
Supplementary Materials to Temporal Predictive Coding For Model-Based
Planning In Latent Space

A. Hyper Parameters
A.1. Standard setting

Dreamer, CVRL and TPC share the following hyperparameters:

Model components

• Latent state dimension: 30

• Recurrent state dimension: 200

• Activation function: ELU

• The action model outputs a tanh mean scaled by a factor of 5 and a softplus standard deviation for the Normal
distribution that is then transformed using tanh (Haarnoja et al., 2018)

Learning updates

• Batch size: 50 for Dreamer and CVRL, 250 for TPC

• Trajectories length: 50

• Optimizer: Adam (Kingma & Ba, 2014) with learning rates 6× 10−4 for world model, 8× 10−5 for value and action.

• Gradient update rate: 100 gradient updates every 1000 environment steps.

• Gradient clipping norm: 100

• Imagination horizon: 15

• γ = 0.99 and λ = 0.95 for value estimation

Environment interaction

• The dataset is initialized with S = 5 episodes collected using random actions.

• We iterate between 100 training steps and collecting 1 episode by executing the predicted mode action with N (0, 0.3)
exploration noise.

• Action repeat: 2

• Environment steps: 2× 106

Additionally,

• Dreamer and CVRL clip the KL below 3 nats

• CVRL uses a bi-linear model for the critic function in the contrastive loss: fθ(st, ot) = exp(zTt Wθst), where zt is an
embedding vector for observation ot and Wθ is a learnable weight matrix parameterized by θ.



Temporal Predictive Coding For Model-Based Planning In Latent Space

• TPC has a fixed set of coefficient in the overall objective for all control tasks: λ1 = 1, λ2 = 0.1, λ3 = 1, λ4 = 1. We
use a fixed Gaussian noise ε ∼ N (0, 0.22) to add to the future latent code when computing temporal CPC, as suggested
in (Shu et al., 2020), and also use 0.2 as the fixed variance in static CPC.

In TPC, we also use a target network for the value model and update this network every 100 gradient steps. Note that we
also tried to use target value network for Dreamer, but it does not improve the results, as suggested by their original paper
(Hafner et al., 2020).

Hyperparameters for DBC We use the same set of hyperparameters as reported in the paper (Zhang et al., 2020)

• Replay buffer capacity: 1000000

• Batch size: 128

• Discount γ: 0.99

• Optimizer: Adam

• Critic learning rate: 10−5

• Critic target update frequency: 2

• Critic Q-function soft-update rate τQ : 0.005

• Critic encoder soft-update rate τφ : 0.005

• Actor learning rate: 10−5

• Actor update frequency: 2

• Actor log stddev bounds: [−5, 2]

• Encoder learning rate: 10−5

• Decoder learning rate: 10−5

• Decoder weight decay: 10−7

• Temperature learning rate: 10−4

• Temperature Adam’s β1 : 0.9

• Init temperature: 0.1

Hyperparameters search for TPC TPC has four hyperparameters that can be tuned: λ1, λ2, λ3 and λ4, which are
coefficients for the TPC objective, consistency objective, SPC objective and reward prediction objective, respectively. Since
λ1, λ3 and λ4 do not conflict with each other, we fixed them to 1 and only tuned λ2 in our experiments. We performed grid
search for λ2 in range {0.05, 0.1, 0.2}2 on the Cartpole Swingup task and then used the same set of hyperparameters for all
the remaining tasks.

A.2. Natural background setting

To further encourage the model to focus on task-relevant information from observations, we additionally tune the weight
λ4 of the reward loss in the training objective for both Dreamer and TPC. In each control task they share the same reward
coefficient, which is specified in the table below. CVRL and DBC have the same hyperparameters as in the standard setting.

2Larger values of λ2 lead to representation collapse.



Temporal Predictive Coding For Model-Based Planning In Latent Space

Table 1. Reward coefficients for different tasks in the natural backgrounds setting
Task Reward coefficient

Cartpole Swingup, Cup Catch 1000
Cheetah Run, Walker Run, Pendulum Swingup, Hopper Hop 100

B. Proof of Lemma 1
Our goal is to show that, under the conditions in Lemma 1,

η(π∗) ≥ η(π∗aux) (15)

for any choice of auxiliary encoder E′.

We start by denoting st = E∗(ot) and s′t = E′(ot). Note that the performance of πaux can be written as

η(πaux) = E(πaux,p)r(o1:T ) (16)

=
∑
τaux

r(o1:T )
∏
t

p(ot | o<t, a<t)p(st, s′t | ot)πaux(at | s≤t, s′≤t, a<t), (17)

where τaux denotes the full trajectory of (o, s, s′, a)1:T and r(ot) evaluates the reward at ot (for simplicity, we shall assume
p(rt | st) is deterministic. Since DKL(p(rt | ot) ‖ R∗(rt | E∗(ot))) = 0, we can rewrite as

η(πaux) =
∑
τaux

R∗(s1:T )
∏
t

p(ot | o<t, a<t)p(st, s′t | ot)πaux(at | s≤t, s′≤t, a<t), (18)

where, with a slight abuse of notation, we note that R∗(E∗(ot)) = r(ot). We now further rewrite πaux(at | s≤t, s′≤t, a<t)
as

p(at | s≤t, s≤t, a<t, πaux), (19)

and subsequently collapse the expression of the performance as

η(πaux) =
∑

(o,s,s′,a)1:T

R∗(s1:T )p(o1:T , s1:T , s
′
1:T , a1:T | πaux) (20)

=
∑

(s,s′,a)1:T

R∗(s1:T )p(s1:T , s
′
1:T , a1:T | πaux), (21)

where the last step arises from marginalization of o1:T . Note by chain rule that p(s1:T , s′1:T , a1:T | πaux) becomes∏
t

p(st | s<t, s′<t, a<t, πaux)p(s′t | s≤t, s′<t, a<t, πaux)p(at | s≤t, s′≤t, a<t, πaux). (22)

By analyzing the Markov blankets in p(s1:T , s′1:T , a1:T | πaux), we can simplify the above expression to∏
t

p(st | s<t, s′<t, a<t)p(s′t | s≤t, s′<t, a<t)p(at | s≤t, s′≤t, a<t, πaux). (23)

Note that we omit the dependency on πaux in the first two terms since, given only the history of past actions and observations,
the next observation does not depend on our choice of policy but only on the environment dynamics.

Since E∗ is optimal under the MI objective, we note that

I(S<t, S
′
<t, A<t ; St, S

′
t) = I(S<t, A<t ; St). (24)



Temporal Predictive Coding For Model-Based Planning In Latent Space

Eq. (24) implies that s′<t is independent of st given (s<t, a<t), and that (s<t, s′<t, a<t) is independent of s′t given st. This
allow us to further simplify Eq. (23) to∏

t

p(st | s<t, a<t)p(s′t | st)πaux(at | s≤t, s′≤t, a<t). (25)

Thus, the performance expression equates to

η(πaux) =
∑
τaux

R∗(s1:T )
∏
t

p(st | s<t, a<t)p(s′t | st)πaux(at | s≤t, s′≤t, a<t). (26)

Note by way of similar reasoning (up to and including Eq. (23)) that

η(π) =
∑
τ

R∗(s1:T )
∏
t

p(st | s<t, a<t)π(at | s≤t, a<t). (27)

By comparing Eq. (26) and Eq. (27), we see that s′1:T effectively serves as a source of noise that makes πaux behave like a
stochastic policy depending on the seed choice for s′1:T . To take advantage of this, we introduce a reparameterization of s′

as ε such that

η(πaux) =
∑
τaux

R∗(s1:T )
∏
t

p(st | s<t, a<t)p(εt)πaux(at | s≤t, ε≤t, a<t) (28)

= Ep(ε1:T )
∑

(s,a)1:T

R∗(s1:T )
∏
t

p(st | s<t, a<t)πaux(at | s≤t, ε≤t, a<t) (29)

≤ max
ε1:T

∑
(s,a)1:T

R∗(s1:T )
∏
t

p(st | s<t, a<t)πaux(at | s≤t, ε≤t, a<t) (30)

≤ max
π

η(π), (31)

where the last inequality comes from defining a policy

π′ := πaux(at | o≤t, ε∗≤t, a<t) (32)

and noting that the performance of π′ must be bounded by the performance of π∗. �



Temporal Predictive Coding For Model-Based Planning In Latent Space

C. Additional Results
C.1. Comparision with CVRL after 2× 106 environment steps

In Figure 6, we compare the performance of TPC and CVRL after 2× 106 environment steps in both the standard setting
and the natural background setting. TPC learns faster and achieves much higher rewards compared to CVRL in the standard
setting. In the natural control setting, TPC outperforms in 4 out of 6 tasks and is competitive in Walker Run. Both methods
do not work on Hopper Hop.

0.5 1.0 1.5
1e6

0
200
400
600
800

Cartpole Swingup

0.5 1.0 1.5
1e6

0
200
400
600
800

Cheetah Run

0.5 1.0 1.5
1e6

0

250

500

750

1000
Cup Catch

0.5 1.0 1.5
1e6

0

100

200

300

Hopper Hop

0.5 1.0 1.5
1e6

0
250
500
750

Pendulum Swingup

0.5 1.0 1.5
1e6

0

200

400

600

Walker Run

CVRL TPC

0.5 1.0 1.5
1e6

200

400

600

800
Cartpole Swingup

0.5 1.0 1.5
1e6

0

200

400

Cheetah Run

0.5 1.0 1.5
1e6

250
0

250
500
750

Cup Catch

0.5 1.0 1.5
1e6

0

10

20

Hopper Hop

0.5 1.0 1.5
1e6

0

250

500

750

Pendulum Swingup

0.5 1.0 1.5
1e6

100

200

Walker Run

CVRL TPC

Figure 6. TPC vs CVRL after 2× 106 in the standard setting (top) and background setting (bottom)



Temporal Predictive Coding For Model-Based Planning In Latent Space

C.2. Comparison with CURL in the natural background setting

As shown in Figure 7, TPC outperforms CURL significantly on 3 of 6 tasks, while CURL performs better on Walker Run.
On Hopper Hop and Cup Catch, both methods fail to make progress after 1 million environment steps.

0 2 4 6 8
1e5

100

200

300

400
Cartpole Swingup

0 2 4 6 8
1e5

0

100

200

300

400
Cheetah Run

0 2 4 6 8
1e5

0

200

400

600
Cup Catch

0 2 4 6 8
1e5

0

1

2

3

Hopper Hop

0 2 4 6 8
1e5

0
200
400
600
800

Pendulum Swingup

0 2 4 6 8
1e5

100

200

Walker Run

CURL TPC

Figure 7. TPC versus CURL in the natural background setting. Each task is run with 3 seeds.

C.3. Importance of dynamics smoothing

We run TPC in the standard setting without dynamics smoothing to investigate the empirical importance of this component.
As shown in Figure ??, TPC ’s performance degrades significantly without dynamics smoothing. Without smoothing, the
dynamics model cannot handle noisy rollouts during test-time planning, leading to poor performance. Dynamics smoothing
prevents this by enabling test-time robustness against cascading error.

C.4. Learning a separate reward model

Joint learning of reward is crucial for all models in the natural background setting (see Appendix A.2). Since background
information is also temporally-predictive, increasing the weight of reward loss encourages the model to focus more on
the components that are important for reward learning. However, in the random background setting, since all temporally-
predictive information is task-relevant, TPC uniquely can learn the reward separately, as shown in Figure ??.

C.5. Reconstructions in the natural background setting

We conduct experiments to investigate what information the encoder in different models learns to encode during training in
the natural background setting. To do that, we train auxiliary decoders that try to reconstruct the original observations from
the representations learned by Dreamer and TPC. As shown in Figure 8, Dreamer (2nd row) tries to encode both the agent
and the background. In contrast, TPC (3rd row) prioritizes encoding the agent, which is task-relevant, over the background.

C.6. The simplistic motion background setting

As discussed in Section 3.2, TPC can capture certain task-irrelevant information. However, TPC can choose to not encode
the background whenever encoding only the agent is sufficient to maximize the mutual information. In the experiments,
we found that forcing the model to predict well the reward helps the encoder focus more on the agent, which can be done
by increasing the weight of reward loss. Dreamer, in contrast, must encode as much information about the observation as



Temporal Predictive Coding For Model-Based Planning In Latent Space

Figure 8. Observation reconstruction of TPC versus Dreamer in the natural background setting

Figure 9. The top row shows a sample sequence of data, and the bottom row shows the reconstruction of TPC.

possible to achieve a good reconstruction loss. To elaborate on this, we conducted an experiment where we replaced the
natural background with a simplistic motion, easily predictable background, which is depicted in Figure 9. Figure ?? shows
that TPC works well in this setting, and outperforms Dreamer significantly.


