, we have that E[Z] = Θ

(√
d
∏k
l=1 nlβ

2
l

)
w.p. at least 1 −

∑k
l=1 exp(−Ω (nl)) over

(Wl)
k
l=1. Let us condition on this event and study probability bounds over the samples. Using Assumption 2.2, we have

1
2E[Z] ≤ Z ≤ 3

2E[Z], hence Z = Θ

(√
d
∏k
l=1 nlβ

2
l

)
, w.p. at least

1− exp

(
−Ω

(
minl∈[0,k] nl∏k−1
l=1 log(nl)

))
.

Taking the union bound over N samples, followed by an intersection with the above event over the weights, finishes the
proof.

C.4. Proof of Lemma C.4

The proof works by induction on k. Note that the statement holds for k = 0 due to Assumption 2.1. Let us assume for now
that the result holds for the first k layers. To prove it for layer k, we condition on the intersection of this event and the
event of Lemma C.1 for (Wl)

k−1
l=1 , and study probability bounds over Wk. Define Wk = [w1, . . . , wnk ] ∈ Rnk−1×nk where

wj ∼N (0, β2
kInk−1

). Recall that by definition, fk,j(x) = σ(〈wj , fk−1(x)〉) for j ∈ [nk]. We have that

Ex ‖fk(x)− Ex[fk(x)]‖22 =

nk∑
j=1

Ex
(
fk,j(x)− Ex[fk,j(x)]

)2

2
.
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Taking the expectation over Wk, we have

EWk
Ex ‖fk(x)− Ex[fk(x)]‖22

= EWk
Ex ‖fk(x)‖22 − EWk

‖Ex[fk(x)]‖22

=
nkβ

2
k

2
Ex ‖fk−1(x)‖22 − ExEy

nk∑
j=1

Ewjσ (〈wj , fk−1(x)〉)σ (〈wj , fk−1(y)〉)

=
nkβ

2
k

2
Ex ‖fk−1(x)‖22 − nkβ

2
k ExEy ‖fk−1(x)‖2 ‖fk−1(y)‖2

∞∑
r=0

µr(σ)2

〈
fk−1(x)

‖fk−1(x)‖2
,
fk−1(y)

‖fk−1(y)‖2

〉r
≥ nkβ

2
k

2
Ex ‖fk−1(x)‖22 − µ1(σ)2 nkβ

2
k ‖Ex[fk−1(x)]‖22 − nkβ

2
k

∞∑
r=0
r 6=1

µr(σ)2(Ex ‖fk−1(x)‖)2

=
nkβ

2
k

2
Ex ‖fk−1(x)‖22 −

nkβ
2
k

4
‖Ex[fk−1(x)]‖22 −

nkβ
2
k

4
(Ex ‖fk−1(x)‖)2,

where in the last step we use that µ1(σ)2 = 1/4 and that
∞∑
r=0
r 6=1

µr(σ)2 = 1/4. Furthermore, the RHS of the last expression

can be lower bounded by

nkβ
2
k

4

(
Ex ‖fk−1(x)‖22 − ‖Ex[fk−1(x)]‖22

)
=
nkβ

2
k

4
Ex ‖fk−1(x)− Ex[fk−1(x)]‖22 = Ω

(
d

k∏
l=1

nlβ
2
l

)
,

where the last step follows by induction assumption. Moreover, it follows from above that

EWk
Ex ‖fk(x)− Ex[fk(x)]‖22 ≤

nkβ
2
k

2
Ex ‖fk−1(x)‖22 = O

(
d

k∏
l=1

nlβ
2
l

)
,

where the last estimate follows from Lemma C.1. For every j ∈ [nk],∥∥∥∥Ex(fk,j(x)− Ex[fk,j(x)]
)2
∥∥∥∥
ψ1

≤ Ex
∥∥∥∥(fk,j(x)− Ex[fk,j(x)]

)2
∥∥∥∥
ψ1

= Ex ‖fk,j(x)− Ex[fk,j(x)]‖2ψ2

≤ cEx ‖fk,j(x)‖2ψ2

≤ cEx
(∥∥fk,j(x)− Ewj [fk,j(x)]

∥∥2

ψ2
+
∣∣Ewj [fk,j(x)]

∣∣2)
≤ cEx

(
β2
k ‖fk,j(x)‖2Lip +

β2
k

2π
‖fk−1(x)‖22

)
≤ cβ2

k Ex ‖fk−1(x)‖22

= O

(
β2
kd

k−1∏
l=1

β2
l nl

)
,

where c is an absolute constant (which is allowed to change from line to line) and the last step uses Lemma C.1. By
Bernstein’s inequality (see Theorem 2.8.1 of (Vershynin, 2018)),

1

2
EWk

Ex ‖fk(x)− Ex[fk(x)]‖22 ≤ Ex ‖fk(x)− Ex[fk(x)]‖22 ≤
3

2
EWk

Ex ‖fk(x)− Ex[fk(x)]‖22 ,

w.p. at least 1− exp (−Ω (nk)) over Wk. Thus, with that probability, we have that

Ex ‖fk(x)− Ex[fk(x)]‖22 = Θ

(
d

k∏
l=1

nlβ
2
l

)
.

Taking the intersection of all the events finishes the proof.
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C.5. Proof of Lemma C.5

Proof: By Lemma C.1, we have fk−1(x) 6= 0 w.p. at least 1 −
∑k−1
l=1 exp (−Ω (nl)) − exp(−Ω (d)) over (Wl)

k−1
l=1 and

x. Let us condition on this event and derive probability bounds over Wk. Let Wk = [w1, . . . , wnk ]. Then, ‖Σk(x)‖2F =∑nk
j=1 σ

′(〈fk−1(x), wj〉). Thus,

EWk
‖Σk(x)‖2F = nkEw1

[σ′(−〈fk−1(x), w1〉))] = nkEw1
[(1− σ′(〈fk−1(x), w1〉))] = nk − EWk

‖Σk(x)‖2F ,

where we used the fact that wj has a symmetric distribution, σ′(t) = 1 − σ′(−t) for t 6= 0, and the set of w1 ∈ Rnk−1

for which 〈fk−1(x), wj〉 = 0 has measure zero. This implies that EWk
‖Σk(x)‖2F = nk/2. By Hoeffding’s inequality on

bounded random variables (see Theorem 2.2.6 of (Vershynin, 2018)), we have

P
(∣∣∣‖Σk(x)‖2F − EWk

‖Σk(x)‖2F
∣∣∣ > t

)
≤ 2 exp

(
−2t2

nk

)
.

Picking t = nk/4 finishes the proof. �

C.6. Proof of Lemma C.6

The proof works by induction on p. First, Lemma C.5 implies that the statement holds for p = k. Suppose it holds for some
p− 1. Note that this implies fp−1(x) 6= 0 because otherwise Σp−1(x) = 0, which contradicts the induction assumption.
Let Sp = Σk(x)

∏p
l=k+1WlΣl(x). Then, Sp = Sp−1WpΣp(x). Let Wp = [w1, . . . , wnp ]. Then,

‖Sp‖2F =

np∑
j=1

‖Sp−1wj‖22 σ
′(gp,j(x)) =

np∑
j=1

‖Sp−1wj‖22 σ
′(〈fp−1(x), wj〉).

We have

EWp
‖Sp‖2F = npEw1

‖Sp−1w1‖22 σ
′(〈fp−1(x), w1〉)

= npEw1
‖Sp−1(−w1)‖22 σ

′(〈fp−1(x), (−w1)〉)

= npEw1 ‖Sp−1w1‖22 (1− σ′(〈fp−1(x), w1〉))

= npEw1 ‖Sp−1w1‖22 − EWp ‖Sp‖
2
F

= npβ
2
p ‖Sp−1‖2F − EWp ‖Sp‖

2
F ,

where the second step uses that w1 has a symmetric distribution, the third step uses the fact that σ′(t) = 1 − σ′(−t) for
t 6= 0 and the set of w1 for which 〈fp−1(x), w1〉) = 0 has measure zero. Thus,

EWp
‖Sp‖2F =

np
2
β2
p ‖Sp−1‖2F = Θ

(
nk

p∏
l=k+1

nlβ
2
l

)
,

where the last equality holds by induction assumption. Moreover,∥∥∥‖Sp−1wj‖22 σ
′(〈fp−1(x), wj〉)

∥∥∥
ψ1

≤ c
∥∥‖Sp−1wj‖2

∥∥2

ψ2
≤ cβ2

p ‖Sp−1‖2F ,

where c is an absolute constant (which is allowed to change from passage to passage). By Bernstein’s inequality (see
Theorem 2.8.1 of (Vershynin, 2018)), we have

1

2
EWp

‖Sp‖2F ≤ ‖Sp‖
2
F ≤

3

2
EWp

‖Sp‖2F

w.p. at least 1− e−Ω(np). Taking the intersection of all the events finishes the proof.
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D. Missing Proofs from Section 4
D.1. Proof of Corollary 4.2

Let p =
∑L
l=1 nlnl−1. Let ∂FL

∂θ ∈ RN×p denote the true Jacobian of FL (without the convention that σ′(0) = 0) at
a differentiable point θ. Note that, by Lemma B.2 of (Nguyen & Mondelli, 2020), FL(θ) is locally Lipschitz, thus a.e.
differentiable. Let J(θ) ∈ RN×p be the Jacobian matrix defined in (2) (with the convention that σ′(0) = 0). Let

Ω1 = {θ ∈ Rp | rank(J(θ)) = N}

and
Ω0 = {θ ∈ Rp | ∃l ∈ [L− 1], j ∈ [nl], i ∈ [N ] : glj(xi) = 0} .

Let λp denote the Lebesgue measure in Rp. Pick an even integer r s.t. r ≥ 0.1 + 2/δ′. Then, Theorem 4.1 implies that,
with high probability (as stated in the corollary) over the training data, we have λp(Ω1) > 0. For every θ ∈ Ω1, it holds
that fl(θ, xi) 6= 0 for all 0 ≤ l ≤ L − 2, i ∈ [N ], because otherwise J(θ)i: = 0 (which leads to a contradiction). Thus,
every θ ∈ Ω1 ∩ Ω0 must satisfy 0 = glj(θ, xi) = 〈fl−1(θ, xi), (Wl):j〉 for some l ∈ [L − 1], j ∈ [nl], i ∈ [N ]. The set
of Wl which satisfies this equation has measure zero, and thus it holds λp(Ω1 ∩ Ω0) = 0. Combining these facts, we

get λp(Ω1 \ Ω0) > 0. Pick some θ0 ∈ Ω1 \ Ω0. Then clearly, we have the following: (i) J(θ0) = ∂FL
∂θ

∣∣∣
θ=θ0

and (ii)

rank(J(θ0)) = N. This implies that there exists θ′ ∈ Rp such that
(
∂FL
∂θ

∣∣∣
θ=θ0

)
θ′ = Y and thus,

yi =

((
∂FL
∂θ

∣∣∣
θ=θ0

)
θ′
)
i

=

〈
∂fL(θ, xi)

∂θ

∣∣∣
θ0
, θ′
〉

= lim
ε→0

fL(θ0 + εθ′, xi)− fL(θ0, xi)

ε︸ ︷︷ ︸
=:hε(xi)

, ∀ i ∈ [N ].

The result follows by noting that hε(xi) can be implemented by a network of the same depth with twice more neurons at
every hidden layer.

D.2. Proof of Lemma 4.3

By a change of index k + 1→ k, it is equivalent to prove the following:∥∥∥∥∥Σk(x)

(
L−1∏
l=k+1

WlΣl(x)

)
WL

∥∥∥∥∥
2

2

= Θ

(
β2
L nk

L−1∏
l=k+1

nlβ
2
l

)
.

Let B = Σk(x)
(∏L−1

l=k+1WlΣl(x)
)
. By Lemma C.6, ‖B‖2F = Θ

(
nk
∏L−1
l=k+1 nlβ

2
l

)
w.p. at least 1 −∑L−1

l=1 exp (−Ω (nl))− exp (−Ω (d)) . Moreover, one can also show that with a similar probability,

‖B‖2op = O

(
nk

minl∈[k,L−1] nl

L−1∏
l=k+1

nlβ
2
l

)
.

The proof of this is postponed below. Let us condition on the intersection of these two events of (Wl)
L−1
l=1 . Then, by

Hanson-Wright inequality (see Theorem 6.2.1 of (Vershynin, 2018)), we have

1

2
EWL

‖BWL‖22 ≤ ‖BWL‖22 ≤
3

2
EWL

‖BWL‖22 .

w.p. at least 1− e−Ω(‖B‖2F /‖B‖
2
op) over WL. Plugging the above bounds leads to the desired result.

In the remainder of this proof, we verify the above bound of ‖B‖2op. Concretely, we want to show that for every p, q ∈ [L−1],
the following holds w.p. at least 1−

∑q
l=p−1 exp (−Ω (nl))∥∥∥∥∥∥

q∏
l=p

WlΣl(x)

∥∥∥∥∥∥
2

op

= O

 ∏q
l=p−1 nl

minl∈[p−1,q] nl

q∏
l=p

β2
l

 . (44)
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Given that, the bound of ‖B‖2op follows immediately by letting p = k + 1, q = L − 1, and noting ‖Σk(x)‖op ≤ 1. The
proof of (44) is by induction over the length s = q − p. First, (44) holds for s = 0 since ‖WpΣp(x)‖2op ≤ ‖Wp‖2op =

O
(
β2
p max(np, np−1)

)
where the last estimate follows from the standard bounds on the operator norm of Gaussian matrices

(see Theorem 2.12 of (Davidson & Szarek, 2001)). Suppose that (44) holds for p, q such that q − p ≤ s− 1, and we want to
prove it for all pairs p, q with q − p = s. It suffices to provide bound for one pair of (p, q) and then do a union bound over
all possible pairs. In the following, let

j = arg min
l∈[p−1,q]

nl, t = arg min
l∈[p−1,q]\{j}

nl.

We analyze three cases below. In the first case, namely j ∈ [p, q − 1], then∥∥∥∥∥∥
q∏
l=p

WlΣl(x)

∥∥∥∥∥∥
2

op

≤

∥∥∥∥∥∥
j∏
l=p

WlΣl(x)

∥∥∥∥∥∥
2

op

∥∥∥∥∥∥
q∏

l=j+1

WlΣl(x)

∥∥∥∥∥∥
2

op

= O

 ∏j
l=p−1 nl

minl∈[p−1,j] nl

∏q
l=j nl

minl∈[j,q] nl

q∏
l=p

β2
l


= O

∏q
l=p−1 nl

nj

q∏
l=p

β2
l

 = O

 ∏q
l=p−1 nl

minl∈[p−1,q] nl

q∏
l=p

β2
l

 ,

where the first equality follows from our induction assumption, the second equality follows from the current choice of j. In
the second case, if j = q and t ∈ [p, q − 1], then similarly one has∥∥∥∥∥∥

q∏
l=p

WlΣl(x)

∥∥∥∥∥∥
2

op

≤

∥∥∥∥∥∥
t∏
l=p

WlΣl(x)

∥∥∥∥∥∥
2

op

∥∥∥∥∥
q∏

l=t+1

WlΣl(x)

∥∥∥∥∥
2

op

= O

 ∏t
l=p−1 nl

minl∈[p−1,t] nl

∏q
l=t nl

minl∈[t,q] nl

q∏
l=p

β2
l


= O

∏t
l=p−1 nl

nt

∏q
l=t nl
nq

q∏
l=p

β2
l

 = O

 ∏q
l=p−1 nl

minl∈[p−1,q] nl

q∏
l=p

β2
l

 .

It remains to handle the case in which either (j = p− 1) or (j = q and t = p− 1). To do so, we use an ε-net argument.
Since ‖Σq(x)‖op ≤ 1, it holds that ∥∥∥∥∥∥

q∏
l=p

WlΣl(x)

∥∥∥∥∥∥
2

op

≤

∥∥∥∥∥∥
q−1∏
l=p

WlΣl(x)

Wq

∥∥∥∥∥∥
2

op

. (45)

Furthermore, by using Lemma 4.4.1 of (Vershynin, 2018),

∥∥∥∥∥∥
q−1∏
l=p

WlΣl(x)

Wq

∥∥∥∥∥∥
2

op

≤ 4 sup
y∈Np−1

1/2

∥∥∥∥∥∥∥∥∥∥
yT

q−1∏
l=p

WlΣl(x)


︸ ︷︷ ︸

=:zT

Wq

∥∥∥∥∥∥∥∥∥∥

2

2

, (46)

where Np−1
1/2 is a 1

2 -net of the unit sphere in Rnp−1 . Fix y ∈ Np−1
1/2 , and let z be defined as above, then clearly z is independent

of Wq , and it holds by induction assumption

‖z‖22 = O

 ∏q−1
l=p−1 nl

minl∈[p−1,q−1] nl

q−1∏
l=p

β2
l

 (47)

w.p. at least 1 −
∑q−1
l=p exp (−Ω (nl)) over (Wl)

q−1
l=1 . Conditioned on this event of the first q − 1 layers, let us study

concentration bound for
∥∥zTWq

∥∥2

2
where the only randomness is over Wq. Note that

∥∥zTWq

∥∥2

2
=
∑nq
j=1 〈z, (Wq):j〉2 and
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∥∥∥
ψ1

≤ c1β2
q ‖z‖

2
2 . Thus by Bernstein’s inequality (see Theorem 2.8.1 of (Vershynin, 2018)),

P
(∣∣∣∥∥zTWq

∥∥2

2
− EWq

∥∥zTWq

∥∥2

2

∣∣∣ > t
)
≤ exp

(
−c2 min

(
t

c1β2
q ‖z‖

2
2

,
t2

nqc21β
4
q ‖z‖

4
2

))
,

for some constant c2. By plugging t = Cc1 max(nq, np−1)β2
q ‖z‖

2
2 /c2 for some C > max(c2, log 5), and

EWq

∥∥zTWq

∥∥2

2
= nqβ

2
q ‖z‖

2
2, one obtains

∥∥zTWq

∥∥2

2
= O

(
max(nq, np−1)β2

q ‖z‖
2
2

)
w.p. at least 1 − e−Cmax(nq,np−1).

Taking the union bound over y ∈ Np−1
1/2 , we get

sup
y∈Np−1

1/2

∥∥zTWq

∥∥2

2
= sup
y∈Np−1

1/2

∥∥∥∥∥∥yT
q−1∏
l=p

WlΣl(x)

Wq

∥∥∥∥∥∥
2

2

= O
(

max(nq, np−1)β2
q ‖z‖

2
)

w.p. at least 1 −
∣∣∣Np−1

1/2

∣∣∣ e−Cmax(nq,np−1) = 1 − e−Ω(max(nq,np−1)), where we used the fact that
∣∣∣Np−1

1/2

∣∣∣ ≤ 5np−1 and
C > log 5. This combined with (45),(46) and (47) implies

∥∥∥∥∥∥
q∏
l=p

WlΣl(x)

∥∥∥∥∥∥
2

op

= O

max(nq, np−1)β2
q

∏q−1
l=p−1 nl

minl∈[p−1,q−1] nl

q−1∏
l=p

β2
l

 = O

 ∏q
l=p−1 nl

minl∈[p−1,q] nl

q∏
l=p

β2
l

 ,

where the last estimate follows from the current conditions on (j, t). To summarize, we have shown that (44) holds for every
given pair (p, q) such that q − p = s. Taking the union bound over all these pairs finishes the proof. Finally, note that doing
the union bound above does not affect the probability of the final result since the number of all possible pairs is only a
constant.

E. Missing Proofs from Section 5
E.1. Proof of Lemma 5.2

For a subgaussian random variable Z, recall that P(Z > t) ≤ exp(−c t2/ ‖Z‖2ψ2
), where c is an absolute constant. In the

following, let t =
4βk‖Fk−1‖F

c

√
max

(
1, log

8β2
k‖Fk−1‖2F
c λ

)
. Let us denote the shorthand Wk = [w1, . . . , wnk ] ∈ Rnk−1×nk ,

and denote by A ∈ RN×nk a matrix such that A:j = σ(Fk−1wj)1‖σ(Fk−1wj)‖2≤t for all j ∈ [nk]. Let

G = Ew∼N (0,β2
k Ink−1

)

[
σ(Fk−1w)σ(Fk−1w)T

]
,

Ĝ = Ew∼N (0,β2
k Ink−1

)

[
σ(Fk−1w)σ(Fk−1w)T 1‖σ(Fk−1w)‖2≤t

]
.

Note λ = λmin (G), λmin

(
FkF

T
k

)
≥ λmin

(
AAT

)
and λmax

(
A:jA

T
:j

)
≤ t2. By Matrix Chernoff inequality (see Theorem

1.1 of (Tropp, 2012)), it holds for every ε ∈ [0, 1)

P
(
λmin

(
AAT

)
≤ (1− ε)λmin

(
EAAT

) )
≤ N

[
e−ε

(1− ε)1−ε

]λmin(EAAT )/t2

.

Pick ε = 1/2. Then,

P
(
λmin

(
AAT

)
≤ nkλmin

(
Ĝ
)
/2
)
≤ exp

(
−c1 nkλmin

(
Ĝ
)
/t2 + logN

)
.
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Thus, for nk ≥ t2

c1λmin(Ĝ)
log N

δ we have λmin

(
AAT

)
≥ nkλmin(Ĝ)

2 w.p. ≥ 1− δ. Moreover,

∥∥∥Ĝ−G∥∥∥
2
≤ E

∥∥∥σ(Fk−1w)σ(Fk−1w)T 1‖σ(Fk−1w)‖2≤t − σ(Fk−1w)σ(Fk−1w)T
∥∥∥

2

= E
[
‖σ(Fk−1w)‖22 1‖σ(Fk−1w)‖2>t

]
=

∫ ∞
s=0

P
(
‖σ(Fk−1w)‖2 1‖σ(Fk−1w)‖2>t >

√
s
)
ds

=

∫ ∞
s=0

P (‖σ(Fk−1w)‖2 > t)P
(
‖σ(Fk−1w)‖2 >

√
s
)
ds

≤
∫ ∞
s=0

exp

(
−c t2 + s

4β2
k ‖Fk−1‖2F

)
ds

≤ λ/2,

where the second inequality uses the fact that ‖‖σ(Fk−1w)‖2‖ψ2
≤ 2βk ‖Fk−1‖F . It follows that λmin

(
Ĝ
)
≥ λ/2. In

total, for nk ≥ 2t2

c1λ
log N

δ , it holds w.p. at least 1− δ that

σmin (Fk)
2

= λmin

(
FkF

T
k

)
≥ λmin

(
AAT

)
≥ nkλmin

(
Ĝ
)
/2 ≥ nkλ/4,

where we used the condition nk ≥ N in the above equality.

E.2. Proof of Lemma 5.3

Let D = diag(‖(Fk)1:‖2 , . . . , ‖(Fk)N :‖2) and F̂k = D−1Fk. Then, by the homogeneity of σ, we have

λmin

(
E[σ(Fkw)σ(Fkw)T ]

)
= λmin

(
DE

[
σ(F̂kw)σ(F̂kw)T

]
D
)

= β2
k+1λmin

(
D

[
µ0(σ)21N1TN +

∞∑
s=1

µs(σ)2(F̂ ∗sk )(F̂ ∗sk )T

]
D

)
≥ β2

k+1 µr(σ)2λmin

(
D(F̂ ∗rk )(F̂ ∗rk )TD

)
= β2

k+1 µr(σ)2λmin

(
D−(r−1)(F ∗rk )(F ∗rk )TD−(r−1)

)
≥ β2

k+1 µr(σ)2 λmin

(
(F ∗rk )(F ∗rk )T

)
maxi∈[N ] ‖(Fk)i:‖2(r−1)

2

,

where the second equality uses the Hermite expansion of σ (for the proof see Lemma D.3 of (Nguyen & Mondelli, 2020)).

E.3. Proof of Lemma 5.4

Let µ = Ex[fk(x)] ∈ Rnk . Denote A = Fk and Ã = F̃k = A− 1Nµ
T where 1N ∈ RN is the all-one vector. By Lemma

C.2, it holds w.p. at least 1−
∑k
l=1 exp (−Ω (nl)) over (Wl)

k
l=1 that

‖µ‖22 = Θ

(
d

k∏
l=1

nlβ
2
l

)
. (48)

Also, Theorem 6.2 shows that w.p. at least 1−
∑k
l=1 exp (−Ω (nl)) over (Wl)

k
l=1,

‖fk‖2Lip = O

( ∏k
l=0 nl

minl∈[0,k] nl

k−1∏
l=1

log(nl)

k∏
l=1

β2
l

)
. (49)
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Let us condition on the intersection of these two events of the weights and study probability bounds over the data. We have

(F ∗rk )(F ∗rk )T =
(
AAT

)
◦ . . . ◦

(
AAT

)
, (50)

where the Hadamard product is repeated r times. By definition, it holds

AAT = ÃÃT + ‖µ‖22 1N1TN + (1Nµ
T )ÃT + Ã(1Nµ

T )T

= ÃÃT + ‖µ‖22 1N1TN + 1N

(
Aµ− ‖µ‖22 1N

)T
+
(
Aµ− ‖µ‖221N

)
1TN

= ÃÃT + 1N1TN

(
Λ +

‖µ‖22
2

)
+

(
Λ +

‖µ‖22
2

)
1N1TN ,

where Λ = diag(Aµ− ‖µ‖221N ). Let h : Rd → R be a function over a random sample x, defined as h(x) = 〈fk(x), µ〉 .
Then, Λii = h(xi)− Ex[h(x)]. Since ‖h‖2Lip ≤ ‖µ‖

2
2 ‖fk‖

2
Lip, it holds

P (|Λii| ≥ t) ≤ exp

(
− t2

2 ‖µ‖22 ‖fk‖
2
Lip

)
. (51)

Pick t = ‖µ‖2/2. Then, taking the union bound over all the samples, we have

mini∈[N ] Λii ≥ −
‖µ‖22

2
=⇒ AAT � ÃÃT

w.p. at least

1−N exp

(
−
‖µ‖22

8 ‖fk‖2Lip

)
.

Taking the intersection with (48), (49) and plugging the bounds leads to the desired result.

E.4. Proof of Lemma 5.5

From Gershgorin circle theorem, one obtains

λmin

(
(F̃ ∗rk )(F̃ ∗rk )T

)
≥ min
i∈[N ]

‖(F̃k)i:‖2r2 −N max
i 6=j
|〈(F̃k)i:, (F̃k)j:〉|r, (52)

λmin

(
(F̃ ∗rk )(F̃ ∗rk )T

)
≤ max
i∈[N ]

‖(F̃k)i:‖2r2 +N max
i 6=j
|〈(F̃k)i:, (F̃k)j:〉|r. (53)

By Lemma C.3, it holds w.p. at least 1−N exp
(
−Ω

(
minl∈[0,k] nl∏k−1
l=1 log(nl)

))
−
∑k
l=1 exp(−Ω (nl)) that

‖(F̃k)i:‖2r2 = Θ

((
d

k∏
l=1

nlβ
2
l

)r)
, ∀ i ∈ [N ]. (54)

In the following, we bound the second term on the RHS of (53). For a fixed j ∈ [N ], Lemma C.3 implies that w.p. at least
1− exp

(
−Ω

(
minl∈[0,k] nl∏k−1
l=1 log(nl)

))
−
∑k
l=1 exp(−Ω (nl)) over (Wl)

k
l=1 and xj , we have

∥∥∥(F̃k)j:

∥∥∥2

2
= Θ

(
d

k∏
l=1

nlβ
2
l

)
. (55)

Moreover, Theorem 6.2 implies that w.p. at least 1−
∑k
l=1 exp (−Ω (nl)) over (Wl)

k
l=1,

‖fk(x)− Exfk(x)‖2Lip = O

( ∏k
l=0 nl

minl∈[0,k] nl

k−1∏
l=1

log(nl)

k∏
l=1

β2
l

)
. (56)



Tight Bounds on the Smallest Eigenvalue of the Neural Tangent Kernel for Deep ReLU Networks

Let us condition on the intersection of these two events of (Wl)
k
l=1 and xj , and derive probability bounds over xi, for every

i 6= j. Let h(xi) =
〈

(F̃k)i:, (F̃k)j:

〉
be a function of xi, then

‖h‖2Lip ≤
∥∥∥(F̃k)j:

∥∥∥2

2
‖fk(xi)− Exfk(xi)‖2Lip = O

(d k∏
l=1

nlβ
2
l

)2 ∏k−1
l=1 log(nl)

minl∈[0,k] nl

 ,

where the last estimate follows from (55) and (56). Using Assumption 2.2, followed by a union bound over {xi}i6=j , we
have for every t > 0 that

P
(

maxi∈[N ],i6=j

∣∣∣〈(F̃k)i:, (F̃k)j:

〉∣∣∣ ≥ t) ≤ (N − 1) exp

− t2

O
((

d
∏k
l=1 nlβ

2
l

)2 ∏k−1
l=1 log(nl)

minl∈[0,k] nl

)
 . (57)

Pick t = N−1/(r−0.1)
(
d
∏k
l=1 nlβ

2
l

)
. Then, taking the intersection bound with (55) and (56) yields

N max
i∈[N ],i6=j

|〈(F̃k)i:, (F̃k)j:〉|r ≤ N

(
d
∏k
l=1 nlβ

2
l

)r
Nr/(r−0.1)

= o

((
d

k∏
l=1

nlβ
2
l

)r)
(58)

w.p. at least

1− (N − 1) exp

(
−Ω

(
minl∈[0,k] nl

N2/(r−0.1)
∏k−1
l=1 log(nl)

))
−

k∑
l=1

exp (−Ω (nl)) .

Since this holds for every given xj , taking the union bound over j ∈ [N ] yields that

N max
i6=j
|〈(F̃k)i:, (F̃k)j:〉|r = o

((
d

k∏
l=1

nlβ
2
l

)r)
(59)

w.p. at least

1−N2 exp

(
−Ω

(
minl∈[0,k] nl

N2/(r−0.1)
∏k−1
l=1 log(nl)

))
−N

k∑
l=1

exp (−Ω (nl)) .

Combining (52), (53), (54), (59) finishes the proof.

F. Missing Proofs from Section 6
Definition F.1 A subset A ⊆ Rn is called a polyhedron if it is the intersection of a finite family of (closed) half-spaces. A
function f : Rn → Rm is called piecewise linear if there exist a finite family of polyhedra {Pi}ri=1 such that Rn = ∪ri=1Pi
and f coincides with a linear function on each Pi.

The following lemma establishes a formal connection between ReLU networks and PWL functions. Its proof is contained in
Appendix F.3.

Lemma F.2 For every k ∈ [L], fk, gk : Rd → Rnk as defined in (1) are piecewise linear functions.

An equivalent way of defining piecewise linear maps is the following, see e.g. (Gorokhovik, 2011).

Lemma F.3 A function f : Rn → Rm is piecewise linear if and only if there exist a finite family of polyhedra {Pi}Ti=1 and
matrices {Ai}Ti=1 ∈ Rm×n such that:

1. Rn =
⋃T
i=1 Pi,
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2. int(Pi) 6= ∅, ∀ i ∈ [T ],

3. int(Pi) ∩ int(Pj) = ∅ ∀ i 6= j,

4. f(x) = Aix for every x ∈ Pi.

F.1. Proof of Theorem 6.2

Let hp→q : Rnp → Rnq be defined as

hp→q = Aq ◦ σ̂q−1 ◦Aq−1 ◦ . . . ◦ σ̂p+1 ◦Ap+1,

where the mapping Al : Rnl−1 → Rnl is given by Al(x) = WT
l x, and the mapping σ̂l : Rnl → Rnl is given by

σ̂(x) = [σ(x1), . . . , σ(xnl)]
T for every x ∈ Rnl . By definition, it holds gk(x) = h0→k(x). In the following, we prove that

for every 0 ≤ p < q ≤ L, it holds w.p. ≥ 1−
∑q
l=p−1 exp (−Ω (nl)) that

‖hp→q‖Lip = O

 ∏q
l=p nl

minl∈[p,q] nl

q−1∏
l=p+1

log(nl)

q∏
l=p+1

β2
l

 . (60)

The desired result follows by letting p = 0, q = k. The proof of (60) is by induction over the length s = q − p. First, (60)
holds for s = 1. Suppose that (60) holds for all (p, q) such that q − p ≤ s− 1, and we want to prove it for all (p, q) with
q − p = s. It suffices to show the result for one pair and then do a union bound over all the possible pairs. Let us define

j = arg min
l∈[p,q]

nl, t = arg min
l∈[p,q]\{j}

nl.

Consider three cases below. In the first case, j ∈ [p+ 1, q − 1]. By noting that

hp→q = hj→q ◦ σ̂j ◦ hp→j

and using the Lipschitz property of a composition of Lipschitz continuous functions, one obtains

‖hp→q‖Lip ≤ ‖hp→j‖Lip ‖σ̂j‖Lip ‖hj→q‖Lip

= O

 ∏j
l=p nl

minl∈[p,j] nl

j−1∏
l=p+1

log(nl)

∏q
l=j nl

minl∈[j,q] nl

q−1∏
l=j+1

log(nl)

q∏
l=p+1

β2
l


= O

 ∏q
l=p nl

minl∈[p,q] nl

q−1∏
l=p+1

log(nl)

q∏
l=p+1

β2
l

 ,

where the first equality follows from induction assumption and ‖σ̂‖Lip ≤ 1, the second equality follows from definition of j.
In the second case, j = q and t ∈ [p+ 1, q − 1], then similarly,

‖hp→q‖Lip ≤ ‖hp→t‖Lip ‖σ̂t‖Lip ‖ht→q‖Lip

= O

 ∏t
l=p nl

minl∈[p,t] nl

t−1∏
l=p+1

log(nl)

∏q
l=t nl

minl∈[t,q] nl

q−1∏
l=t+1

log(nl)

q∏
l=p+1

β2
l


= O

nt∏q
l=p nl

ntnq

q−1∏
l=p+1

log(nl)

q∏
l=p+1

β2
l


= O

 ∏q
l=p nl

minl∈[p,q] nl

q−1∏
l=p+1

log(nl)

q∏
l=p+1

β2
l

 .
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It remains to handle the case where either (j = p) or (j = q and t = p). By Lemma 6.1, it holds w.p. 1 over (Wl)
q−1
l=p+1 that

there exists a set of R tuples of diagonal matrices, say D =
{

(Σ1
p+1, . . . ,Σ

1
q−1), . . . , (ΣRp+1, . . . ,Σ

R
q−1)

}
, with 0-1 entries

on the diagonals such that

‖hp→q‖Lip ≤ max
(Σp+1,...,Σq−1)∈D

∥∥∥∥∥∥
 q−1∏
l=p+1

WlΣl

Wq

∥∥∥∥∥∥
op

. (61)

According to Lemma 6.1, R can be interpreted as the maximum number of activation patterns of a q − p layer network
with layer widths (np, np+1, . . . , nq), where every hidden neuron has a definite sign pattern {−1,+1} . Let nmax =
maxl∈[p+1,q−1] nl, then R = O ((nmax)np) (see e.g. (Hanin & Rolnick, 2019; Serra et al., 2018)). Using the definition of
operator norm and an ε-net argument, the inequality (61) becomes

‖hp→q‖Lip ≤ max
(Σp+1,...,Σq−1)∈D

sup
‖y‖2=1

∥∥∥∥∥∥yT
 q−1∏
l=p+1

WlΣl

Wq

∥∥∥∥∥∥
2

≤ max
(Σp+1,...,Σq−1)∈D

2 sup
y∈Np

1/2

∥∥∥∥∥∥∥∥∥∥
yT

 q−1∏
l=p+1

WlΣl


︸ ︷︷ ︸

=:zT

Wq

∥∥∥∥∥∥∥∥∥∥

2

2

, (62)

where Np1/2 is a 1
2 -net of the unit sphere in Rnp and the last inequality follows from Lemma 4.4.1 in (Vershynin, 2018). Fix

y ∈ Np1/2, and let z be defined as above. Note that z is independent of Wq . From the proof of Lemma 4.3, we have

‖z‖22 ≤

∥∥∥∥∥∥
q−1∏
l=p+1

WlΣl

∥∥∥∥∥∥
2

op

= O

 ∏q−1
l=p nl

minl∈[p,q−1] nl

q−1∏
l=p+1

β2
l

 (63)

w.p. at least 1 −
∑q−1
l=p exp (−Ω (nl)) over (Wl)

q−1
l=p+1. Conditioned on the intersection of this event with the event

(61) of (Wl)
q−1
l=p+1, let us now study a concentration bound for

∥∥zTWq

∥∥2

2
where the only randomness is Wq. We have∥∥zTWq

∥∥2

2
=
∑nq
j=1 〈z, (Wq):j〉2 and

∥∥∥〈z, (Wq):j〉2
∥∥∥
ψ1

≤ c1β2
q ‖z‖

2
2 . Thus by Bernstein’s inequality (see Theorem 2.8.1

of (Vershynin, 2018)),

P
(∣∣∣∥∥zTWq

∥∥2

2
− EWq

∥∥zTWq

∥∥2

2

∣∣∣ > t
)
≤ exp

(
−c2 min

(
t

c1β2
q ‖z‖

2
2

,
t2

nqc21β
4
q ‖z‖

4
2

))
,

for some constant c2. Let C = max(c2, 2). Then by substituting to the above inequality the values

t =
Cc1
c2

max(nq, np)
log(R)

np
β2
q ‖z‖

2
2 , EWq

∥∥zTWq

∥∥2

2
= nqβ

2
q ‖z‖

2
2 ,

we have w.p. at least 1− e−Cmax(nq,np) log(R)/np that∥∥zTWq

∥∥2

2
= O

(
max(nq, np)

log(R)

np
β2
q ‖z‖

2
2

)
.

Now taking the union bound over y ∈ Np1/2 and all tuples from D, the RHS of (62) is bounded as

max
(Σp+1,...,Σq−1)∈D

2 sup
y∈Np

1/2

∥∥zTWq

∥∥2

2
= O

(
max(nq, np)

log(R)

np
β2
q ‖z‖

2
2

)
= O

(
max(nq, np) log(nmax)β2

q ‖z‖
2
2

)



Tight Bounds on the Smallest Eigenvalue of the Neural Tangent Kernel for Deep ReLU Networks

w.p. at least

1−R
∣∣∣Np1/2∣∣∣ e−Cmax(nq,np)

log(R)
np ≥ 1− e−Ω(max(nq,np)),

where we used
∣∣∣Np1/2∣∣∣ ≤ 5np , R = O ((nmax)np) and C > 1. This combined with (62), (63) implies

‖hp→q‖Lip = O

max(nq, np) log(nmax)β2
q

∏q−1
l=p nl

minl∈[p,q−1] nl

q−1∏
l=p+1

β2
l


= O

 ∏q
l=p nl

minl∈[p,q] nl
log(maxl∈[p+1,q−1] nl)

q∏
l=p+1

β2
l


= O

 ∏q
l=p nl

minl∈[p,q] nl

q−1∏
l=p+1

log(nl)

q∏
l=p+1

β2
l

 ,

where the second estimate follows from the current value of (j, t). So, we have shown that (60) holds for every pair (p, q)
with q − p = s. Taking the union bound over all these pairs finishes the proof. Note that this last step does not affect the
final probability as the number of pairs is only a constant.

F.2. Proof of Lemma 6.1

Let γd be the Lebesgue measure in Rd. Let us associate to gk : Rd → Rnk a set of polyhedra {Pi}Ti=1 and matrices
{Ai}Ti=1 ∈ Rnk×nd as in Lemma F.3. First, let us show that

‖gk‖Lip = maxi∈[T ] ‖Ai‖op . (64)

Pick any x, y ∈ Rd. By intersecting the line segment [x, y] with the polyhedra, there exists a finite set of points {ui}ri=1 on
[x, y] such that: (i) u0 = x, ur = y, (ii) ‖x− y‖2 =

∑r−1
i=0 ‖ui − ui+1‖2, and (iii) [ui, ui+1] is contained in Pji for some

ji ∈ [T ]. This implies

‖gk(x)− gk(y)‖2 ≤
r−1∑
i=0

‖gk(ui)− gk(ui+1)‖2 =

r−1∑
i=0

‖Aji(ui − ui+1)‖2 ≤
r−1∑
i=0

‖Aji‖op ‖ui − ui+1‖2

≤ maxi∈[T ] ‖Ai‖op ‖x− y‖2 ,

which means

‖gk‖Lip = sup
x,y

‖gk(x)− gk(y)‖2
‖x− y‖2

≤ maxi∈[T ] ‖A‖op .

To show that the above inequality can be attained, let i∗ = arg max
i∈[T ]

‖Ai‖op . Since int(Pi∗) 6= ∅, it holds

{
x− y
‖x− y‖2

∣∣∣∣ x, y ∈ Pi∗} = Sn−1,

where Sn−1 denotes the unit sphere in Rn, and thus

sup
x,y

‖gk(x)− gk(y)‖2
‖x− y‖2

≥ sup
x,y∈Pi∗

‖gk(x)− gk(y)‖2
‖x− y‖2

= sup
x,y∈Pi∗

‖Ai∗(x− y)‖2
‖x− y‖2

= ‖Ai∗‖op .

This proves the equation (64). Next, let us define the following sets:

S =
{
x ∈ Rd

∣∣ fk−1(x) = 0
}
,

B =
{
x ∈ Rd \ S

∣∣ ∃ l ∈ [k − 1], il ∈ [nl] : gl,il(x) = 0
}
,

G = Rd \ (B ∪ S).
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Let ∂S = S \ int(S). Then clearly, Rd = G ∪B ∪ ∂S ∪ int(S). Let us show that γd(B) = γd(∂S) = 0. By Lemma F.2,
fk−1 is a PWL function, thus every level set of fk−1 can be written as a union of finitely many polyhedra in Rd. This means
that ∂S is a union of finitely many polyhedra with dimension at most d− 1, thus γd(∂S) = 0. Concerning the set B, note
that for every l ∈ [k − 1], il ∈ [nl],

gl,il(x) =

d∑
i0=1

n1∑
i1=1

. . .

nl−1∑
il−1=1

l∏
p=1

xi0(Wp)ip−1,ip

l−1∏
q=1

1gq,iq (x)>0.

By definition, any x ∈ B satisfies fl(x) 6= 0 for all l ∈ [k − 1]. This implies that at each layer q ∈ [k − 1], there exists at
least one active neuron, i.e. some iq ∈ [nq] such that gq,iq (x) > 0. Let Il denote the set of active neurons that an input
x ∈ B may have at layer l ∈ [k − 1]. Then it holds

B ⊆
⋃

l∈[k−1]

⋃
il∈[nl]

⋃
I1⊆[n1]

I1 6=∅

. . .
⋃

Il−1⊆[nl−1]

Il−1 6=∅

x ∈ Rd
∣∣∣∣∣∣

d∑
i0=1

∑
i1∈I1

. . .
∑

il−1∈Il−1

l∏
p=1

xi0(Wp)ip−1,ip = 0

 .

With probability 1 over (Wl)
k−1
l=1 , the set of zeros of each polynomial inside the bracket above has measure zero. Since there

are only finitely many such polynomials, one obtains γd(B) = 0 .

We are now ready to prove the lemma. From int(Pi) 6= ∅ and γd(B ∪ ∂S) = 0, it follows that

int(Pi) ∩ (G ∪ int(S)) = int(Pi) ∩ (Rd \ (B ∪ ∂S)) 6= ∅.

For every i ∈ [T ], let zi ∈ int(Pi) ∩ (G ∪ int(S)). Since zi ∈ int(Pi), it follows from (64) that

‖gk‖Lip = maxi∈[T ] ‖Ai‖op = maxi∈[T ] ‖J(gk)(zi)‖op .

Now if zi ∈ int(S), then J(gk)(zi) = 0, as gk is constant zero in a neighborhood of zi. Otherwise, we must have zi ∈ G,

which implies A1→k−1(zi) ∈ {−1,+1}
∑k−1
l=1 nl . Combining all these facts, we get

‖gk‖Lip = max
z: A1→k−1(z)∈{−1,+1}

∑k−1
l=1

nl

‖J(gk)(z)‖op .

Finally, the inequality ‖fk‖Lip ≤ ‖gk‖Lip follows from the 1-Lipschitz property of ReLU.

F.3. Proof of Lemma F.2

Let T = 2
∑k
l=1 nl , and {A1, . . . ,AT } ∈ {−1,+1}

∑k
l=1 nl denote the set of all possible binary strings of dimension∑k

l=1 nl, where each entry takes value −1 or +1. Let us index the entries of each string by Aj = {Aj,l,il}l∈[k],il∈[nl]
. Let

Pj ⊆ Rd be the set of inputs where the activation pattern of all neurons up to layer k matches perfectly with Aj , namely

Pj =
⋂
l∈[k]

⋂
il∈[nl]

{
x ∈ Rd

∣∣ gl,il(x)Aj,l,il ≥ 0
}

=
⋂
l∈[k]

⋂
il∈[nl]

x ∈ Rd
∣∣∣∣∣∣

d∑
i0=1

n1∑
i1=1

. . .

nl−1∑
il−1=1

l∏
p=1

xi0(Wp)ip−1,ip

l−1∏
p=1

1Aj,p,ip>0 Aj,l,il ≥ 0

 .

It is clear that Pj is a polyhedron. Also, every coordinate function fk,ik admits the following linear representation on Pj

fk,ik(x) =

d∑
i0=1

n1∑
i1=1

. . .

nk−1∑
il−1=1

k∏
p=1

xi0(Wp)ip−1,ip1Aj,p,ip>0, ∀x ∈ Pj .

This implies that fk coincides with a linear function on Pj . As every input must take one of the T strings as an activation
pattern, we also have Rd = ∪Ti=1Pj . Thus according to Definition F.1, fk is a PWL function. Similarly, gk is also piecewise
linear.


