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Abstract

Conventional image classifiers are trained by ran-
domly sampling mini-batches of images. To
achieve state-of-the-art performance, practitioners
use sophisticated data augmentation schemes to
expand the amount of training data available for
sampling. In contrast, meta-learning algorithms
sample support data, query data, and tasks on
each training step. In this complex sampling sce-
nario, data augmentation can be used not only to
expand the number of images available per class,
but also to generate entirely new classes/tasks. We
systematically dissect the meta-learning pipeline
and investigate the distinct ways in which data
augmentation can be integrated at both the image
and class levels. Our proposed meta-specific data
augmentation significantly improves the perfor-
mance of meta-learners on few-shot classification
benchmarks.

1. Introduction
Data augmentation has become an essential part of the train-
ing pipeline for image classifiers and similar systems, as it
offers a simple and efficient way to significantly improve
performance (Cubuk et al., 2018; Zhang et al., 2017). In
contrast, little work exists on data augmentation for meta-
learning. Existing frameworks for few-shot image classifica-
tion use only horizontal flips, random crops, and color jitter
to augment images in a way that parallels augmentation
for conventional training (Bertinetto et al., 2018; Lee et al.,
2019). Meanwhile, meta-learning methods have received
increasing attention as they have reached the cutting edge of
few-shot performance. While new meta-learning algorithms
emerge at a rapid rate, we show that, like image classifiers,
meta-learners can achieve significant performance boosts
through carefully chosen data augmentation strategies that
are injected into various stages of the meta-learning pipeline.
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Meta-learning frameworks use data for multiple purposes
during each gradient update, which creates the possibility for
a diverse range of data augmentations that are not possible
within the standard training pipeline. At the same time, it
is still unclear how different categories of data within the
training pipeline impact meta-learning performance. We
explore these possibilities and discover combinations of
augmentation types that improve performance over existing
methods. Our contributions can be summarized as follows:

• First, we break down the meta-learning pipeline and
find that each component contributes differently to
meta-learning performance: meta-learners are very sen-
sitive to the amount of query data and number of tasks
and less sensitive to the amount of support data.

• Based on these findings, we uncover four modes of
augmentations for meta-learning that differ in where in
the training pipeline they are applied: support augmen-
tation, query augmentation, task augmentation, and
shot augmentation.

• We test these four modes using a pool of image aug-
mentations, and we confirm that query augmentation
is critical, while support augmentation often does not
provide performance benefits and may even degrade
accuracy in some cases.

• Finally, we combine augmentations and implement
a MaxUp strategy, which we call Meta-MaxUp, to
maximize performance. We achieve significant perfor-
mance boosts for popular meta-learners on few-shot
benchmarks such as mini-ImageNet, CIFAR-FS and
Meta-Dataset.

2. Background and Related Work
2.1. The Meta-Learning Framework

Meta-learning algorithms aim to learn a network that can
easily adapt to new tasks with limited data and generalize to
unseen examples. In order to achieve this, they simulate the
adaptation and evaluation procedure during meta-training.
To simulate an N -way classification task, Ti, we sample
support data T si and query data T qi , so that Ti = {T si , T

q
i }.

As we will detail in the following paragraph, support will
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be used to simulate few-shot training data, while query will
be used to simulate unseen testing data. Note that shot
denotes the number of training samples per class available
for fine-tuning on a given task during the testing phase.

Adopting common terminology from the literature, the
archetypal meta-learning algorithm contains an inner loop
and an outer loop in each parameter update of the training
procedure. In the inner loop, a model is first fine-tuned or
adapted on support data T si . Then, in the outer loop, the
updated model is evaluated on query data T qi , and mini-
mizes loss on the query data with respect to the model’s
parameters before fine-tuning. This loss minimization step
may require computing the gradient through the fine-tuning
procedure. Existing meta-learning algorithms apply various
methods for fine-tuning on support data during the inner
loop. Some algorithms, such as MAML and Reptile (Finn
et al., 2017; Nichol et al., 2018), update all the parameters
in the network using gradient descent during fine-tuning
on support data. Other algorithms, such as MetaOptNet
and R2-D2 (Lee et al., 2019; Bertinetto et al., 2018), only
update the parameters from the linear classifier layer during
the fine-tuning while keeping the feature extraction layers
frozen. These methods benefit from the simplicity and the
convexity of the inner loop optimization problem. Similarly,
metric learning approaches, such as (Snell et al., 2017; Kye
et al., 2020), freeze the feature extraction layers as well,
and create class centroids from the support data during the
inner loop. These method have low cost training iterations,
and can be applied on deeper architectures to achieve better
performance. In this work, we mainly focus on the latter al-
gorithms due to their stronger performance. Further details
of the algorithms used in our experiments can be found in
Section 4.1.

2.2. Preventing Overfitting in Meta-Learning

Meta-learners are known to be particularly vulnerable to
overfitting (Rajendran et al., 2020). One work, MetaMix,
proposes averaging support and query features to prevent
the model from memorizing the query data and ignoring
support (Yao et al., 2020). Recently, another work adds
random noise to the label space to make the model rely
on support data (Rajendran et al., 2020). In the context
of few-shot classification, random shuffling labels within
tasks alleviates this kind of overfitting and is commonplace
in meta-learning algorithms (Yin et al., 2019; Rajendran
et al., 2020). However, as shown in Figure 1, overfitting
to training tasks remains a problem. One recent work has
developed a data augmentation method to overcome this
problem (Liu et al., 2020). This method simply rotates all
images in a class by a large degree and considers this new
rotated class distinct from its parent class. This effectively
increases the number of possible few-shot tasks that can be
sampled during training.

A different line of work instead applies regularizers to pre-
vent overfitting and improve few-shot classification (Yin
et al., 2019; Goldblum et al., 2020). Yet additional work
has developed methods for labeling and augmenting unla-
beled data (Antoniou & Storkey, 2019; Chen et al., 2019b),
generative models for deforming images in one-shot met-
ric learning (Chen et al., 2019c), and feature space data
augmentation for adapting language models to new unseen
intents (Kumar et al., 2019).

2.3. Few-shot Benchmarks

In this paper, we perform our experiments on the mini-
ImageNet and CIFAR-FS datasets as well as the Meta-
Dataset benchmark (Vinyals et al., 2016; Bertinetto et al.,
2018; Triantafillou et al., 2019). Mini-ImageNet is a few-
shot learning dataset derived from the ImageNet classifi-
cation dataset (Deng et al., 2009), and CIFAR-FS is de-
rived from CIFAR-100 (Krizhevsky et al., 2009). Each of
these datasets contains 64 training classes, 16 validation
classes, and 20 classes for testing. In each class, there are
600 images, and both Mini-ImageNet and CIFAR-FS have
60000 images in total. Meta-Dataset is a large-scale diverse
benchmark consisting of 10 different image classification
subdatasets with distinct data distributions. This diversity
allows us to measure cross-domain generalization.

3. The Anatomy of Data Augmentation for
Meta-Learning

3.1. Where Does Dataset Diversity Matter Most? In the
Support, Query or Tasks?

Since data augmentation techniques aim to increase the
amount of training samples, learning algorithms that are sen-
sitive to the amount of training data may benefit more from
these techniques. In this section, before we introduce data
augmentations, we investigate how sensitive meta-learning
algorithms are to the amount of support data, query data,
and tasks. Typically, support and query data are sampled
from the same pool (the entire training set).

To examine the impact of dataset diversity on various stages
of meta-learning, we perform an ablation where we limit the
diversity of each stage. We first reduce the pool of support
data to a fixed subset of only five independent samples per
class while sampling query data from the entire training set.
That is, whenever a support image is sample from class c,
it is only sampled from the five-image subset associated
with that class instead of from all training data in that class.
Interestingly, we find that test accuracy remains almost the
same as baseline performance (see Table 1). In fact, if we
replace those five support images per class with fixed ran-
dom noise images, we still only observe a small degradation
in performance. We then instead shrink the pool of query
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data (but not support), and we see a much larger decrease in
test accuracy. These experiments suggest that meta-learning
is fairly insensitive to the amount and quality of support but
not query data. This observation agrees with our following
finding that augmenting query data is far more beneficial
than augmenting support.

Since we also consider task-level augmentation, we now
examine how sensitive meta-learning is to a decrease in task
diversity. As CIFAR-FS contains 64 training classes, there
are
(
64
5

)
= 7624512 5-way classification problems that can

be sampled during each iteration of meta-learning. We re-
duce the number of tasks by randomly batching classes into
just 13 distinct 5-way classification tasks before training,
and we only train on these 13 tasks. We do this in such a
way that all classes, and therefore training data, are used
during training. We observe that this process noticeably
degrades test accuracy, and we conclude that there may
be room to improve performance by augmenting the num-
ber of tasks (see Table 1). To verify that this impact of
dataset diversity generalizes, we run additional experiments
on Mini-ImageNet and with other backbones. The results
are shown in Appendix A, and these experiments support
the aforementioned findings as well.

Table 1. Few-shot classification accuracy (%) using R2-D2 and
a ResNet-12 backbone for various data size manipulations on
CIFAR-FS. “Support”, “Query” and “Task” columns denote the
number of samples per class for support and query data and the
number of total tasks available for sampling. The first row contains
baseline performance. Confidence intervals have radius equal to
one standard error.

Support Query Task 1-shot 5-shot
600 600 full 71.73 ± 0.37 84.39 ± 0.25
5 600 full 70.97 ± 0.36 84.51 ± 0.24

5 (random) 600 full 58.15 ± 0.36 76.26 ± 0.27
600 5 full 60.25 ± 0.37 77.05 ± 0.28
600 600 13 68.24 ± 0.38 81.77 ± 0.26

3.2. Data Augmentation Modes

Motivated by the observation that meta-learning is more
sensitive to the amount of query data and tasks than support,
we delineate four modes of data augmentation for meta-
learning which may be employed individually or combined.

Support augmentation: Data augmentation may be ap-
plied to support data in the inner loop of fine-tuning. This
strategy enlarges the pool of fine-tuning data.

Query augmentation: Data augmentation alternatively
may be applied to query data. This strategy enlarges the
pool of evaluation data to be sampled during training.

Task augmentation: We can increase the number of pos-
sible tasks by uniformly augmenting whole classes to add
new classes with which to train. For example, a vertical flip
applied to all car images yields a new upside-down car class
which may be sampled during training.

Shot augmentation: At test time, we can artificially am-
plify the shot by adding additional augmented copies of each
image. Shot augmentation can also be used during training
by adding copies of each support image via augmentation.
Shot augmentation during training may be needed to prepare
a network for the use of test-time shot augmentation.

Existing meta-learning algorithms for few-shot image classi-
fication typically apply standard augmentations (horizontal
flips, random crops, and color jitter) on all images that come
from the data loader without considering the purpose of each
image. As a result, the same augmentation occurs on both
support and query images (Gidaris & Komodakis, 2018;
Qiao et al., 2018). In Section 4, we test the four modes of
data augmentation enumerated above in isolation across a
large array of specific augmentations. We find that query
augmentation is far more critical than support augmentation
for increasing performance. In fact, support augmentation
often hurts performance. Additionally, we find that task aug-
mentation, when combined with query augmentation, can
offer further boosts in performance when compared with
existing frameworks.

3.3. Data Augmentation Techniques

For each of the data augmentation modes described above,
we try a variety of specific data augmentation techniques.
Some techniques are only applicable to support, query, and
shot modes or solely to the task mode. We use an array of
standard augmentation techniques as well as CutMix (Yun
et al., 2019), MixUp (Zhang et al., 2017), and Self-Mix (Seo
et al., 2020). In the context of the task augmentation mode,
we apply these the same way to every image in a class in
order to augment the number of classes. For example, we
use MixUp to create a half-dog-half-truck class where every
image is the average of a dog image and a truck image. We
also try combining multiple classes into one class as a task
augmentation mode.

In general, techniques that greatly change the image distri-
bution (i.e. a vertical flip, which does not naturally appear
in the dataset) are better suited for task augmentations while
techniques that preserve the image distribution (e.g., random
crops, which produce images that are presumably within the
support of the image distribution) are typically better suited
for the support, query, and shot augmentation modes. The
baseline models we compare to use horizontal flip, random
crop, and color jitter augmentation techniques at both the
support and query levels since this combination is prevalent
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in the literature. More details on our pool of augmentation
techniques can be found in Appendix B.

3.4. Meta-MaxUp Augmentation for Meta-Learning

Recent work proposes MaxUp augmentation to alleviate
overfitting during the training of classifiers (Gong et al.,
2020). This strategy applies many augmentations to each
image and chooses the augmented image which yields the
highest loss. MaxUp is conceptually similar to adversar-
ial training (Madry et al., 2019). Like adversarial training,
MaxUp involves solving a saddlepoint problem in which
loss is minimized with respect to parameters while being
maximized with respect to the input. In the standard im-
age classification setting, MaxUp, together with CutMix,
improves generalization and achieves state-of-the-art perfor-
mance on ImageNet. Here, we extend MaxUp to the setting
of meta-learning. Before training, we select a pool, S, of
data augmentations from the four modes as well as their
combinations. For example, S may contain horizontal flip
shot augmentation, query CutMix, and the combination of
both. During each iteration of training, we first sample a
batch of tasks, each containing support and query data, as is
typical in the meta-learning framework. For each element in
the batch, we randomly selectm augmentations from the set
S , and we apply these to the task, generating m augmented
tasks with augmented support and query data. Then, for
each element of the batch of tasks originally sampled, we
choose the augmented task that maximizes loss, and we
perform a parameter update step to minimize training loss.
Formally, we solve the minimax optimization problem,

min
θ

ET

[
max
M∈S

L(Fθ′ ,M(T q))
]
,

where θ′ = A(θ,M(T s)), A denotes fine-tuning, F is
the base model with parameters θ, L is the loss function
used in the outer loop of training, and T is a task with
support and query data T s and T q , respectively. Algorithm
1 contains a more thorough description of this pipeline in
practice (adapted from the standard meta-learning algorithm
in Goldblum et al. (2019)).

4. Experiments
In this section, we empirically demonstrate the following:

1. Augmentations applied in the four distinct modes be-
have differently. In particular, query and task augmen-
tation are far more important than support augmenta-
tion. (Section 4.2)

2. Meta-specific data augmentation strategies can im-
prove performance over the generic strategies com-
monly used for meta-learning. (Section 4.3)

Algorithm 1 Meta-MaxUp

Require: Base model Fθ, fine-tuning algorithm A, learn-
ing rate γ, set of augmentations S, and distribution over
tasks p(T ).
Initialize θ, the weights of F ;
while not done do

Sample batch of tasks, {Ti}ni=1, where Ti ∼ p(T ) and
Ti = (T si , T

q
i ).

for i = 1, ..., n do
Sample m augmentations, {Mj}mj=1, from S.
Compute k = argmaxj L(Fθj ,Mj(T qi )), where
θj = A(θ,Mj(T si )).
Compute gradient gi = ∇θL(Fθk ,Mk(T qi )).

end for
Update base model parameters: θ ← θ − γ

n

∑
i gi.

end while

3. We further boost performance by combining augmen-
tations with Meta-MaxUp. (Section 4.4)

4. Our proposed augmentation Meta-MaxUp greatly im-
proves performance on cross-domain benchmarks as
well. (Section 4.7)

4.1. Experimental Setup

We conduct experiments on four meta-learning algorithms:
ProtoNet (Snell et al., 2017), R2-D2 (Bertinetto et al., 2018),
MetaOptNet (Lee et al., 2019), and MCT (Kye et al., 2020).
ProtoNet is a metric-learning method that uses a prototype
learning head, which classifies samples by extracting a fea-
ture vector and then performing a nearest-neighbor search
for the closest class prototype. R2-D2 and MetaOptNet
instead use differentiable solvers with a ridge regression and
SVM head, respectively. These methods extract feature vec-
tors and then apply a standard linear classifer to assign class
labels. MCT improves upon ProtoNet by meta-learning con-
fidence scores. We experiment with all of these different
classifier head options, all using the ResNet-12 backbone
proposed by Oreshkin et al. (2018) as well as the four-layer
convolutional architectures proposed by Snell et al. (2017)
and Bertinetto et al. (2018).

We perform our experiments on the aforementioned bench-
mark datasets, mini-ImageNet, CIFAR-FS, and Meta-
Dataset. A description of training hyperparameters and
computational complexity can be found in Appendix C. We
report confidence intervals with a radius of one standard
error.

Few-shot learning may be performed in either the induc-
tive or transductive setting. Inductive learning is a stan-
dard method in which each test image is evaluated sep-
arately and independently. In contrast, transduction is
a mode of inference in which the few-shot learner has
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access to all unlabeled testing data at once and there-
fore has the ability to perform semi-supervised learning
by training on the unlabelled data. For fair compari-
son, we only compare inductive methods to other induc-
tive methods. A PyTorch implementation of our data
augmentation methods for meta-learning can be found at:
https://github.com/RenkunNi/MetaAug

4.2. An Empirical Comparison of Augmentation Modes

We empirically evaluate the performance of all four differ-
ent augmentation modes identified in Section 3.2 on the
CIFAR-FS dataset using an R2-D2 base-learner paired with
both a 4-layer convolutional network backbone (as used in
the original work (Bertinetto et al., 2018)) and a ResNet-
12 backbone. We report the results of the most effective
augmentations for each mode on the ResNet-12 backbone
in Table 2. Appendix D contains an extensive table with
various augmentations and both backbones.

Table 2 demonstrates that each mode of augmentation indi-
vidually can improve performance. Augmentation applied
to query data is consistently more effective than the other
augmentation modes. In particular, simply applying CutMix
to query samples improves accuracy by as much as 3% on
both backbones. In contrast, most augmentations on support
data actually damage performance. The overarching con-
clusion of these experiments is that the four modes of data
augmentation for meta-learning behave differently. Existing
meta-learning methods, which apply the same augmenta-
tions to query and support data without using task and shot
augmentation, may be achieving suboptimal performance.

Table 2. Few-shot classification accuracy (%) using R2-D2 and
a ResNet-12 backbone on the CIFAR-FS dataset with the most
effective data augmentations for each mode shown. Confidence
intervals have radii equal to one standard error. Best performance
in each category is bolded. Query CutMix is consistently the most
effective single augmentation for meta-learning.

Method Mode 1-shot 5-shot

Baseline - 71.95 ± 0.37 84.56 ± 0.25

CutMix Support 72.79 ± 0.37 84.70 ± 0.25
Self-Mix Support 71.96 ± 0.36 84.84 ± 0.25

CutMix Query 75.97 ± 0.34 87.28 ± 0.23
Self-Mix Query 73.59 ± 0.35 86.14 ± 0.24

Large Rotation Task 73.79 ± 0.36 85.81 ± 0.24
MixUp Task 72.05 ± 0.37 85.27 ± 0.25

Random Crop Shot 70.56 ± 0.37 83.87 ± 0.25
Horizontal Flip Shot 73.25 ± 0.36 85.06 ± 0.25

Table 3. Few-shot classification accuracy (%) using R2-D2 and a
ResNet-12 backbone on the CIFAR-FS dataset with combinations
of augmentations and query CutMix. “S”,“Q”,“T” denote “Sup-
port”, “Query”, and “Task” modes, respectively. While adding
augmentations can help, it can also hurt, so additional augmenta-
tions must be chosen carefully.

Mode 1-shot 5-shot

CutMix 75.97 ± 0.34 87.28 ± 0.23
+ CutMix (S) 75.00 ± 0.37 85.37 ± 0.25
+ Random Erase (S) 75.84 ± 0.34 87.19 ± 0.24
+ Random Erase (Q) 75.08 ± 0.35 87.14 ± 0.23
+ Self-Mix (S) 76.27 ± 0.34 87.52 ± 0.24
+ Self-Mix (Q) 76.04 ± 0.34 87.45 ± 0.24
+ MixUp (T) 75.97 ± 0.34 86.66 ± 0.24
+ Rotation (T) 75.74 ± 0.34 87.68 ± 0.24
+ Horizontal Flip (Shot) 76.23 ± 0.34 87.36 ± 0.24

4.3. Combining Augmentations

After studying each mode of data augmentation individually,
we combine augmentations in order to find out how augmen-
tations interact with each other. We build on top of query
CutMix since this augmentation was the most effective in
the previous section. We combine query CutMix with other
effective augmentations from Table 2, and we conduct ex-
periments on the same backbones and dataset. Results on
the ResNet-12 backbone are reported in Table 3, and a full
table with additional results can be find in Appendix E. In-
terestingly, when we use CutMix on both support and query
images, we observe worse performance than simply using
CutMix on query data alone. Again, this demonstrates that
meta-learning demands a careful and meta-specific data aug-
mentation strategy. In order to further boost performance,
we will need an intelligent method for combining various
augmentations. We propose Meta-MaxUp as this method.

4.4. Meta-MaxUp Further Improves Performance

In this section, we evaluate our proposed Meta-MaxUp strat-
egy in the same experimental setting as above for various
values of m and different data augmentation pool sizes. Ta-
ble 4 contains the results, and a detailed description of the
augmentation pools as well as the full results can be found in
Appendix F. Rows beginning with “CutMix” denote experi-
ments in which the pool of augmentations simply includes
many CutMix samples. “Single” denotes experiments in
which each augmentation in S is of a single type, while
“Medium” and “Large” denote experiments in which each
element of S is a combination of augmentations, for ex-
ample CutMix+rotation. Combinations greatly expand the
number of augmentations in the pool. Rows with m = 1
denote experiments where we do not maximize loss in the
inner loop and thus simply apply randomly sampled data
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Figure 1. Training and validation accuracy for R2-D2 meta-learner with ResNet-12 backbone on the CIFAR-FS dataset. (Left) Baseline
model (Middle) query Self-Mix (Right) Meta-MaxUp. Better data augmentation strategies, such as MaxUp, narrow the generalization gap
and prevent overfitting.

augmentation for each task. As we increase m and include a
large number of augmentations in the pool, we observe per-
formance boosts as high as 4% over the baseline, which uses
horizontal flip, random crop, and color jitter data augmen-
tations from the original work corresponding to the R2-D2
meta-learner (Bertinetto et al., 2018).

Table 4. Few-shot classification accuracy (%) using R2-D2 and a
ResNet-12 backbone on the CIFAR-FS dataset for Meta-MaxUp
over different sizes of augmentation pools and numbers of samples.
As m and the pool size increase, so does performance. Meta-
MaxUp is able to pick effective augmentations from a large pool.

Pool m 1-shot 5-shot

Baseline - 71.95 ± 0.37 84.56 ± 0.25

CutMix 1 75.97 ± 0.34 87.28 ± 0.23
Single 1 75.71 ± 0.35 87.44 ± 0.43
Medium 1 75.60 ± 0.34 87.35 ± 0.23
Large 1 75.44 ± 0.34 87.47 ± 0.23

CutMix 2 74.93 ± 0.36 87.14 ± 0.24
Single 2 75.81 ± 0.34 87.33 ± 0.23
Medium 2 76.49 ± 0.33 88.20 ± 0.22
Large 2 76.59 ± 0.34 88.11 ± 0.23

CutMix 4 75.08 ± 0.23 87.60 ± 0.24
Single 4 76.82 ± 0.24 88.14 ± 0.23
Medium 4 76.30 ± 0.24 88.29 ± 0.22
Large 4 76.99 ± 0.24 88.35 ± 0.22

We explore the training benefits of these meta-specific train-
ing schemes by examining saturation during training. To this
end, we plot the training and validation accuracy over time
for R2-D2 meta-learners with ResNet-12 backbones using
baseline augmentations, query Self-Mix, and Meta-MaxUp
with a medium sized pool and m = 4. See Figure 1 for
training and validation accuracy curves. With only baseline
augmentations, validation accuracy stops increasing imme-
diately after the first learning rate decay. This suggests that
baseline augmentations do not prevent overfitting during

meta-training. In contrast, we observe that models trained
with Meta-MaxUp do not quickly overfit and continue im-
proving validation performance for a greater number of
epochs. Meta-MaxUp visibly reduces the generalization
gap.
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Figure 2. Performance with shot augmentation using MetaOptNet
trained with the proposed Meta-MaxUp. (Top) 1-shot and 5-shot
on CIFAR-FS (Bottom) 1-shot and 5-shot on mini-ImageNet.

4.5. Shot Augmentation for Pre-Trained Models

In the typical meta-learning framework, data augmentations
are used during meta-training but not during test time. On
the other hand, in some transfer learning work, data augmen-
tations, such as horizontal flips, random crops, and color
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Table 5. Few-shot classification accuracy (%) on CIFAR-FS and mini-ImageNet. “+ DA” denotes training with CutMix (Q) + Rotation
(T), and “+ MM” denotes training with Meta-MaxUp. “CNN-4” denotes a 4-layer convolutional network with 96, 192, 384, and 512
filters in each layer (Bertinetto et al., 2018). “64-64-64-64” denotes the 4-layer CNN backbone from Snell et al. (2017).

CIFAR-FS mini-ImageNet

Method Backbone 1-shot 5-shot 1-shot 5-shot

R2-D2 CNN-4 67.56 ± 0.35 82.39 ± 0.26 56.15 ± 0.31 72.46 ± 0.26
+ DA CNN-4 70.54 ± 0.33 84.69 ± 0.24 57.60 ± 0.32 74.69 ± 0.25

+ MM CNN-4 71.10 ± 0.34 85.50 ± 0.24 58.18 ± 0.32 75.35 ± 0.25

R2-D2 ResNet-12 71.95 ± 0.37 84.56 ± 0.25 60.46 ± 0.32 76.88 ± 0.24
+ DA ResNet-12 76.17 ± 0.34 87.74 ± 0.24 65.54 ± 0.32 81.52 ± 0.23
+ MM ResNet-12 76.65 ± 0.33 88.57 ± 0.24 65.15 ± 0.32 81.76 ± 0.24

ProtoNet 64-64-64-64 60.91 ± 0.35 79.73 ± 0.27 47.97 ± 0.32 70.13 ± 0.27
+ DA 64-64-64-64 62.21 ± 0.36 80.70 ± 0.27 50.38 ± 0.32 71.44 ± 0.26
+ MM 64-64-64-64 63.01 ± 0.36 80.85 ± 0.25 50.06 ± 0.32 71.13 ± 0.26

ProtoNet ResNet-12 70.21 ± 0.36 84.26 ± 0.25 57.34 ± 0.34 75.81 ± 0.25
+ DA ResNet-12 74.30 ± 0.36 86.24 ± 0.24 60.82 ± 0.34 78.23 ± 0.25
+ MM ResNet-12 76.05 ± 0.34 87.84 ± 0.23 62.81 ± 0.34 79.38 ± 0.24

MetaOptNet ResNet-12 70.99 ± 0.37 84.00 ± 0.25 60.01 ± 0.32 77.42 ± 0.23
+ DA ResNet-12 74.56 ± 0.34 87.61 ± 0.23 64.94 ± 0.33 82.10 ± 0.23
+ MM ResNet-12 75.67 ± 0.34 88.37 ± 0.23 65.02 ± 0.32 82.42 ± 0.23

MCT ResNet-12 75.80 ± 0.33 89.10 ± 0.42 64.84 ± 0.33 81.45 ± 0.23
+ MM ResNet-12 76.00 ± 0.33 89.54 ± 0.33 66.37 ± 0.32 83.11 ± 0.22

jitter, are used during fine-tuning at test time (Chen et al.,
2019a). These techniques enable the network to see more
data samples during few-shot testing, leading to enhanced
performance.

We propose shot augmentation (see Section 3) to enlarge
the number of few-shot samples during testing, and we also
propose a variant in which we additionally train using the
same augmentations on support data in order to prepare the
meta-learner for this test time scenario. Figure 2 shows
the effect of shot augmentation (using only horizontal flips)
on performance for MetaOptNet with ResNet-12 backbone
trained with Meta-MaxUp. Shot augmentation consistently
improves results across datasets, especially on 1-shot classi-
fication (∼ 2%). To be clear, in this figure, we are not using
shot augmentation during the training stage. Rather, we
are using conventional low-shot training, and then deploy-
ing our models with shot augmentation at test time. These
post-training performance gains can be achieved by directly
applying shot augmentation to pre-trained/existing models
during testing. For additional experiments, see Appendix G.

4.6. Improving Existing Meta-Learners with Better
Data Augmentation

In this section, we improve the performance of four different
popular meta-learning methods including ProtoNet (Snell
et al., 2017), R2-D2 (Bertinetto et al., 2018), MetaOptNet
(Lee et al., 2019), and MCT (Kye et al., 2020). We compare
their baseline performance to query CutMix with task-level

rotation as well as Meta-MaxUp data augmentation strate-
gies on both the CIFAR-FS and mini-ImageNet datasets.
See Table 5 for the results of these experiments. In all cases,
we are able to improve the performance of existing methods,
sometimes by over 5%. Even without Meta-MaxUp, we
improve performance over the baseline by a large margin.
The superiority of meta-learners that use these augmenta-
tion strategies suggests that data augmentation is critical for
these popular algorithms and has largely been overlooked.

In addition, we compare our method to augmentation by
Large Rotations at the task level – the only competing work
to our knowledge – in Table 6. Note that using Large Rota-
tions to create new classes is referred to as “Task Augmen-
tation” in (Liu et al., 2020); we refer to it here as “Large
Rotations” to avoid confusion since we study a myriad of
augmentations at the task level. We observe that with the
same training algorithm (MetaOptNet with SVM) and the
ResNet-12 backbone, our method outperforms the Large Ro-
tations augmentation strategy by a large margin on both the
CIFAR-FS and mini-ImageNet datasets. Together with the
same ensemble method as used in Large Rotations, marked
by “+ens”, we further boost performance consistently above
the MCT baseline, the current highest performing meta-
learning method on these benchmarks, despite using an
older meta-learner previously thought to perform worse
than MCT. Moreover, when both training and validation
datasets are used for meta-training, we can achieve the state-
of-art results for few-shot classification on mini-ImageNet
in inductive setting.
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Table 6. Few-shot classification accuracy (%) on CIFAR-FS and mini-ImageNet with ResNet-12 backbone. “M-SVM” denotes MetaOpt-
Net with the SVM head. “+ens” denotes testing with ensemble methods as in (Liu et al., 2020). “LargeRot” denotes task-level
augmentation by Large Rotations as described in (Liu et al., 2020).

CIFAR-FS mini-ImageNet

Method 1-shot 5-shot 1-shot 5-shot

M-SVM + LargeRot 72.95 ± 0.24 85.91 ± 0.18 62.12 ± 0.22 78.90 ± 0.17
M-SVM + MM (ours) 75.67 ± 0.34 88.37 ± 0.23 65.02 ± 0.32 82.42 ± 0.23
M-SVM + LargeRot + ens 75.85 ± 0.24 87.73 ± 0.17 64.56 ± 0.22 81.35 ± 0.16
M-SVM + MM + ens (ours) 76.38 ± 0.33 89.16 ± 0.22 66.42 ± 0.32 83.69 ± 0.21
M-SVM + LargeRot + ens + val 76.75 ± 0.23 88.38 ± 0.17 65.38 ± 0.23 82.13 ± 0.16
M-SVM + MM + ens + val (ours) 76.38 ± 0.34 89.25 ± 0.21 67.37 ± 0.32 84.57 ± 0.21

4.7. Out-of-Distribution Testing on Meta-Dataset

In this section, we examine the effectiveness of our methods
on cross-domain few-shot learning benchmarks. Few-shot
learners may be successful on similar tasks to their train-
ing data but fail on tasks that deviate. Thus, testing on
diverse distributions is crucial. To this end, we leverage
Meta-Dataset, a collection of subdatasets used for testing
meta-learners across diverse tasks (Triantafillou et al., 2019).
Among the 10 subdatasets, we train the networks only
on ILSVRC-2012 (Russakovsky et al., 2015), the largest
dataset in the collection, and we evaluate the cross-domain
few-shot classification performance on the other 9 datasets
with R2-D2 and MetaOptNet learners and ResNet-12 back-
bones. Training and evaluation details can be found in
Appendix H.

We observe that on all subdatasets except for Omniglot,
our proposed methods can improve test accuracy over the
baseline by as much as 7%. Additionally, we improve per-
formance by a large margin (more than 3%) on more than
half of the subdatasets. On average, Meta-MaxUp improves
accuracy by around 3%. Omniglot suffers under our strate-
gies since this dataset comprises handwritten letters which
are not invariant to strong augmentations. Specially de-
signed augmentations for handwritten letters are necessary
to optimize performance on Omniglot. The success of Meta-
MaxUp on cross-domain benchmarks demonstrates that the
proposed strategy is effective even on diverse testing distri-
butions which do not resemble the learner’s training data.

5. Discussion
In this work, we break down data augmentation in the con-
text of meta-learning. In doing so, we uncover possibilities
that do not exist in the classical image classification setting.
We identify four modes of augmentation: query, support,
task, and shot. These modes behave differently and are
of varying importance. Specifically, we find that augment-

Table 7. Few-shot classification accuracy (%) on Meta-Dataset
with both MetaOptNet and R2-D2 learner. “+ DA” denotes training
with CutMix (Q) + Rotation (T), and “+ MM” denotes training
with Meta-MaxUp. Confidence intervals have radius equal to one
standard error.

Test Source R2-D2 + DA + MM
ILSVRC 69.04 ± 0.31 70.30 ± 0.31 71.68 ± 0.30
Birds 75.22 ± 0.30 77.27 ± 0.28 77.95 ± 0.30
Omniglot 97.46 ± 0.08 96.10 ± 0.11 96.71 ± 0.09
Aircraft 54.28 ± 0.28 58.93 ± 0.30 60.83 ± 0.28
Textures 63.47 ± 0.24 65.98 ± 0.24 67.34 ± 0.26
Quick Draw 76.39 ± 0.27 78.44 ± 0.27 80.83 ± 0.25
Fungi 50.41 ± 0.22 52.29 ± 0.20 54.12 ± 0.22
VGG Flower 86.26 ± 0.21 87.79 ± 0.19 90.29 ± 0.17
Traffic Signs 83.98 ± 0.34 84.23 ± 0.36 83.59 ± 0.36
MSCOCO 70.29 ± 0.30 71.59 ± 0.31 72.83 ± 0.29

Test Source MetaOptNet + DA + MM
ILSVRC 68.92 ± 0.30 71.17 ± 0.30 72.19 ± 0.30
Birds 75.58 ± 0.39 77.49 ± 0.29 77.47 ± 0.2
Omniglot 97.43 ± 0.10 95.97 ± 0.10 96.59 ± 0.09
Aircraft 53.40 ± 0.37 60.43 ± 0.29 60.57 ± 0.29
Textures 63.29 ± 0.33 65.70 ± 0.24 69.42 ± 0.25
Quick Draw 78.00 ± 0.33 79.56 ± 0.25 80.67 ± 0.25
Fungi 50.56 ± 0.21 53.80 ± 0.22 53.82 ± 0.22
VGG Flower 88.16 ± 0.25 89.92 ± 0.18 91.13 ± 0.15
Traffic Signs 85.12 ± 0.33 85.25 ± 0.33 83.38 ± 0.37
MSCOCO 69.52 ± 0.32 71.90 ± 0.31 73.49 ± 0.30

ing query data is particularly important. After adapting
various data augmentations to meta-learning, we propose
Meta-MaxUp for combining various meta-specific data aug-
mentations. We demonstrate that Meta-MaxUp significantly
improves the performance of popular meta-learning algo-
rithms. As shown by the recent popularity of frameworks
like AutoAugment (Cubuk et al., 2018) and MaxUp (Gong
et al., 2020), data augmentation for standard classification
is still an active area of research. We hope that this work
opens up possibilities for further work on meta-specific
data augmentation and that emerging methods for data aug-
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mentation will boost the performance of meta-learning on
progressively larger models with more complex backbones.
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