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Abstract
Discrepancy measures between probability dis-
tributions, often termed statistical distances, are
ubiquitous in probability theory, statistics and ma-
chine learning. To combat the curse of dimen-
sionality when estimating these distances from
data, recent work has proposed smoothing out lo-
cal irregularities in the measured distributions via
convolution with a Gaussian kernel. Motivated by
the scalability of this framework to high dimen-
sions, we investigate the structural and statistical
behavior of the Gaussian-smoothed p-Wasserstein
distance W

(σ)
p , for arbitrary p ≥ 1. After estab-

lishing basic metric and topological properties of
W

(σ)
p , we explore the asymptotic statistical be-

havior of W
(σ)
p (µ̂n, µ), where µ̂n is the empir-

ical distribution of n independent observations
from µ. We prove that W(σ)

p enjoys a parametric
empirical convergence rate of n−1/2, which con-
trasts the n−1/d rate for unsmoothed Wp when
d ≥ 3. Our proof relies on controlling W

(σ)
p by a

pth-order smooth Sobolev distance d(σ)
p and deriv-

ing the limit distribution of
√
n d

(σ)
p (µ̂n, µ), for

all dimensions d. As applications, we provide
asymptotic guarantees for two-sample testing and
minimum distance estimation using W

(σ)
p , with

experiments for p = 2 using a maximum mean
discrepancy formulation of d(σ)

2 .

1. Introduction
The Wasserstein distance Wp is a discrepancy measure be-
tween probability distributions rooted in the theory of opti-
mal transport (Villani, 2003; 2008). It has seen a surge of
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applications in statistics and ML, ranging from generative
modeling (Arjovsky et al., 2017; Gulrajani et al., 2017; Tol-
stikhin et al., 2018) and image recognition (Rubner et al.,
2000; Sandler & Lindenbaum, 2011; Li et al., 2013) to
domain adaptation (Courty et al., 2014; 2016) and robust
optimization (Mohajerin Esfahani & Kuhn, 2018; Blanchet
et al., 2018; Gao & Kleywegt, 2016). The widespread use
of this statistical distance is driven by an array of desirable
properties, including its metric structure, a convenient dual
form, and its robustness to support mismatch.

In applications, the Wasserstein distance is often estimated
from samples. However, the error of these empirical esti-
mates suffers from an exponential dependence on dimension
that presents an obstacle to sample-efficient bounds for in-
ference and learning. More specifically, the rate at which
Wp(µ̂n, µ) converges to 0, where µ̂n is an empirical mea-
sure based on n independent samples from µ, scales as
n−1/d under mild moment conditions, for d ≥ 3 (Dereich
et al., 2013; Boissard & Le Gouic, 2014; Fournier & Guillin,
2015; Panaretos & Zemel, 2019; Weed & Bach, 2019; Lei,
2020). This rate deteriorates poorly with dimension and
seems at odds with the scalability of empirical Wp observed
in modern machine learning practice.

1.1. Smooth Wasserstein Distances

Gaussian smoothing was recently introduced as a means to
alleviate the curse of dimensionality of empirical Wp, while
preserving the virtuous structural properties of the classic
framework (Goldfeld et al., 2020b; Goldfeld & Greenewald,
2020; Goldfeld et al., 2020a). Specifically the σ-smooth p-
Wasserstein distance is W(σ)

p (µ, ν) := Wp(µ∗Nσ, ν ∗Nσ),
where Nσ = N (0, σ2I) is the isotropic Gaussian measure
of parameter σ. Goldfeld & Greenewald (2020) showed that
W

(σ)
1 inherits the metric and topological structure of W1

and approximates it within an O(σ
√
d) gap. At the same

time, empirical convergence rates for W(σ)
p are much faster.

As shown in (Goldfeld et al., 2020b), E
[
W

(σ)
1 (µ̂n, µ)

]
=

O(n−1/2) when µ is sub-Gaussian in any dimension, i.e., it
exhibits a parametric convergence rate. This fast rate was
also established for W(σ)

2 but only when the sub-Gaussian
constant is smaller than σ/2. These results significantly
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depart from the n−1/d rate in the unsmoothed case.

Follow-up work (Goldfeld et al., 2020a) developed a limit
distribution theory for W(σ)

1 , showing that
√
nW

(σ)
1 (µ̂n, µ)

converges in distribution to the supremum of a tight Gaus-
sian process, for all dimensions d and under a milder mo-
ment condition. Such limit distribution results are known for
unsmoothed Wp only when p ∈ {1, 2} and d = 1 (del Bar-
rio et al., 1999; 2005) or µ is supported on a finite or count-
able set (Sommerfeld & Munk, 2018; Tameling et al., 2019),
but are a wide open question otherwise. Other works investi-
gated the behavior of W(σ)

p as σ →∞ (Chen & Niles-Weed,
2020), and established related results for other statistical
distances, including total variation (TV), Kullback-Leibler
(KL) divergence, and χ2-divergence (Goldfeld et al., 2020b;
Chen & Niles-Weed, 2020).

1.2. Contributions

We focus on the smooth p-Wasserstein distance W
(σ)
p for

p > 1 and arbitrary dimension d. We first explore basic
structural properties of W(σ)

p , proving that many of the ben-
eficial attributes of Wp carry over to the smooth setting. We
show that W(σ)

p is a metric and induces the same topology
as Wp. Then, we prove that W(σ)

p is stable under small
perturbations of the smoothing parameter σ, implying, in
particular, that W(σ)

p → Wp as σ → 0. We then extend
the stability of optimal transport distances to that of trans-
port plans, establishing weak convergence of the optimal
couplings for W(σ)

p to those of Wp as σ shrinks.

Moving on to a statistical analysis, we explore empirical
convergence for W(σ)

p . Elementary techniques imply that
E
[
W

(σ)
p (µ̂n, µ)

]
= O(n−1/(2p)) under a mild moment con-

dition. While this rate is independent of d, it is suboptimal
in p, with the expected answer being n−1/2 as previously
established for p = 1, 2 (Goldfeld et al., 2020a;b). To get
the correct rate, we establish a comparison between W

(σ)
p

and a smooth pth-order Sobolev integral probability metric
(IPM), d(σ)

p ; the latter lends itself well to tools from em-
pirical process theory. Under a sub-Gaussian assumption,
we prove that the function class defining d

(σ)
p is µ-Donsker,

giving a limit distribution for
√
n d

(σ)
p (µ̂n, µ) that implies

the n−1/2 rate for W(σ)
p . We conclude with a concentration

inequality for W(σ)
p (µ̂n, µ).

We next turn to computational aspects, first showing that
d

(σ)
2 is efficiently computable as a maximum mean dis-

crepancy (MMD) and characterizing its reproducing kernel.
Next, we consider applications to two-sample testing and
generative modeling using W

(σ)
p . We construct two-sample

tests based on the smooth p-Wasserstein test statistic that
achieve asymptotic consistency and correct asymptotic level.

For generative modeling, we examine minimum distance es-
timation with W

(σ)
p and establish measurability, consistency,

and parametric convergence rates, along with finite-sample
generalization guarantees in arbitrary dimension. Many of
these directions (beyond measurability and consistency) are
intractable with standard Wp unless d = 1. We conclude
with numerical results that support our theory.

1.3. Related Discrepancy Measures

The sliced Wasserstein distance (Rabin et al., 2011) takes
an average (or maximum (Deshpande et al., 2019)) of one-
dimensional Wasserstein distances over random projections
of the d-dimensional distributions. Like the smooth frame-
work considered herein, the sliced distance also exhibits
an n−1/2 empirical convergence rate and has characterized
limit distributions in some cases (Nadjahi et al., 2019; 2020).
In (Nadjahi et al., 2019), sliced W1 was shown to be a met-
ric that induces a topology at least as fine as that of weak
convergence, akin to W

(σ)
1 . They further examined genera-

tive modeling via minimum sliced Wasserstein estimation,
establishing measurability, consistency, and some limit the-
orems. However, while W

(σ)
p converges to Wp as σ → 0,

there is no approximation parameter for these sliced dis-
tances, and comparisons to the standard distances typically
require compact support and feature dimension-dependent
multiplicative constants (see, e.g., (Bonnotte, 2013)).

Another relevant framework is entropic optimal transport
(EOT), which admits efficient algorithms (Cuturi, 2013;
Altschuler et al., 2017) and some desirable statistical prop-
erties (Genevay et al., 2016; Rigollet & Weed, 2018). In
particular, two-sample EOT has empirical convergence rate
n−1/2 for smooth costs and compactly supported distribu-
tions (Genevay et al., 2019). For the quadratic cost, (Mena
& Niles-Weed, 2019) extended this rate to sub-Gaussian
distributions and derived a central limit theorem (CLT) for
empirical EOT, mirroring a result for W2 established in
(del Bariro & Loubes, 2019). The Mena & Niles-Weed
(2019) CLT is notably different from ours: it uses as a cen-
tering constant the expected empirical distance between µ̂m
and ν̂n as opposed to the population distance between µ
and ν (which corresponds to our centering about 0 in the
one-sample case). Finally, while EOT can be computed
efficiently, it is no longer a metric, even if the underlying
cost is (Feydy et al., 2019; Bigot et al., 2019).

Sobolev IPMs have proven independently useful for gener-
ative modeling, often referred to as ‘dual Sobolev norms’.
For example, alternative Sobolev IPMs are the basis for
multiple generative adversarial network (GAN) frameworks
(Mroueh et al., 2018; Xu et al., 2020) and are featured in
(Si et al., 2020), which examines Wasserstein projections of
empirical measures onto a chosen hypothesis class.
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2. Preliminaries
2.1. Notation

Let | · | and 〈·, ·〉 denote the Euclidean norm and inner prod-
uct. For a (signed) measure µ and a measurable function f
on Rd, we write µ(f) =

∫
f dµ. For a non-empty set T , let

`∞(T ) be the space of all bounded functions f : T → R,
equipped with the sup-norm ‖f‖∞,T = supt∈T |f(t)|. The
space of compactly supported, infinitely differentiable real
functions on Rd is C∞0 . For any p ∈ [1,∞) and any Borel
measure γ on Rd, we denote by Lp(γ;Rk) the space of
measurable maps f : Rd → Rk such that ‖f‖Lp(γ;Rk) =

(
∫
Rd |f |

pdγ)1/p <∞. The space (Lp(γ;Rk), ‖ · ‖Lp(γ;Rk))
is a Banach space, and we also write Lp(γ) = Lp(γ;R1).

The class of Borel probability measures on Rd is P and
the subset of measures µ ∈ P with finite p-th moment∫
|x|p dµ(x) is Pp. The convolution of measures µ, ν ∈ P

is defined by (µ ∗ ν)(A) :=
∫ ∫

1A(x + y) dµ(x) dν(y),
where 1A is the indicator of A. The convolution of mea-
surable functions f, g on Rd is (f ∗ g)(x) :=

∫
f(x −

y)g(y) dy. Recall that Nσ = N (0, σ2I) and use ϕσ(x) =

(2πσ2)−d/2e−|x|
2/(2σ2), x ∈ Rd, for the Gaussian density.

Write µ ⊗ ν for the product measure of µ, ν ∈ P . Let w→
and d→ denote weak convergence of probability measures
and convergence in distribution of random variables.

2.2. Background

We next provide some background on the statistical dis-
tances used in this paper.

(Smooth) Wasserstein Distance. For p ≥ 1, the p-
Wasserstein distance between µ, ν ∈ Pp is defined by

Wp(µ, ν) :=

(
inf

π∈Π(µ,ν)

∫
Rd
|x− y|p dπ(x, y)

)1/p

where Π(µ, ν) is the set of couplings of µ and ν. See
(Villani, 2003; 2008; Santambrogio, 2015) for additional
background. The σ-smooth p-Wasserstein distance between
probability measures µ, ν ∈ Pp is defined by

W(σ)
p (µ, ν) := Wp(µ ∗ Nσ, ν ∗ Nσ).

Integral Probability Metrics. Let F be a class of mea-
surable real functions on Rd. The IPM with respect to (w.r.t.)
F between probability measures µ, ν ∈ P is defined by

‖µ− ν‖∞,F = sup
f∈F

µ(f)− ν(f).

We subsequently control W(σ)
p via an IPM whose functions

have bounded Sobolev norm.

Smooth Sobolev IPM. Let γ be a Borel measure on Rd
and fix p ≥ 1. For a differentiable function f : Rd → R, let

‖f‖Ḣ1,p(γ) := ‖∇f‖Lp(γ;Rd) =

(∫
Rd
|∇f |pdγ

)1/p

be its Sobolev seminorm. We define the homogeneous
Sobolev space Ḣ1,p(γ) as the completion of Ċ∞0 = {f+a :
a ∈ R, f ∈ C∞0 } w.r.t. ‖ · ‖Ḣ1,p(γ). The dual Sobolev norm
of a signed measure ` on Rd with zero total mass is

‖`‖Ḣ−1,p(γ) := sup{`(f) : f ∈ C∞0 , ‖f‖Ḣ1,q(γ) ≤ 1},

where q is the conjugate index of p, i.e., 1/p+ 1/q = 1. We
define the pth-order smooth Sobolev IPM by

d(σ)
p (µ, ν) := ‖(µ− ν) ∗ Nσ‖Ḣ−1,p(Nσ)

for measures µ, ν ∈ P . Observe that d(σ)
p is an IPM w.r.t.

the class F ∗ϕσ = {f ∗ϕσ : f ∈ F} with F = {f ∈ C∞0 :
‖f‖Ḣ1,q(Nσ) ≤ 1}.

3. Structure of Smooth Wasserstein Distance
and Comparison with Smooth Sobolev IPM

We now examine basic properties of smooth Wasserstein dis-
tances, including a useful connection to the smooth Sobolev
IPM. The case of W(σ)

1 has been well-studied in (Goldfeld
& Greenewald, 2020; Goldfeld et al., 2020a). Herein we
present results that hold for arbitrary p ≥ 1 and σ ≥ 0
unless stated otherwise, with proofs left for the supplement.
Extending beyond p = 1 requires new techniques, most
prominently a comparison result between W

(σ)
p and d

(σ)
p .

3.1. Structural Properties

We first consider the topology induced by W
(σ)
p . Since

convolution acts as a contraction, we have W
(σ)
p ≤Wp. In

fact, the two distances induce the same topology on Pp,
which coincides with that of weak convergence in addition
to convergence of pth moments.

Proposition 1 (Metric and topological structure of W(σ)
p ).

W
(σ)
p is a metric on Pp inducing the same topology as Wp.

The proof uses existence of optimal couplings and uniform
integrability arguments. Next, we examine the behavior of
W

(σ)
p as a function of the smoothing parameter σ. We start

from the following stability lemma, guaranteeing that small
changes in σ result only in slight perturbations of W(σ)

p .

Lemma 1 (Stability of W
(σ)
p ). For µ, ν ∈ Pp and 0 ≤

σ1 ≤ σ2 <∞, we have∣∣W(σ2)
p (µ, ν)−W(σ1)

p (µ, ν)
∣∣ ≤ 2

√
(σ2

2 −σ2
1)(d+ 2p+ 2).
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This result generalizes Lemma 1 of (Goldfeld & Gree-
newald, 2020), which covers p = 1, and establishes uniform
continuity of W(σ)

p in σ. Its proof takes a different approach,
using Minkowski’s inequality instead of the Kantorovich-
Rubinstein duality. An immediate consequence of Lemma 1
is given next, mirroring Theorem 3 of (Goldfeld & Gree-
newald, 2020).

Corollary 1 (W(σ)
p dependence on σ). For µ, ν ∈ Pp, the

following hold:

(i) W
(σ)
p (µ, ν) is continuous and monotonically non-

increasing in σ ∈ [0,+∞);

(ii) lim
σ→0

W
(σ)
p (µ, ν) = Wp(µ, ν);

(iii) lim
σ→∞

W
(σ)
p (µ, ν) =

∣∣E[X] − E[Y ]
∣∣ , for X ∼ µ and

Y ∼ ν sub-Gaussian.

Remark 1 (Infinite smoothing). A detailed study of W(σ)
p

in the infinite smoothing regime (i.e., when σ → ∞) is
conducted in (Chen & Niles-Weed, 2020). Therein, the
authors prove Item 3 above and examine the convergence
of W(σ)

p (µ, ν) to 0 when E[X] = E[Y ]. For that case, they
show that if µ and ν have matching moment tensors up to
order n (but not n+ 1), then W

(σ)
2 (µ, ν) � σ−n as σ →∞.

Corollary 1 guarantees the convergence of transport costs as
σ → 0. It is natural to ask whether optimal transport plans
(i.e., couplings) that achieve these costs converge as well.
We answer this question to the affirmative.

Proposition 2 (Convergence of transport plans). Fix µ, ν ∈
Pp and let (σk)k∈N be a sequence with σk ↘ σ ≥ 0.
For each k ∈ N, let πk ∈ Π(µ ∗ Nσk , ν ∗ Nσk) be an
optimal coupling for W

(σk)
p (µ, ν). Then there exists π ∈

Π(µ ∗ Nσ, ν ∗ Nσ) such that πk
w→ π as k →∞, and π is

optimal for W(σ)
p (µ, ν).

The proof observes that the arguments for Theorem 4 of
(Goldfeld & Greenewald, 2020) extend from p = 1 to the
general case with minor changes.

So far we have studied metric, topological, and limiting
properties of W(σ)

p . In Section 4 we explore its statistical
behavior, when distributions are estimated from samples. To
that end, we now establish a relation between W

(σ)
p and the

smooth Sobolev IPM d
(σ)
p . This result is later used to study

the empirical convergence under W
(σ)
p using tools from

empirical process theory (applied to the d
(σ)
p upper bound).

Theorem 1 (Comparison between W
(σ)
p and d

(σ)
p ). Fix

p > 1 and let q be the conjugate index of p. Then, for
X ∼ µ ∈ Pp with mean 0 and ν ∈ P , we have

W(σ)
p (µ, ν) ≤ p eE[|X|2]/(2qσ2) d(σ)

p

(
µ, ν

)
. (1)

The proof builds upon related inequalities established for
standard Wp (Dolbeault et al., 2009; Peyre, 2018; Ledoux,
2019), exploiting the metric structure of the Wasserstein
space and the Benamou-Brenier dynamic formulation of
optimal transport (Benamou & Brenier, 2000). Namely, we
note that Wp(µ0, µ1) is upper bounded by the length of any
continuous path from µ0 to µ1 in (Pp,Wp) and examine the
path t 7→ tµ1+(1−t)µ0 which interpolates linearly between
the two densities. The theorem follows upon applying the
resulting bound to µ ∗Nσ and ν ∗Nσ . We also give a lower
bound for W(σ)

p (µ, ν) using ‖(µ − ν) ∗ Nσ
∥∥
Ḣ−1,p(N√2σ)

,
though the constant factor restricts its usefulness.

Remark 2. When p = 1, one can show that W1 and the dual
Sobolev norm ‖ ·‖Ḣ−1,1(γ) coincide (Dolbeault et al., 2009).

In particular, this implies that W(σ)
1 (µ, ν) = d

(σ)
1 (µ, ν). For

larger p, the gap between W
(σ)
p (µ, ν) and the upper bound

given by Theorem 1 can grow quite large, so we view the
comparison as a useful theoretical tool rather than a device
for practical approximation guarantees.

Finally, we establish some basic properties of d(σ)
p .

Proposition 3 (d(σ)
p dependence on σ). For µ, ν ∈ P , the

following hold:

(i) limσ→0 d
(σ)
p (µ, ν) =∞ for µ 6= ν;

(ii) limσ→∞ d
(σ)
2 (µ, ν) = |E[X]− E[Y ]|, for X ∼ µ and

Y ∼ ν sub-Gaussian.

We focus on p = 2 for (ii) due to a convenient MMD
formulation for d(σ)

2 established in Section 5.

4. Empirical Approximations
Fix p > 1, σ > 0, and let µ ∈ Pp with X ∼ µ.
Given independently and identically distributed (i.i.d.)
samples X1, . . . , Xn ∼ µ with empirical distribution
µ̂n := n−1

∑n
i=1 δXi , we study the convergence rate of

E
[
W

(σ)
p (µ̂n, µ)

]
to zero. To start, we observe that elemen-

tary techniques imply E
[
W

(σ)
p (µ̂n, µ)

]
= O(n−1/(2p)) un-

der mild conditions on µ. Although the rate n−1/(2p) is
dimension-free, its dependence on p is sub-optimal.

Theorem 2 (Slow rate). If X ∼ µ satisfies∫ ∞
0

rd+p−1
√
P(|X| > r)dr <∞, (2)

then E
[
W

(σ)
p (µ̂n, µ)

]
= O(n−1/(2p)). Condition (2) holds

if µ has finite (2d+ 2p+ ε)-th moment for some ε > 0.

The proof follows by coupling µ and µ̂n via the maximal
coupling. This bounds

(
W

(σ)
p (µ̂n, µ)

)p
from above by a
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weighted TV distance, which converges as n−1/2, provided
that the above moment condition holds. This proof tech-
nique was previously applied in (Goldfeld et al., 2020b) to
achieve the same rate when p = 1.

We next turn to show that the n−1/2 rate is attainable
for W(σ)

p (µ̂n, µ) itself (rather than for its pth power). To
this end, we first establish a limit distribution result for
the empirical smooth Sobolev IPM d

(σ)
p (µ̂n, µ). This, in

turn, yields the desired rate for E
[
W

(σ)
p (µ̂n, µ)

]
via the

comparison from Theorem 1. Recall the function class
F = {f ∈ C∞0 : ‖f‖Ḣ1,q(Nσ) ≤ 1}.

Theorem 3 (Limit distribution for empirical d(σ)
p ). Suppose

there exists θ > p− 1 for which X ∼ µ satisfies∫ ∞
0

e
θr2

2σ2

√
P(|X| > r)dr <∞. (3)

Then
√
nd

(σ)
p (µ̂n,µ)

d→‖G‖∞,F as n→∞, where G =
(G(f))f∈F is a tight Gaussian process in `∞(F) with mean
zero and covariance function Cov(G(f), G(g)) = Cov(f ∗
ϕσ(X), g ∗ ϕσ(X)).
Corollary 2 (Fast rate). Under the conditions of Theorem 3,
we have limn→∞

√
nE

[
d

(σ)
p (µ̂n, µ)

]
=E

[
‖G‖∞,F

]
<∞.

Consequently, E
[
W

(σ)
p (µ̂n, µ)

]
= O(n−1/2).

The proof of Theorem 3 shows that the smoothed function
classF∗ϕσ = {f ∗ϕσ : f ∈ F} is µ-Donsker. Specifically,
we prove that functions in F ∗ ϕσ are smooth with deriva-
tives uniformly bounded on domains within a fixed radius of
the origin. Using these bounds, we apply techniques from
empirical process theory to establish the Donsker property.
Importantly, the preceding argument hinges on the convolu-
tion with the smooth Gaussian density and does not hold for
the unsmoothed function class. No mean zero requirement
appears because we can center µ̂n and µ by the mean of µ.

Condition (3) requires that P(|X| > r) → 0 faster than
e−Cr

2

as r →∞ for some C > (p− 1)/σ2, which in turn
requires |X| to be sub-Gaussian. The requirement is trivially
satisfied if µ is compactly supported. We can also relate
Condition (3) to a more standard notion of sub-Gaussianity
for random vectors.
Definition 1 (Sub-Gaussian distribution). Let Y ∼ ν ∈ P
with E[|Y |] < ∞. We say that ν or Y is β-sub-Gaussian
for β ≥ 0 if E[exp(〈α, Y − E[Y ]〉)] ≤ exp

(
β|α|2/2

)
for

all α ∈ Rd.
Proposition 4 (Sub-Gaussianity implies (3)). If µ is β-sub-
Gaussian with β < σ/

√
2(p− 1), then (3) holds.

Next, we consider the concentration of W(σ)
p (µ̂n, µ).

Proposition 5 (Concentration inequality). If µ has compact
support, then, for all t > 0 and n ∈ N, we have

P
(
W(σ)
p (µ̂n, µ) ≥ Cn−1/2 + t

)
≤ exp

(
−cnt2

)

with constants C, c independent of n and t.

For unbounded domains, concentration results mirroring
those of Corollary 3 in (Goldfeld et al., 2020a) can be es-
tablished in the same way under a stronger sub-Gaussianity
assumption; we omit the details for brevity.

Remark 3 (Constants). While the rates provided in this
section are dimension-free, the constants necessarily exhibit
an exponential dependence on dimension. Indeed, mini-
max results for estimation of standard Wp due to Singh &
Póczos (2018), combined with Lemma 1, imply that achiev-
ing dimension-free rates with constants scaling only poly-
nomially in dimension is impossible in general. We provide
further details in the proofs of Theorem 2 and Theorem 3.

5. Smooth Sobolev IPM Efficient
Computation

We next consider computation of d(σ)
p , which takes a conve-

nient form when p = 2. Specifically, the Hilbertian structure
of Ḣ1,2(Nσ) enables to streamline calculations significantly
for all dimensions d. In the following, fix σ > 0, µ, ν ∈ P ,
X,X ′ ∼ µ⊗ µ, and Y, Y ′ ∼ ν ⊗ ν.

Consider the function space Ḣ1,2
0 (Nσ) := {f ∈ Ḣ1,2(Nσ)

: Nσ(f) = 0} with norm ‖ · ‖Ḣ1,2(Nσ) (this norm is proper
because of the constraint Nσ(f) = 0). This space be-
comes a Hilbert space when equipped with inner product
〈f, g〉Ḣ1,2(Nσ) =

∫
Rd〈∇f,∇g〉dNσ. Likewise, the space

Ḣ1,2
0 (Nσ) ∗ ϕσ = {f ∗ ϕσ : f ∈ Ḣ1,2

0 (Nσ)} is a Hilbert
space with inner product 〈f ∗ ϕσ, g ∗ ϕσ〉Ḣ1,2(Nσ)∗ϕσ =

〈f, g〉Ḣ1,2(Nσ) (see Appendix A.3 for a proof that this is
well-defined). In fact, we can say a bit more, first recalling
some definitions.

Reproducing Kernel Hilbert Space (RKHS). LetH be
a Hilbert space of real-valued functions on Rd. We say that
H is an RKHS if there is a positive semidefinite function
k : Rd × Rd → R, called a reproducing kernel, such that
k(·, x) ∈ H and h(x) = 〈h, k(·, x)〉 for all x ∈ Rd and
h ∈ H. See (Steinwart & Christmann, 2008; Aronszajn,
1950) for comprehensive background on RKHSs.

Maximum Mean Discrepancy. LetH be an RKHS with
kernel k. The IPM corresponding to its unit ball, termed
MMD, is given by

MMDH(µ, ν) := sup
f∈H: ‖f‖H≤1

µ(f)− ν(f).

Proposition 6 (Borgwardt et al. (2006)). If E
[√
k(X,X)

]
,

E
[√
k(Y, Y )

]
<∞, then

MMDH(µ,ν)2 =E[k(X,X ′)]−2E[k(X,Y )]+E[k(Y,Y ′)].
(4)
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We prove that Ḣ1,2
0 (Nσ) ∗ ϕσ is an RKHS whose ker-

nel is expressed in terms of the entire exponential inte-
gral (Oldham et al., 2009) Ein(z) :=

∫ z
0

(1− e−t) dtt =∑∞
k=1

(−1)k+1zk

k·k! , giving an MMD form for d(σ)
2 .

Theorem 4 (d(σ)
2 as an MMD). The space

Ḣ1,2
0 (Nσ) ∗ ϕσ is an RKHS with reproducing ker-

nel κ(σ)(x, y) := −σ2 Ein
(
−〈x, y〉/σ2

)
. Thus, if

E
[√

κ(σ)(X,X)
]
,E
[√

κ(σ)(Y, Y )
]
<∞, then

d
(σ)
2 (µ, ν)2 = E

[
κ(σ)(X,X ′)

]
+ E

[
κ(σ)(Y, Y ′)

]
− 2E

[
κ(σ)(X,Y )

]
.

(5)

The proof begins with a reduction to σ = 1 and observes
that properly normalized multivariate Hermite polynomials
form an orthonormal basis for Ḣ1,2

0 (N1). Convolving these
polynomials with ϕ1, we obtain an orthonormal basis for
Ḣ1,2

0 (N1) ∗ ϕ1 comprising scaled monomials, which can
then be used to calculate the kernel.

The MMD formulation (5) gives a convenient way to com-
pute d

(σ)
2 in practice. Suppose that we generate i.i.d.

samples X1, . . . , Xm ∼ µ and Y1, . . . , Yn ∼ ν with
empirical distributions µ̂m = m−1

∑m
i=1 δXi and ν̂n =

n−1
∑n
j=1 δYj . Then, we can compute

d
(σ)
2 (µ̂m, ν̂n)2 =

1

m2

m∑
i=1

m∑
j=1

κ(σ)(xi, xj)+

1

n2

n∑
i=1

n∑
j=1

κ(σ)(yi, yj)−
2

mn

m∑
i=1

n∑
j=1

κ(σ)(xi, yj).

Provided that µ and ν are compactly supported or β-sub-
Gaussian with β < σ/

√
2, Corollary 2 and the triangle

inequality imply

E
[ ∣∣∣d(σ)

2 (µ̂m, ν̂n)− d
(σ)
2 (µ, ν)

∣∣∣ ] = O
(

min{m,n}−1/2
)
.

Hence, we can approximate d
(σ)
2 up to expected error ε

with O(ε−2) samples from the measured distributions and
O(ε−4) evaluations of κ(σ) for any dimension d.

6. Statistical Applications
With the empirical approximation and computational re-
sults in hand, we now present applications to two-sample
testing and minimum distance estimation. These results
highlight the benefits of smoothing, as several of the sub-
sequent claims are unavailable for standard Wp due to the
lack of parametric rates and limit distributions.

6.1. Two-Sample Testing

We start from two-sample testing with W
(σ)
p and d

(σ)
p , where

p > 1 and σ > 0 are fixed throughout. Let µ, ν ∈ Pp and

take X1, . . . , Xm ∼ µ and Y1, . . . , Yn ∼ ν to be mutu-
ally independent samples. The goal of nonparametric two-
sample testing is to detect, based on the samples, whether
the null hypothesis H0 : µ = ν holds, without imposing
parametric assumptions on the distributions.

A standard class of tests rejects H0 if Dm,n > cm,n,
where Dm,n = Dm,n(X1, . . . , Xm, Y1, . . . , Yn) is a scalar
test statistic and cm,n is a critical value chosen accord-
ing to the desired level α ∈ (0, 1). Precisely, we say
that such a sequence of tests has asymptotic level α if
lim supm,n→∞ P(Dm,n > cm,n) ≤ α whenever µ = ν.
We say that these tests are asymptotically consistent if
limm,n→∞ P(Dm,n > cm,n) = 1 whenever µ 6= ν. In
what follows, we assume that m,n→∞ and m/N → τ ∈
(0, 1) with N = m+ n.

The previous theorems will help us construct tests that en-
joy asymptotic consistency and correct asymptotic level
based on the smooth p-Wasserstein distance, usingWm,n :=√

mn
N W

(σ)
p (µ̂m, ν̂n). Two-sample testing using the Wasser-

stein distance was previously explored in (Ramdas et al.,
2017), but these results are fundamentally restricted to the
one-dimensional setting. Specifically, while the authors de-
signed tests with data-independent critical values for d = 1,
they rely heavily on limit distributions of empirical Wasser-
stein distances that do not extend to higher dimensions. Our
results use data-dependent critical values but scale to arbi-
trary dimension, demonstrating the compatibility of smooth
distances for multivariate two-sample testing.

We use the bootstrap to calibrate critical val-
ues. Consider the pooled data (Z1, . . . , ZN ) =
(X1, . . . , Xm, Y1, . . . , Yn) with empirical distribu-
tion γ̂N = N−1

∑N
i=1 δZi . Let XB

1 , . . . , X
B
m and

Y B1 , . . . , Y Bn be i.i.d. from γ̂N given Z1, . . . , ZN , and take
µ̂Bm = m−1

∑m
i=1 δXBi and ν̂Bn = n−1

∑n
i=1 δY Bi to be the

corresponding bootstrap empirical measures.

Specifying critical values requires a bit of care, as the com-
parison inequality (1) requires centering of one of measures.
So we center the bootstrap empirical measures µ̂Bm and ν̂Bn
by the pooled sample mean Z̄ = N−1

∑n
i=1 Zi, namely,

we apply the bootstrap as

WB
m,n = p e

tr Σ̂Z
2qσ2

√
mn

N
d(σ)
p

(
µ̂Bm ∗ δ−Z̄N , ν̂

B
n ∗ δ−Z̄N

)
,

where Σ̂Z = N−1
∑N
i=1(Zi−Z̄N )(Zi−Z̄N )>. Denote the

conditional (1−α)-quantile of WB
m,n by wBm,n(1−α), i.e.,

wBm,n(1− α) = inf
{
t : PB(WB

m,n ≤ t) ≥ 1− α
}
.

Then, we have the following result.

Proposition 7 (Asymptotic validity). For µ, ν ∈ Pp satisfy-
ing the condition of Theorem 3, the sequence of tests that re-
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Figure 1. (Left) Empirical convergence of estimated E[W(σ)
2 (µ̂n, µ)] to 0 for µ = Unif([−1, 1]d) with d ∈ {1, 3, 5}. (Right) Loose

upper bound on E[W(0.5)
2 (µ̂n, µ)] provided by d

(0.5)
2 for µ = Unif([−1, 1]d) with d ∈ {1, 3, 6, 10}.

ject the null hypothesisH0 : µ = ν ifWm,n > wBm,n(1−α)
is asymptotically consistent with level α.

We remark that the same argument gives a simpler result
when p = 1. Because W(σ)

1 is an IPM itself w.r.t. a function
class that is µ- and ν-Donsker under moment conditions (see
(Goldfeld et al., 2020a, Theorem 1)), no centering is neces-
sary, and WB

m,n can be replaced by
√

mn
N W

(σ)
1 (µ̂Bm, ν̂

B
n ).

6.2. Generative Modeling

In the unsupervised learning task of generative modeling,
we obtain an i.i.d. sample X1, . . . , Xn from a distribution
µ ∈ P and aim to learn a generative model from a parame-
terized family {νθ}θ∈Θ ⊂ P which approximates µ under
some statistical distance. We adopt the smooth Wasserstein
distance as the figure of merit and use the empirical distri-
bution µ̂n as an estimate for µ. Generative modeling is thus
formulated as the following minimum smooth Wasserstein
estimation (M-SWE) problem:

inf
θ∈Θ

W(σ)
p (µ̂n, νθ).

In the unsmooth case, this objective with W1 inspired the
Wasserstein GAN (W-GAN) framework that continues to
underlie state-of-the-art methods in generative modeling
(Arjovsky et al., 2017; Gulrajani et al., 2017). M-SWE with
p = 1 was studied in (Goldfeld et al., 2020a), and here
we pursue similar measurability and consistency results for
p > 1.

In what follows, we take both µ ∈ Pp and {νθ}θ∈Θ ⊂
Pp. Further, we suppose that Θ ⊂ Rd0 is compact with
nonempty interior and that θ 7→ νθ is continuous w.r.t. the
weak topology, i.e., νθ

w→ νθ̄ whenever θ → θ̄. We start
by establishing measurability, consistency, and parametric
convergence rates for M-SWE.
Proposition 8 (M-SWE measurability). For each n ∈ N,
there exists a measurable function ω 7→ θ̂n(ω) such that
θ̂n(ω) ∈ argminθ∈Θ W

(σ)
p (µ̂n(ω), νθ).

Proposition 9 (M-SWE consistency). The following hold:

1. infθ∈Θ W
(σ)
p (µ̂n, νθ)→ infθ∈Θ W

(σ)
p (µ, νθ) a.s.

2. There exists an event with probability one on which
the following holds: for any sequence {θ̂n}n∈N of
measurable estimators such that W

(σ)
p (µ̂n, νθ̂n) ≤

infθ∈Θ W
(σ)
p (µ̂n, νθ) + oP(1), the set of cluster points of

{θ̂n}n∈N is included in argminθ∈Θ W
(σ)
p (µ, νθ).

3. If argminθ∈Θ W
(σ)
p (µ, νθ) = {θ?}, then θ̂n → θ? a.s.

Proposition 10 (M-SWE convergence rate). If µ satisfies
the conditions of Theorem 3, then∣∣∣∣ inf

θ∈Θ
W(σ)
p (µ̂n, νθ)− inf

θ∈Θ
W(σ)
p (µ, νθ)

∣∣∣∣ = OP(n−1/2).

Likewise, under additional regularity conditions, the solu-
tions θ̂n to M-SWE converge at the parametric rate, i.e.,
|θ̂n − θ?| = OP(n−1/2), where θ? is the unique solution as
above; see Supplement A.4 for details.

These propositions follow by similar arguments to those
in (Goldfeld et al., 2020a), which build on (Pollard, 1980),
with arbitrary p ≥ 1 instead of p = 1 as considered therein
(the needed results from (Villani, 2008) hold for all p ≥ 1).
We thus omit their proofs for brevity.

We next examine a high probability generalization bound
for generative modeling via M-SWE, in accordance to the
framework from (Arora et al., 2017; Zhang et al., 2018).
Thus, we want to control the gap between the W

(σ)
p loss at-

tained by approximate, possibly suboptimal, empirical min-
imizers and the population loss infθ∈Θ W

(σ)
p (µ, νθ). Upper

bounding this gap by the rate of empirical convergence, the
concentration result Proposition 5 implies the following.

Corollary 3 (M-SWE generalization error). Assume µ
has compact support and let θ̂n be an estimator with
W

(σ)
p (µ̂n, νθ̂n) ≤ infθ∈Θ W

(σ)
p (µ̂n, νθ) + ε, for some ε > 0.

We have

P
(
W(σ)
p (µ, νθ̂n)− inf

θ∈Θ
W(σ)
p (µ, νθ)>ε+ t

)
≤ Ce−cnt

2

,

for constants C, c independent of n and t.
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7. Experiments
We present several numerical experiments supporting the
theoretical results established in the previous sections. We
focus on p = 2 so that we can use the MMD form
for d(σ)

2 . Code is provided at https://github.com/
sbnietert/smooth-Wp.

First, we examine W
(σ)
2 (µ, µ̂n) directly, with computations

feasible for small sample sizes using the stochastic aver-
aged gradient (SAG) method as proposed by (Genevay
et al., 2016) and implemented by (Hallin et al., 2020). In
Figure 1 (left), we take µ = Unif([−1, 1]d) and estimate
E[W

(σ)
2 (µ̂n, µ)] averaged over 10 trials, for varied d and σ.

We observe the contractive property of W(σ)
2 and the speed

up in convergence rate due to smoothing. However, SAG
is not well-suited for computation in high dimensions and
larger values of σ. Indeed, this method computes standard
W2 between the convolved measures, which needs an expo-
nential in d number of samples from the Gaussian measure.
Recently, Vacher et al. (2021) suggested that OT distances
between smooth densities (like those of our convolved mea-
sures) may be computed more efficiently, but their algorithm
is restricted to compactly supported distributions and leaves
important hyperparameters unspecified.

Turning to d
(σ)
2 , the MMD form from (5) readily enables

efficient computation. In Figure 1 (right), we plot the n−1/2

upper bound it gives for W(σ)
2 empirical convergence, using

a closed form for relevant expectations described in Ap-
pendix A.5.1. We emphasize that this bound is too loose for
practical approximation and serves rather as a theoretical
tool for obtaining correct rates. In Figure 2, we plot distribu-
tions of

√
n d

(1)
2 (µ̂n, µ) as n increases, using µ = Ns with

varied s and d = 5. Distributions are computed using kernel
density estimation over 50 trials and estimating µ by µ̂1000.
We see convergence to a limit distribution for small σ (esti-
mating ‖G‖∞,F from Theorem 3) and note the necessity of
the sub-Gaussian condition (3), with convergence failing as
σ surpasses 1/

√
2, supporting Proposition 4.

Next, we examine M-SWE when d = 1, exploiting the
fact that Wp can be expressed as an Lp distance between
quantile functions (see, e.g., (Villani, 2008)). The consid-
ered task is fitting a two-parameter generative model to a
Gaussian mixture (parameterized by the means of its two
modes). Distance minimization is implemented via gradient
descent. Plotted in Figure 3 are

√
n-scaled scatter plots of

the estimation errors, with 40 trials for each σ and n pair.
The consistent spread of the (scaled) estimation errors as
n increases demonstrates the n−1/2 convergence rate. The
bottom-right subplot shows W(σ)

2 estimation errors that fur-
ther support the fast convergence. In Appendix A.5, we
provide additional results for a single Gaussian parameter-
ized by mean and variance.
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convergence in n.

Finally, we provide two-sample testing results in Figure
4 for p = 1, leveraging the simplifications discussed at
the end of Section 6.1. We approximate the convolved
empirical measures by adding Gaussian noise samples and
compute W1 (exactly) for d = 1 via its representation as
the L1 distance between quantile functions. For d = 2, we
estimate W1 using a standard implementation of W-GAN
(Gulrajani et al., 2017; Cao, 2017). For varied sample sizes

n = m, the quantiles of
√

n2

N W
(σ)
1 (µ̂Bn , ν̂

B
n ) are estimated
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Figure 4. Estimated probability that W(0.1)
1 two-sample test rejects

null hypothesis H0 : µ = ν given that µ = ν = Unif([0, 1]d).

using 1000 and 200 bootstrap samples for d = 1 and d = 2,
respectively. The probability of rejecting the null hypothesis
for varied significance levels and sample sizes is estimated
by repeating the tests over 100 and 200 draws of the original
samples, for d = 1 and d = 2 respectively. Figure 4 displays
the probability of false alarm versus the significance level α.
Evidently, the curves approximately fall along the diagonal
y = x, supporting the consistency result.

8. Conclusions and Future Directions
This work provided a thorough analysis of structural and
statistical properties of the Gaussian-smoothed Wasserstein
distance W

(σ)
p . While W

(σ)
p maintains many desirable prop-

erties of standard Wp, we have shown via comparison to
the smooth Sobolev IPM d

(σ)
p that it admits a parametric

empirical convergence rate, avoiding the curse of dimen-
sionality that arises when estimating Wp from data. Using
this fast rate and the associated limit distribution for d(σ)

p ,
we have explored new applications to two-sample testing
and generative modeling.

An important direction for future research is efficient com-
putation of W(σ)

p . While standard methods for computing
Wp are applicable in the smooth case (by sampling the
noise), it is desirable to find computational techniques that
make use of structure induced by the convolution with a
known smooth kernel. Furthermore, while W

(σ)
p exhibits

an expected empirical convergence rate of O(n−1/2) that
is optimal in n, the prefactor scales exponentially with di-
mension and warrants additional study. We suspect that this
scaling can be shown under a manifold hypothesis to de-
pend only on the intrinsic dimension of the data distribution
rather than that of the ambient space.

Finally, we are interested in the limiting behavior of W(σ)
p

as σ → 0 and p → ∞. The former case has implications
for standard Wp and its dependence on intrinsic dimension,
as well as for noise annealing that is common in machine
learning practice. The latter may connect to differential
privacy, where smoothing corresponds to (Gaussian) noise

injection and W∞ underlies the Wasserstein privacy mecha-
nism (Song et al., 2017).
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Genevay, A., Cuturi, M., Peyré, G., and Bach, F. R. Stochas-
tic optimization for large-scale optimal transport. In
Lee, D. D., Sugiyama, M., von Luxburg, U., Guyon,
I., and Garnett, R. (eds.), Advances in Neural Informa-
tion Processing Systems (NeurIPS-2016), pp. 3432–3440,
Barcelona, Spain, Dec. 2016.

Genevay, A., Chizat, L., Bach, F. R., Cuturi, M., and Peyré,
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