
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Improved Denoising Diffusion Probabilistic Models (Supplementary)

Anonymous Authors1

1. Hyperparameters
For all of our experiments, we use a UNet model architec-
ture1 similar to that used by Ho et al. (2020). We changed
the attention layers to use multi-head attention (Vaswani
et al., 2017), and opted to use four attention heads rather
than one (while keeping the same total number of channels).
We employ attention not only at the 16x16 resolution, but
also at the 8x8 resolution. Additionally, we changed the
way the model conditions on t. In particular, instead of com-
puting a conditioning vector v and injecting it into hidden
state h as GroupNorm(h + v), we compute conditioning
vectors w and b and inject them into the hidden state as
GroupNorm(h)(w + 1) + b. We found in preliminary ex-
periments on ImageNet 64 × 64 that these modifications
slightly improved FID.

For ImageNet 64× 64 the architecture we use is described
as follows. The downsampling stack performs four steps of
downsampling, each with three residual blocks (He et al.,
2015). The upsampling stack is setup as a mirror image of
the downsampling stack. From highest to lowest resolution,
the UNet stages use [C, 2C, 3C, 4C] channels, respectively.
In our ImageNet 64 × 64 ablations, we set C = 128, but
we experiment with scaling C in a later section. We esti-
mate that, with C = 128, our model is comprised of 120M
parameters and requires roughly 39 billion FLOPs in the
forward pass.

For our CIFAR-10 experiments, we use a smaller model with
three resblocks per downsampling stage and layer widths
[C, 2C, 2C, 2C] with C = 128. We swept over dropout
values {0.1, 0.2, 0.3} and found that 0.1 worked best for
the linear schedule while 0.3 worked best for our cosine
schedule. We expand upon this in Section 6.

We use Adam (Kingma & Ba, 2014) for all of our experi-
ments. For most experiments, we use a batch size of 128,

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

1In initial experiments, we found that a ResNet-style architec-
ture with no downsampling achieved better log-likelihoods but
worse FIDs than the UNet architecture.

λ Stop-gradient NLL FID
0.001 yes 3.62 28.04
0.01 yes 3.62 27.36
0.001 no 3.62 30.89
0.01 no 3.63 34.35

Table 1. Ablating hyper-parameters of the Lhybrid objective on
ImageNet 64× 64. All models were trained for 200K iterations.

a learning rate of 10−4, and an exponential moving aver-
age (EMA) over model parameters with a rate of 0.9999.
For our scaling experiments, we vary the learning rate to
accomodate for different model sizes. For our larger class-
conditional ImageNet 64 × 64 experiments, we scaled up
the batch size to 2048 for faster training on more GPUs.

When using the linear noise schedule from Ho et al. (2020),
we linearly interpolate from β1 = 0.0001/4 to β4000 =
0.02/4 to preserve the shape of ᾱt for the T = 4000 sched-
ule.

When computing FID we produce 50K samples from our
models, except for unconditional ImageNet 64× 64 where
we produce 10K samples. Using only 10K samples biases
the FID to be higher, but requires much less compute for
sampling and helps do large ablations. Since we mainly use
FID for relative comparisons on unconditional ImageNet
64×64, this bias is acceptable. For computing the reference
distribution statistics we follow prior work (Ho et al., 2020;
Brock et al., 2018) and use the full training set for CIFAR-10
and ImageNet, and 50K training samples for LSUN. Note
that unconditional ImageNet 64×64 models are trained and
evaluated using the official ImageNet-64 dataset (van den
Oord et al., 2016), whereas for class conditional ImageNet
64×64 and 256×256 we center crop and area downsample
images (Brock et al., 2018).

In Table 1 we ablate the two major choices in our Lhybrid
objective: the Lvlb weight λ, and the stop-gradient after
µθ when computing Lvlb. We find that the stop-gradient
improves sample quality and reduces sensitivity to λ.

2. Fast Sampling on LSUN 256× 256

To test the effectiveness of our Lhybrid models on a high-
resolution domain, we trained both Lhybrid and Lsimple mod-
els on the LSUN bedroom (Yu et al., 2015) dataset. We
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Lsimple (σ2
t = βt, batch=64, lr=2e-5)

Lsimple (σ2
t = βt, batch=128, lr=1e-4)

Lsimple (σ2
t = ̃βt, batch=64, lr=2e-5)

Lsimple (σ2
t = ̃βt, batch=128, lr=1e-4)

Lsimple (̃̃IM, batch=64, lr=2e-5)
Lsimple (̃̃IM, batch=128, lr=1e-4)
Lhybrid (batch=64, lr=2e-5)
Lhybrid (batch=128, lr=1e-4)
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Figure 1. FID vs. number of sampling steps from an LSUN 256×
256 bedroom model.

MODEL FID
VQ-VAE-2 ((Razavi et al., 2019), two-stage) 38.1
Improved Diffusion (ours, single-stage) 31.5
Improved Diffusion (ours, two-stage) 12.3
BigGAN (Brock et al., 2018) 7.7
BigGAN-deep (Brock et al., 2018) 7.0

Table 2. Sample quality comparison on class conditional Ima-
geNet 256× 256. BigGAN FIDs are reported for the truncation
that results in the best FID.

train two models: one with batch size 64 and learning rate
2 × 10−5 as in Ho et al. (2020), and another with a larger
batch size 128 and learning rate 10−4. All models were
trained with 153.6M examples, which is 2.4M training itera-
tions with batch size 64.

Our results are displayed in Figure 1. We find that DDIM
outperforms our Lhybrid model when using fewer than 50
diffusion steps, while our Lhybrid model outperforms DDIM
with more than 50 diffusion steps. Interestingly, we note
that DDIM benefits from a smaller learning rate and batch
size, whereas our method is able to take advantage of a
larger learning rate and batch size.

3. Sample Quality on ImageNet 256× 256

We trained two models on class conditional ImageNet
256× 256. The first is a usual diffusion model that directly
models the 256× 256 images. The second model reduces
compute by chaining a pretrained 64× 64 model p(x64|y)
with another upsampling diffusion model p(x256|x64, y) to
upsample images to 256× 256. For the upsampling model,
the downsampled image x64 is passed as extra conditioning

input to the UNet. This is similar to VQ-VAE-2 (Razavi
et al., 2019), which uses two stages of priors at different
latent resolutions to more efficiently learn global and local
features. The linear schedule worked better for 256× 256
images, so we used that for these results. Table 2 summa-
rizes our results. For VQ-VAE-2, we use the FIDs reported
in (Ravuri & Vinyals, 2019). Diffusion models still obtain
the best FIDs for a likelihood-based model, and close the
gap to GANs considerably.

Figure 2. Random samples from two-stage class conditional Im-
ageNet 256 × 256 model. On top are random samples from the
64× 64 model (FID 2.92), whereas on bottom are the results after
upsampling them to 256× 256 (FID 12.3). Each model uses 250
sampling steps.
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4. Combining Lhybrid and Lvlb Models
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Figure 3. The ratio between VLB terms for each diffusion step of
θhybrid and θvlb. Values less than 1.0 indicate that θhybrid is ”better”
than θvlb for that timestep of the diffusion process.

Figure 4. Samples from θvlb and θhybrid, as well as an ensemble
produced by using θvlb for the first and last 100 diffusion steps. For
these samples, the seed was fixed, allowing a direct comparison
between models.

To understand the trade-off between Lhybrid and Lvlb, we
show in Figure 3 that the model resulting from Lvlb (re-
ferred to as θvlb) is better at the start and end of the diffusion
process, while the model resulting from Lhybrid (referred
to as θhybrid) is better throughout the middle of the diffu-
sion process. This suggests that θvlb is focusing more on
imperceptible details, hence the lower sample quality.

Given the above observation, we performed an experiment
on ImageNet 64 × 64 to combine the two models by con-
structing an ensemble that uses θhybrid for t ∈ [100, T −100)
and θvlb elsewhere. We found that this model achieved an
FID of 19.9 and an NLL of 3.52 bits/dim. This is only
slightly worse than θhybrid in terms of FID, while being bet-
ter than both models in terms of NLL.

5. Log-likelihood with Fewer Diffusion Steps

Lsimple (σ2
t = βt, mid-training)

Lsimple (σ2
t = βt, fully trained)

Lsimple (σ2
t = ̃βt, mid-training)

Lsimple (σ2
t = ̃βt, fully trained)

Lsimple (̃̃IM, mid-training)
Lsimple (̃̃IM, fully trained)
Lhybrid (ours, mid-training)
Lhybrid (ours, fully trained)
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Figure 5. NLL versus number of evaluation steps, for models
trained on ImageNet 64× 64 (top) and CIFAR-10 (bottom). All
models were trained with 4000 diffusion steps.

Figures 5 plots negative log-likelihood as a function of num-
ber of sampling steps for both ImageNet 64×64 and CIFAR-
10. In initial experiments, we found that although constant
striding did not significantly affect FID, it drastically re-
duced log-likelihood. To address this, we use a strided
subset of timesteps as for FID, but we also include every t
from 1 to T/K. This requires T/K extra evaluation steps,
but greatly improves log-likelihood compared to the uni-
formly strided schedule. We did not attempt to calculate
NLL using DDIM, since Song et al. (2020) does not present
NLL results or a simple way of estimating likelihood under
DDIM.
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6. Overfitting on CIFAR-10
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Figure 6. FID (top) and NLL (bottom) over the course of training
for two CIFAR-10 models, both with dropout 0.1. The model
trained with the linear schedule learns more slowly, but does not
overfit as quickly. When too much overfitting occurs, we observed
overfitting artifacts similar to those from Salimans et al. (2017),
which is reflected by increasing FID.

All of our CIFAR-10 models experienced overfitting. This
tended to hurt FID rather than producing exact training im-
ages, similar to observations from Salimans et al. (2017)
and Ho et al. (2020). Before overfitting, all of our models
tended to reach similar optimal FID at some point during
training. Holding dropout constant, we found that models
trained with our cosine schedule tended to reach optimal per-
formance (and then overfit) more quickly than those trained
with the linear schedule (Figure 6). In our experiments, we
corrected for this difference by using more dropout for our
cosine models than the linear models. We suspect that the
overfitting from the cosine schedule is either due to 1) less
noise in the cosine schedule providing less regularization,
or 2) the cosine schedule making optimization, and thus
overfitting, easier.

7. Early stopping for FID
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Figure 7. A sweep of dropout and EMA hyperparameters on class
conditional ImageNet-64.

Like on CIFAR-10, we surprisingly observed overfitting
on class-conditional ImageNet 64× 64, despite it being a
much larger and more diverse dataset. The main observable
result of this overfitting was that FID started becoming
worse over the course of training. We initially tried a sweep
(Figure 7) over the EMA hyperparameter to make sure it
was well tuned, and found that 0.9999 and 0.99995 worked
best. We then tried runs with dropout 0.1 and 0.3, and
found that models with a small amount of dropout improved
the best attainable FID but took longer to get to the same
performance and still eventually overfit. We concluded that
the best way to train, given what we know, is to early stop
and instead increase model size if we want to use additional
training compute.

8. Samples with Varying Steps and Objectives
Figures 8 through 13 show unconditional ImageNet 64 ×
64 samples as we reduce number of sampling steps for
an Lhybrid model with 4K diffusion steps trained for 1.5M
training iterations.

Figures 14 through 19 show unconditional CIFAR-10 sam-
ples as we reduce number of sampling steps for an Lhybrid
model with 4K diffusion steps trained for 500K training
iterations.

Figures 20 and 21 highlight the difference in sample quality
between models trained with Lhybrid and Lvlb.
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Figure 8. 50 sampling steps on unconditional ImageNet 64× 64

Figure 9. 100 sampling steps on unconditional ImageNet 64× 64

Figure 10. 200 sampling steps on unconditional ImageNet 64× 64

Figure 11. 400 sampling steps on unconditional ImageNet 64× 64

Figure 12. 1000 sampling steps on unconditional ImageNet 64×64

Figure 13. 4K sampling steps on unconditional ImageNet 64×64.
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Figure 14. 50 sampling steps on unconditional CIFAR-10

Figure 15. 100 sampling steps on unconditional CIFAR-10

Figure 16. 200 sampling steps on unconditional CIFAR-10

Figure 17. 400 sampling steps on unconditional CIFAR-10

Figure 18. 1000 sampling steps on unconditional CIFAR-10

Figure 19. 4000 sampling steps on unconditional CIFAR-10



330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Improved Denoising Diffusion Probabilistic Models (Supplementary)

Figure 20. Unconditional ImageNet 64 × 64 samples generated
from Lhybrid (top) and Lvlb (bottom) models using the exact same
random noise. Both models were trained for 1.5M iterations.

Figure 21. Unconditional CIFAR-10 samples generated from
Lhybrid (top) andLvlb (bottom) models using the exact same random
noise. Both models were trained for 500K iterations.
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