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Appendix

In appendix, Sec. A provides supplementary information associated with experiments. In Sec. B, update rule derivation of
ECL-ISVR is introduced. The proof of convergence analysis of proposed ECL-ISVR is shown in Sec. C.

A. Supplementary information of experiments
Supplementary information associated with experiments in Sec. 7 is provided.

Source code: To support experimental reproducibility, we provide a part of the latest version of the source code as
supplementary material. Although the constructed software will run on multiple GPUs connected with the network, all
computational experiments were conducted inside a single server with 8 GPUs. For communication between nodes, we
used Gloo in PyTorch as a GPU communication library. In addition, ZeroMQ is also needed to realize dual variable swap
operation, namely send/receive commands associated with dual variables are ought to be done at almost the same timing.
For DNN optimization code construction, PyTorch (v1.6.0) with CUDA (v10.2) was used.

Training data division: In Tables 1 and 2, the number of training data samples held by each node for fashion-MNIST used
in (T1), (T2) and CIFAR-10 used in (T3) is summarized. As explained in Subsec. 7.1, training samples are heterogeneously
divided over N = 8 nodes. Each local node holds a different number of data and they are composed of 8 randomly selected
classes out of a total of 10 classes.

Table 1. Number of training data samples held by each node when using fashion-MNIST in (T1) and (T2), where class index is associated
with O: T-shirt/top, 1: trouser, 2: pullover, 3: dress, 4: coat, 5: sandal, 6: shirt, 7: sneaker, 8: bag, 9: ankle boot.

Classindex | 0 | 1 [ 2 | 3 | 4 [ 5 [ 6 | 7 [ 8 | 9 [ Total |
Node 1 0 [1000] 969 | 947 | 798 [ 862 | 890 | 911 [ 888 | 0 [| 7.365
Node 2 887 [ 1092 [ 0 [ 940 | 879 | 842 | 0 | 860 | 801 | 1,007 || 7.308
Node 3 992 | 0 | 933 | 0 | 85 | 953 | 939 | 822 | 876 | 998 | 7.369
Node 4 1,092 | 936 [ 1,068 | 1,085 | 835 | 807 | 1,048 | 0 0 | 974 [[ 7.845
Node 5 1,072 | 1,041 | 1,082 [ 1059 | 0 0 |1,073] 875 | 882 | 1,008 || 8.092
Node 6 0 | 903 | 975 | 934 | 826 | 867 | 1,049 | 934 | 919 | 0 || 7.407
Node 7 1046 | 928 | 0 |1,035| 898 | 808 | 0 | 801 | 819 | 972 || 7.307
Node 8 911 | 0 [ 973 | o0 | 908 | 861 | 1,001 | 797 | 815 | 1,041 || 7.307
Total | 6,000 [ 6,000 | 6,000 | 6,000 [ 6,000 [ 6,000 | 6,000 | 6,000 | 6,000 | 6,000 [| 60,000 |

Table 2. Number of training data samples held by each node when using CIFAR-10 in (T3), where class index is associated with O:
airplane, 1: automobile, 2: bird, 3: cat, 4: deer, 5: dog, 6: frog, 7: horse, 8: ship, 9: truck.

Classindex | 0 [ 1 [ 2 [ 3 [ 4 [ 5 | 6 | 7 | 8 [ 9 | Total |
Node 1 0 [ 916 [ 807 | 789 | 665 | 718 | 742 | 759 [ 740 | 0 ]| 6,136
Node 2 739 | 910 | 0 | 784 | 733 | 702 | 0 | 717 | 667 | 839 [ 6,091
Node 3 8260 | 0 | 7718 [ 0 | 713 | 794 | 782 | 685 | 730 | 831 | 6,139
Node 4 910 | 780 | 890 | 904 | 696 | 672 | 873 | 0 0 | 812 || 6537
Node 5 893 | 867 | 901 | 883 | 0 0 | 894 | 729 | 735 | 840 | 6,742
Node 6 0 | 753 [ 813 | 778 | 688 | 722 | 874 | 778 | 766 | 0 || 6,172
Node 7 871 | 774 | 0 [ 862 | 748 | 674 | 0 | 668 | 683 | 810 || 6,090
Node 8 761 | 0 | 811 | 0 | 757 | 718 | 835 | 664 | 679 | 868 || 6,093

Total | 5.000 | 5,000 | 5,000 [ 5,000 [ 5,000 | 5,000 | 5,000 [ 5,000 [ 5,000 | 5,000 || 50,000
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Processing time: The breakdown of processing time Ty, Which is composed of (i) local node computation time Tjocy
for training and test data sets and (ii) communication time T.,y,, is shown. Note that we used Gloo in PyTorch as a GPU
communication library because NCCL® cannot be applicable because ”Send” and "Recv”’ commands are needed for our
asynchronous decentralized communication shown in Fig. 1.

The table below summarizes Tjocq for training/test data sets and Top, of ECL-ISVR (PDMM-ISVR) separately measured for
each round.

Table 3. Node-averaged processing time for each round when using (T1) fashion MNIST with convex logistic regression model trained
with a part of optimization algorithms on (N1) multiplex ring network

‘ H Tlocal, train [mm] ‘ Tlocal, test [mln] ‘ Tcom [mm] ‘ Ttolal [mln] ‘

ECL-ISVR (PDMM-ISVR) 43.83 74.13 40.52 158.48
ECL-ISVR (ADMM-ISVR) 45.62 78.04 42.63 166.29
ECL (PDMM-SGD) 56.50 86.40 91.41 234.31
ECL (ADMM-SGD) 57.80 81.15 85.49 224.44
GT-SVR 82.34 72.56 61.90 216.80
FedProx 36.22 80.68 43.33 160.23
DSGD 34.12 81.17 4473 160.02
D? 47.30 90.21 48.32 185.83

Table 4. Node-averaged processing time for each round when using (T1) fashion MNIST with convex logistic regression model trained
with a part of optimization algorithms on (N2) random network

‘ H Tlocal, train [mln] ‘Tlocal, test [mln] ‘ Tcom [mln] ‘ Tlolal [mln] ‘

ECL-ISVR (PDMM-ISVR) 1.49 6.70 0.20 8.39
ECL-ISVR (ADMM-ISVR) 1.53 6.98 0.21 8.72
ECL (PDMM-SGD) 1.78 7.15 0.38 9.31
ECL (ADMM-SGD) 1.74 6.87 0.37 8.98
GT-SVR 2.81 7.20 0.21 10.22
FedProx 1.38 6.96 0.21 8.55
DSGD 1.27 6.82 0.21 8.30
D? 1.40 6.62 0.20 8.22

6https ://pytorch.org/docs/stable/distributed.html
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Table 5. Node-averaged processing time for each round when using (T2) fashion MNIST with non-convex ResNet32 model trained with a
part of optimization algorithms on (N1) multiplex ring network

‘ H Tlocal, train [mll’l] ‘ TlocaL test [mln] ‘ Tcnm [mm] ‘ Ttolal [mln] ‘

ECL-ISVR (PDMM-ISVR) 43.83 74.13 40.52 158.48
ECL-ISVR (ADMM-ISVR) 45.62 78.04 42.63 166.29
ECL (PDMM-SGD) 56.50 86.40 91.41 234.31
ECL (ADMM-SGD) 57.80 81.15 85.50 224.45
GT-SVR 82.34 72.56 61.90 216.80
FedProx 36.22 80.68 43.33 160.23
DSGD 34.12 81.17 44.73 160.02
D? 47.30 90.21 48.32 185.83

Table 6. Node-averaged processing time for each round when using (T2) fashion MNIST with non-convex ResNet32 model trained with a
part of optimization algorithms on (N2) random network

| [ Tiocal, rain [min] | Tiocat, iest [min] | Teom [min] | Torar [min] |

ECL-ISVR (PDMM-ISVR) 43.83 74.13 40.51 158.48
ECL-ISVR (ADMM-ISVR) 45.62 78.04 42.63 166.29
ECL (PDMM-SGD) 56.50 86.40 91.41 23431
ECL (ADMM-SGD) 57.80 81.15 85.50 224.45
GT-SVR 82.33 72.57 61.90 216.80
FedProx 36.22 80.68 43.33 160.23
DSGD 34.12 81.17 44.73 160.02
D? 47.30 90.21 48.32 185.83

Table 7. Node-averaged processing time for each round when using (T3) CIFAR-10 with non-convex ResNet32 model trained with a part
of optimization algorithms on (N1) multiplex ring network

‘ H Tl(ycal, train [Inll’l] ‘ Tlncal, test [mln] ‘ Tcom [mln] ‘ Tmlal [mln] ‘

ECL-ISVR (PDMM-ISVR) 91.05 129.65 113.22 333.92
ECL-ISVR (ADMM-ISVR) 96.81 137.84 124.46 359.11
ECL (PDMM-SGD) 112.19 142.86 274.38 529.43
ECL (ADMM-SGD) 127.34 147.13 282.52 556.99
GT-SVR 129.64 113.48 156.78 399.80
FedProx 65.80 138.45 125.01 329.26
DSGD 62.40 141.22 127.43 331.05
D? 80.33 141.31 121.50 343.14

Table 8. Node-averaged processing time for each round when using (T3) CIFAR-10 with non-convex ResNet32 model trained with a part
of optimization algorithms on (N2) random network

‘ H Tlocal, train [mln] ‘Tlocal, test [IIlll’l] ‘ Tcom [mlIl] ‘ Tlmal [IIlll’l] ‘

ECL-ISVR (PDMM-ISVR) 43.83 74.13 40.52 158.48
ECL-ISVR (ADMM-ISVR) 45.62 78.04 42.63 166.29
ECL (PDMM-SGD) 56.50 86.40 91.41 234.31
ECL (ADMM-SGD) 57.80 81.15 85.49 224.44
GT-SVR 32.34 72.56 61.90 216.80
FedProx 36.22 80.68 43.33 160.23
DSGD 34.12 81.27 44.73 160.02
D? 47.30 90.21 48.32 185.83
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Performance differences among nodes: Performance differences in the trained models optimized with ECL-ISVR
(PDMM-ISVR/ADMM-ISVR) are summarized in Tables 9-14. As a result, performance differences among nodes are
sufficiently small, i.e., almost equivalent models are obtained on N = 8 nodes.

Table 9. Performance differences among N = 8 nodes when using (T1) fashion MNIST with convex logistic regression model trained
with the proposed ECL-ISVR (PDMM-ISVR/ADMM-ISVR) on (N1) multiplex ring network

Node index 11 ] 2 [ 3 ] 4] 5 | 6 [ 7 | 8 | Average[%] |
Reference (1 node) 81.98 - - - - - - - 81.98
ECL-ISVR (PDMM-ISVR) || 80.87 | 80.83 | 80.86 | 80.82 | 80.82 | 80.82 | 80.86 | 80.83 80.84
ECL-ISVR (ADMM-ISVR) || 80.83 | 80.90 | 80.90 | 80.89 | 81.00 | 80.89 | 80.88 | 80.88 80.90
ECL (PDMM-SGD) 80.39 | 80.37 | 80.31 | 80.40 | 80.34 | 80.44 | 80.36 | 80.39 80.38
ECL (ADMM-SGD) 80.51 | 80.48 | 80.46 | 80.48 | 80.52 | 80.54 | 80.54 | 80.49 80.50
GT-SVR 81.51 | 81.34 | 81.46 | 81.50 | 81.49 | 81.50 | 81.48 | 81.53 81.48
FedProx 74.39 | 7427 | 7434 | 7431 | 7434 | 7435 | 74.31 | 74.37 74.34
DSGD 65.44 | 65.37 | 65.42 | 65.42 | 65.41 | 65.44 | 65.36 | 65.40 65.41
D? 70.33 | 70.50 | 70.35 | 70.35 | 70.36 | 70.37 | 70.18 | 70.28 70.34

Table 10. Performance differences among /N = 8 nodes when using (T1) fashion MNIST with convex logistic regression model trained
with the proposed ECL-ISVR (PDMM-ISVR/ADMM-ISVR) on (N2) ramdom network

Node index 1 ] 2 [ 3 [ 4 ] 5 | 6 [ 7 | 8 [ Averagel[%] |
Reference (1 node) 81.66 - - - - - - - 81.66
ECL-ISVR (PDMM-ISVR) || 79.71 | 79.59 | 79.75 | 79.50 | 79.72 | 79.67 | 79.57 | 79.61 79.64
ECL-ISVR (ADMM-ISVR) || 80.57 | 80.58 | 80.52 | 80.49 | 80.51 | 80.53 | 80.56 | 80.56 80.54
ECL (PDMM-SGD) 7838 | 7838 | 78.38 | 78.32 | 78.37 | 78.26 | 7839 | 78.35 78.35
ECL (ADMM-SGD) 7840 | 7829 | 78.47 | 7844 | 78.43 | 78.08 | 7829 | 78.52 78.37
GT-SVR 81.03 | 79.99 | 80.73 | 80.94 | 80.54 | 80.52 | 80.17 | 80.96 80.61
FedProx 72.00 | 71.86 | 71.85 | 71.95 | 71.88 | 71.74 | 71.87 | 71.98 71.89
DSGD 6547 | 65.34 | 65.61 | 6535 | 65.56 | 65.60 | 65.34 | 65.35 65.45
D’ 67.42 | 67.58 | 66.69 | 67.50 | 67.27 | 67.17 | 67.58 | 67.39 67.33
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Table 11. Performance differences among N = 8 nodes when using (T2) fashion MNIST with non-convex ResNet32 model trained with
the proposed ECL-ISVR (PDMM-ISVR/ADMM-ISVR) on (N1) multiplex ring network

Node index 1 ] 2 [ 3 [ 4 ] 5 ] 6 [ 7 | 8 [ Average[%] |
Reference (1 node) 91.40 - - - - - - - 91.40
ECL-ISVR (PDMM-ISVR) || 91.01 | 90.83 | 91.29 | 90.98 | 89.87 | 90.66 | 91.38 | 91.16 91.01
ECL-ISVR (ADMM-ISVR) || 91.21 | 9125 | 91.17 | 91.09 | 90.14 | 91.01 | 90.87 | 91.34 91.08
ECL (PDMM-SGD) 91.39 | 91.44 | 91.10 | 90.93 | 91.18 | 91.46 | 90.77 | 91.29 91.20
ECL (ADMM-SGD) 9111 | 91.15 | 90.82 | 91.08 | 9121 | 91.41 | 91.30 | 91.25 91.17
GT-SVR 89.42 | 90.83 | 89.94 | 91.00 | 89.51 | 90.06 | 90.79 | 90.99 90.32
FedProx 89.88 | 90.05 | 89.35 | 89.50 | 89.53 | 88.49 | 89.89 | 90.03 89.59
DSGD 86.64 | 86.25 | 86.67 | 86.89 | 86.64 | 85.71 | 85.75 | 86.39 86.50
D’ 87.35 | 87.53 | 88.17 | 87.52 | 87.79 | 87.83 | 87.76 | 87.35 87.66

Table 12. Performance differences among N = 8 nodes when using (T2) fashion MNIST with non-convex ResNet32 model trained with
the proposed ECL-ISVR (PDMM-ISVR/ADMM-ISVR) on (N2) multiplex random network

Node index 1 ] 2 [ 3 [ 4 ] 5 | 6 | 7 | 8 [ Averagel[%] |
Reference (1 node) 90.71 - - - - - - - 90.71
ECL-ISVR (PDMM-ISVR) || 90.79 | 91.09 | 90.22 | 90.39 | 90.92 | 90.45 | 91.00 | 90.20 90.63
ECL-ISVR (ADMM-ISVR) || 91.00 | 90.64 | 90.63 | 90.41 | 90.78 | 90.72 | 90.78 | 88.78 90.47
ECL (PDMM-SGD) 90.89 | 90.50 | 90.18 | 90.05 | 90.84 | 89.79 | 90.46 | 89.19 90.24
ECL (ADMM-SGD) 91.54 | 91.23 | 90.21 | 91.23 | 91.34 | 91.06 | 91.20 | 90.42 91.03
GT-SVR 88.80 | 85.67 | 90.38 | 89.03 | 8835 | 87.59 | 86.07 | 89.80 88.21
FedProx 86.17 | 85.90 | 87.94 | 85.90 | 88.09 | 86.94 | 86.71 | 87.45 86.89
DSGD 85.24 | 84.53 | 83.92 | 84.62 | 83.92 | 84.91 | 83.88 | 84.73 84.47
D 85.95 | 85.10 | 85.67 | 85.24 | 85.91 | 85.70 | 85.62 | 84.99 85.52

Table 13. Performance differences among N = 8 nodes when using (T3) CIFAR-10 with non-convex ResNet32 model trained with the
proposed ECL-ISVR (PDMM-ISVR/ADMM-ISVR) on (N1) multiplex ring network

Node index 11 ] 2 [ 3 ] 4] 5 | 6 [ 7 | 8 | Average[%] |
Reference (1 node) 73.69 - - - - - - - 73.69
ECL-ISVR (PDMM-ISVR) 73.90 | 74.02 | 72.59 | 71.62 | 73.49 | 74.40 | 73.90 | 73.60 73.44
ECL-ISVR (ADMM-ISVR) || 73.36 | 73.73 | 72.62 | 72.10 | 73.59 | 73.03 | 71.79 | 72.96 72.90
ECL (PDMM-SGD) 71.53 | 73.21 | 73.58 | 73.95 | 73.88 | 72.84 | 72.50 | 72.60 73.01
ECL (ADMM-SGD) 74.20 | 74.13 | 73.65 | 74.01 | 74.05 | 73.92 | 74.46 | 73.83 74.03
GT-SVR 73.07 | 72.56 | 70.97 | 72.98 | 73.10 | 69.68 | 71.60 | 63.78 70.97
FedProx 67.52 | 68.34 | 67.07 | 68.73 | 67.55 | 68.88 | 61.16 | 68.09 67.17
DSGD 53.87 | 53.56 | 53.21 | 55.24 | 53.27 | 55.06 | 52.22 | 51.99 53.55
D? 60.53 | 62.11 | 61.29 | 61.62 | 61.47 | 61.93 | 61.80 | 61.32 61.51

Table 14. Performance differences among N = 8 nodes when using (T3) CIFAR-10 with non-convex ResNet32 model trained with the
proposed ECL-ISVR (PDMM-ISVR/ADMM-ISVR) on (N2) random network

Node index 1 [ 2 [ 3 ] 4 | 5 [ 6 | 7 | 8 [ Average[%] |
Reference (1 node) 72.93 - - - - - - - 72.93
ECL-ISVR (PDMM-ISVR) || 73.61 | 72.97 | 69.77 | 72.82 | 72.87 | 72.72 | 72.66 | 73.64 72.63
ECL-ISVR (ADMM-ISVR) || 74.29 | 70.68 | 71.25 | 71.93 | 72.45 | 69.65 | 72.01 | 71.85 71.76
ECL (PDMM-SGD) 73.28 | 73.40 | 72.85 | 72.19 | 66.40 | 71.78 | 72.26 | 72.40 71.82
ECL (ADMM-SGD) 65.01 | 63.19 | 64.85 | 60.37 | 65.23 | 62.76 | 64.87 | 64.13 63.80
GT-SVR 69.40 | 70.06 | 64.71 | 68.79 | 69.26 | 64.89 | 68.86 | 64.41 67.55
FedProx 62.67 | 60.24 | 62.09 | 58.51 | 61.28 | 63.28 | 60.36 | 61.29 61.21
DSGD 50.67 | 44.78 | 47.41 | 48.35 | 50.24 | 46.98 | 47.57 | 49.84 48.23
D? 5391 | 49.99 | 53.16 | 54.23 | 50.87 | 51.29 | 51.87 | 48.51 51.73
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B. Derivation of ECL-ISVR’s update rule

We now provide the proposed ECL-ISVR’s update rule in Alg. 2 by reformulating the problem (5). For a stationary point,
the subdifferential of the cost in (5) must include zero:

0 € AJVG (JTA™X) + Ouera—py (A), (26)

Ti(X) T2(X)

where the differential operator V is used in 7} while subdifferential operator 0 is applied in 75 since the indicator function
tker(1—pP) (A) includes discontinuous points, and the operator € reflects that the subdifferential of the indicator function
can be multi-valued at discontinuous points. The operator splitting is an effective method for finding a stationary point for
problems of the form of (26).

Before introducing operator splitting algorithms, we define several operators, as summarized in literatures (Bauschke et al.,
2011; Ryu & Boyd, 2016). The resolvent operator Rr, and the Cayley operator Cr, are defined as

Ry, = (Id +0T;) 7", 27)
Cr, = (Id+nT;) "' (1d — nT;)

=2(Id+nT;)"" — (Id + nT;) " (1d + 0 T;)

=2(d+nT;)"' —1d

= 2Ry, —Id, (28)

where Id is the identity operator, ~! is the inverse operator, and 77 (>>0) denotes the step-size.

In the proposed ECL-ISVR, Peaceman-Rachford Splitting (PRS) (Peaceman & Rachford, 1955) and Douglas-Rachford
Splitting (DRS) (Douglas & Rachford, 1956) to obtain methods associated with PDMM (Zhang & Heusdens, 2017; Sherson
et al., 2018) and ADMM (Gabay & Mercier, 1976). We first derive the PRS. A reformulation of (26) results in

0 € (Id+ nT)(A) — (Id — nTy)(N). (29)

Let an auxiliary variable z be associated with the lifted dual variable X through the relation A € R, (2). Then, (29) can be
written as

0 € (Id + nT2)Rr, (z) — Cr, (2),
0 € Ry, (2) — R1,C1,(2),
0 € L(COr, +1d)(2) - 1(Cr, +1d)Cr, (2), (30)

which implies that the stationary point condition can be written as
z € Cp,Cr,(2), A€ Rp(2), (PRS). 3D

This indicates that the lifted dual variables are recursively updated through two different Cayley operators C, and C',. An
alternative operator splitting, DRS can also be used as a basis for solving (26). By applying the averaged operator to (31),
DRS is obtained:

z € 1CnCr, (2) + 32, A€ Ry (2), (DRS). (32)

By introducing another auxiliary variable, y for A, the update rules for PRS (31) and DRS (32) can be decomposed into

X € Ry, (2) = (Id + nT1) " (2), (33)
y € Cr(z) = 2Ry, — Id)(z) =2\ — 2z, (34)
s € R, (y) = (Id +1T2) "' (y), (35)
z€iCn(y)+Li2=L102Ry, —Id)(y) + 32 = (26 —y) + 32. (36)

First, update rule associated with (33) and (34) is derived. Since 73 (A) = AJV f*(JTAT), the update procedure using the
resolvent operator is reformulated by
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A€ (Id+nT) (=),
z € (Id +nT1)(N),
0€nAIV*(ITATA) + A — 2. (37)

From the basic property of convex function (Rockafellar, 1970), primal and dual variables are associated with w &
V*(JTATA), and the subdifferential of convex conjugate function satisfies Vg* = (V¢)~!. Then, we obtain

w € Vg (JTA™N), (38)
Vg(w) € JTATA. (39)
Combining (37) and (38) gives
0cenAJw+ -z,
A€ z—nAJw. (40)

By placing A = 1\, g = +Y, Z = ; 2, (40) is reformed by

1
n

Aez—AJw. 41
Combining (39) and (41) gives

0 € Vg(w) — JTAT(z — nAJw),

0 € Vg(w) +nJ"AT(AJw — 2). (42)
If the minimum exists, the integral of (42) gives
wh T = arg min,, (¢(w) + Z[|AJw — 2¥||?). (43)
Following (41), the S\-update rule is given by
AL — 3k A Jwktl (44)
The combination of (34) and (44) gives
gt =22 - 2P = 2 oA TN (45)

Next, update rule associated with (35) and (36) is derived. Note that derivation detail is shown in (Sherson et al., 2018),
although the step-size is doubled. For a normal cone operator T5(s) = 8Lker(1_p)(§), the update procedure (35) is
reformulated as

0 € n13(s) +<s— v,

0¢c aLker(I—P) (§) + %(g - y) (46)
The integral of (46) gives

¢l = arg mgin(Lker(I_p) (¢) + ﬁ”g — gyl HQ) = arg min<:p<(||g — gkl ||2) (47)

As remarked in Lemma IV.2 in (Sherson et al., 2018), the solution of (47) is given by the projectiuon onto the set of feasible
G, 1.e.,

S = yera—py (y" ). (48)
Then, update procedure using Cayley operator (36) can be computed as
it _ ) Clea-p) — 1d)(y*!) = Py*t, (PRS)
3 Clheraop) — Id)(y"H) + 325 = JPy**! 4 325, (DRS)
Pyttt PRS
=9 y~k+’1 1sk ( ) (49)

By decomposing (43), (45), and (49) into each node/edge procedures with parameter selection (22), ECL-ISVR’s update
rule in Alg. 2 is obtained.
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C. Convergence analysis of ECL-ISVR

Convergence analysis of ECL-ISVR is summarized in Theorem 1, where its proof for strongly convex and general convex
functions is shown in Subsec. C.1, and for non-convex functions is shown in Subsec. C.2. Note that some technical lemmas
summarized in Subsec. C.3 are applied to derive lemmas in Subsec. C.1 and C.2.

C.1. Proof for convex function
Proof summary: Through this subsection, the function {f;} satisfies (D1) 5-Lipschitz smooth with a-convex (o > 0).

Update rule follows Alg. 2. Note that difference between PDMM-ISVR and ADMM-ISVR is not considered in our
convergence analysis because they just differs in gradient expectation update computation, as in (11) and (13).

First, we define several new variables used in convergence analysis. In Lemma 1, the update variance of control variate,
including communication lag, is bounded. In Lemma 2, the update variance of control variate is bounded. Lemma 3, local
node drift is bounded. In Lemma 4, progress in one round can be bounded. By applying Lemma 12 to Lemma 4, the final
convergence rate for convex functions is obtained. For general convex functions, Lemma 9 is applied to Lemma 4 to obtain
the convergence rate.

Preliminaries: Some variables used throughout this subsection is introduced. In ECL-ISVR, control variates are obtained
by (25) and (24). From (11) and (13), the expectations of these calculated control variates on round r are given by

Elc]] = Bl Xpex 9:(w; " )] = % Tpex VSilw] ™),
Elef);) = Bl Siex 03w )] = & Syex VA w] ),
Elef] = > jee, 2nex ﬁvfj(w?k*l),

where node index is summarized by {1,...,N} € N, edge index connected to the i-th node is summarized by
{&(1),...,E(E;)} € &;, and inner loop index set on each round is summarized by {1,..., K} € K. We define Vilj
and ] as,

Wiy = IV Fi(w)) — Elej; 1117,
W = IV fi(w]) - Ele]]|I?,
where {w} } denotes stationary point of {w; }, and then define the average of ~;|; over cross nodes/edges I" as
"= % Dien % Zje& '7;|j'
The client drift to model how much clients move from the starting point is defined by
0" = g Yienr Lrex Ellw]™ —w] |
For simple notation, the minimum number of edges associated with a node is defined by
Epnin = min(E;) (i e N).
We often use the step size scaled by inner loop iteration K, noted by
n=pK >0.
For each round after K times inner loop iterations, variables are updated as

Hkl’o = 'wr’K

? (2 ?

r+1,0 _  rK
c,; =c; ,
1,0 K
ch.r Y= R
ilj i3
—_r+1,0 _ _r,K
c; =c;, .

Update variance of control variate under asynchronous communication: We will bound variance of control variate by
the gradient of stationary point for each round in asynchronous decentralized communication, where its communication
schedule is shown in Fig. 1 and explained in Sec. 2.
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Lemma 1. For local node update using Alg. 2 with asynchronous communication, {~;j,~},.,I'"} on round r are bounded by

FE
W < 2BE[fi(w]")] - fi(wy),

¥ < 37 +mE[fi(w?°>J — fi(wy),

[" < 30 4w CienrElfi(w] )] = fiw})).

Proof. First, 7] is bounded by

v = IV fi(w)) — E[ef]|* = IV fi(w)) = % Sgex VAlw] " DI < 28E[fi(w] )] - fi(w),  (50)
where Lemma 13 is applied in inequality.

Since communication for each edge is conducted once per K times inner loop iterations at random timing on each round,
the expectation of cflj under this asynchronous communication is represented in a recursive update manner as

Ele;] = & Drex {55 Elef; ]+ LBV £ (w] )], (51)

where this indicates that expectation computation is conducted by varying communication timing k£ € C, where ¢
updated for (k — 1) times, and then, the dual variable Y;); 1s transmitted from the node j; and ¢,
remaining K — (k — 1) times. By using (51), 7}, is bounded by

il is not

il is updated, and used for

v = IV fi(wy) = Ele 1|12
= IV fiw]) = & Spec{ 5R2Ele); '+ BRIV f (w2

(%)%Zke;c{ﬂllwxw*)— Elc;; 17 + E5E5 |V fi(w)) — B[V £ (w] D))

= LY el BT + BV f(w)) — [V (] )
2 gy 21— )AL (] )] — filw?), (52)

where Jensen’s inequality is used to obtain inequality (a) shown in the third line of (52), Lemma 13 is used for (b), and 1) is
given by

o= {ngl (K is even number)

i (K is odd number)

For simple notation, we assume that K is odd number from here, then ¢ = %

I'" is bounded by

I =5 Yien 2 2jee. Vs
(@)
< N Yien B Djee d37h; A+ BEf(w] )] — fi(w)))}
Y ien ELfi(w] )] = fi(w))), (53)

where (52) is used for (a), Lemma 13 and Ei < % is used for (b). O

)
1pr—1
F +NE

min

Variance of one round: We will bound one round update variance of primal model variable.

Lemma 2. We can bound the variance of one round local node update in any round r and any step-size i = ukK > 0:

T ~ r - r 2 , " 0252
LS e Elwf 0wl 0|2 < 4523207 4421+ 285 S (B f (w]0)] — fi(w}))+- 12 (54)
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Proof. Local node update using (23) for one round is bounded by

N Lien ElAw]|?
+1,0 ,0
= 5 Sien Elw; " — w7
rk—1 —rk c;‘,k)”Q

= N Zien Bl = % Dpex Algi(w]" ) + €

(a) ~ rk— —r,k r.k
< ﬁ Zie]\/ EkeICEHM(gi('wz" 1) +¢7 —c )”2
(®) i B _ I i N
< e Sien e MiPE | gi(w] ) = V fi(w]0)||? + AE2E||e] " |2 + Ap2E||V fi(w]) — eF||?
+ARPE|V fi(w]°) = V fi(w;)||?]
(C) h - = ' -~ * ‘s
< o Sien e R2E|V £i(w] ) = Vi (w! )2 + 45| Elel] |12 + 473V fi(w)) — Ele!]|?
+ 8812 (ELfi(w])] — fi(w})) + 12ji20?]
2-~2 rk— ” ~2 . .
< 4?\71‘; iEN Zke)CE”wi t- w; 0”2 + % ZieN ||vfi(wi> - E[cz]”2
+ Yo IV fi(w)) —EBlef]|1? + 25 30, (Blfi(w] )] = fi(w))) + 2
(d) B ~2 ~2 -2 ” N G242
S ABPRPO + K Cien B Ljee Vi T e S ien W+ B S ELf(w] )] — fi(w))) + 22
- - 12 r, % ~20,2
<AB2POT + 4T + 1R ST (B fi(w]0)] — fi(w])) + B, (55)

where Jensen’s inequality is used for (a), Lemma 10 is used for (b), Lemma 11, Lemma 13, and (D1) S-Lipschitz smoothness
are used for (c), Jensen’s inequality and is used for (d). O]

Bounding local node drift: We will bound local node drift ©".

Lemma 3. We can bound the local node drift ©" in any round r and any step-size i = uK > 0:
r ~277r i rk * 202
0" < 9E*T" + % 2ien Elfi(w;™)] = fi(w])) + MMT
Proof. A recursive bound of local node drift is given by

,0
il

Lk ,0
¥ Lien Elw]® — w2
k-1 o1y | —rk &
= & Y ien Ellw! T = plgi(w] ) + et — )
(@) k—1 k—1y | -rk K 0
< & Yien Ellw ™ — u(V (w7 ) + e — ") — w2+ po?

(®) rk— T _r,k r.k T
< U“‘ﬁ)%Zie/\/EHw) l_wi70||2+KM2% ie/\/EHCf —¢ +Vfi(wi’0)H2+M2U2> (56)

%

Ta
where Lemma 11 is used for (a), and Lemma 10 is used for (b). 74 is bounded by
_r.k r.k T,

% ZieNE”Ci —¢;" + Vfi(w; O)HQ

= % Yien BIE" + (Vfi(wy) — &) + (Vfi(w]*) = Vfi(w]))|”

(a) . - . . ”

< F Y enBIE 2+ £ S ien Blle)® = V)2 + 2 Y ien BIV fi(w}) — V fi(w] )]

<R Vien Bl = VAE@DI? + { Tien Eller™ = VH@IP + § Xien EIVfilw]) = Vfi(w] )|
(b)

< S enElE = Vw1 + 2 e n Ellelt = Vfi(w!)? + 2 S v Elfi(w! )] - fi(w])), (57
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where Lemma 10 is used for (a) and Lemma 13 is used for (b). By substituting (57) into (56), we obtain
N Dien Elwi® —wi?|?
< U+ 2% Sien Elw] ™ — w7 + 41202
+ S e Bl = V(w2 Y Bller Vi) |2 + S S (Bl (wp )] — fi(w)
2 (14 ) S Bl — w02 + 70
+ U e n IB[E) =V fi(w) |2 + 25 5 o B[] =V fi(w) |2 + S8 3 (BLfi(w] )] = fi(w)))
< (1 ) Dea Bl w7 S (I ) i)
+ 3Ku Zie/\f B, Zjes- 7r|j + T Zie/\/ Vi
< (14 259 % Tien Ellwp* ™ — w2 + 3K207 + 292 3 (B[ fi(w]°)] - fi(w])) + Tpo (58)

where the fact that variance of ¢; is less than 02 /K is used for (a), Jensen’s inequality is used for (b). Unrolling (58), we
obtain following bound:

k 0
0" = § Lien Elw]" —wi”|?

< (BKpPTT 4 128Ku® 5~ (E[fi(w]®)] — filw])) + Tu20?)(XFH (1 + )7

(a) 2 r
< (BKpPTT + 3088 s (Elfi(w]™)] — fi(w))) + Tu?0?)3K

2,5 2 r *
= OK 22T + KL S (B fi(w] )] = fi(w))) + 21K p2o?

~ r [i2 r,k * 0202
= ORI + 2R 3 (Bl fi(w) )] = fi(wy)) + 252, (59)
where the fact that Z’:;é(l + Kl_l )™ < 3K used for (a) is proofed in Lemma 13 of (Karimireddy et al., 2020). O

Progress in one round: We bound all errors in a round.
Lemma 4. Following holds in any round r and any step-size i = K satisfying i € |0, min(ﬁ7 i))
+1,0 ~
¥ Lien Ellw] ™" — wy||? + 971"

< (1= YNF Dien Bllw]® —wi P+ 95T} = (1 = i) & e ELfi(w] )] = fi(w])) + 5= (3% +3).

Proof. The update difference for a round is given by

k—1y | =rk K
Aw] = —& S pexc(gi(w ™) + e — e,
and its expectation satisfies
k—1
ElAw]] = — % > e Vilw;™ ).
The second moment of updated local node variable and its stationary point for a round is bounded by
+1,0 *
¥ Lien Ellw] —wj|]?
= % Lien Elw]® + Aw] — w;|?
0 2/ k-1 ,0
= & Cien Bl = wi|? = Ze Yoy e B[(VAilw]*),00° = wi )] + 4 5yep Bl Aw]?
a) -
0 ¥ 2 | ,0
< & Liew Bl = will® + Z Y Sher E [(VA@] ), w; —w”)]

Ts
+AB2E2O" 4+ APTT 4+ 1B S (B[ fi(w] )] — fi(w))) + B, (60)
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where Lemma 2 is used for (a). The term 75 is bounded by
L r, k—1 % r,0
Ts = ]\277% D ien 2kex B [<Vfl( ), wi —w; >]

@ 55 T, r a T %

< Wi Lien Ler Ui (w]) = fi(w!™) + Bllw ™ —w]?|? — ¢ [lw]” - wi )
® - . . . .
<~ Dien Elf(wi )] = fi(w]) + §llw® — wi||*) + 26567, (61)

where Lemma 14 is used for (a) and Lemma 13 is used for (b). By using (61), (60) is bounded by
N Dien Ellw] 0 —wy|?
< ¥ Cien Bllw? —wi|? — FFE o fi(w] ) — fi(w]) + §llw]” —w;|*}] + 26407 + 45% 20" + 45°T"
+ O Y e n (Bl (] - filwi)) + 2
<(1- ‘;“) v Y ien Ellw)® — w2 + (2871 + 48%i%)O" + 25°T" !
(16 + A7 = 200 % Yaen (L] )] = filw]) + . (62)

Multiplying 9/i° to the inequality w.r.t. I'" in Lemma 1 is resulted in

92T < 9(1 — 4Tt + S(afi — )Tt + ]3,@“ S ien ELfi(wl)] = fi(w))). (63)
Multiplying 35/ to Lemma 3 is resulted in
~ ~ 31 2538 r, * i3o?
BBRO" < 21T + O 3, (BIfi(w] )] — fi(w))) + P
a) - _ 2-~3 r * Tl
< FBRTT ! + S (108 + ) Yiew (Elfi(w] )] — fi(w))) + 5, (64)
where Lemma 1 is used for (a). Adding three inequalities (62), (63), (64), we get
& i Elwf 10 — wp | + 95T
< (1= )& e Ellwl® — w2 + 952071} + {Saji + LB — 30" + (—Bju+ 4522)0"
+ {2+ 1687+ 1083%0% + 51— (1387 + 2782 H e Yo, (ELfi (w]0)] — fi(w])) + 52 (12 + 638/1).  (65)

When we select step-size following i € (0, min( 2%[3, 2)), itis guaranteed that { Jai+ 2 Bfi— 3} < 0, (—Ba+48%0?) <
0, (=2 + 1684 + 1083%[1%) < —1, (138 + 276%[%) < 1,and (12 + 6387) < (32 + 3). Hence, (65) is bounded by

N Zien Elw] ™" —awi|? + 95T
< (1= YR Diew Ellw]” —wf [P +97°T" 1} — (1 - 1) & i n BLAi(w] )] = fi(w)) +

& (5 +3).
(66)

O
By using Lemma 12 and Lemma 4 for strongly convex functions (« > 0), u € [0, min( R> max(%, %),

1 1 ))
ISt ) 278K’ 3aK /)
and it is assumed to be E,;, > 2, we obtain convergence rate as

Elg Sien(fi(wl) = fi(w}))] < O g {aDf exp(— min(z, 5 )R) + 25 B+2)}), (6D

where Df = % 32 pr ([l fi(w; %) = fi(w))II* + |V fi(w]) — Ele;]|%).

Meanwhile for general convex functions, integrating Lemma 9 and Lemma 4 with o = 0, p € [0, ﬁ), R > 1, is resulted
in

Bld Cien (fiwf) — filw))] < O {gBac\ [3+22 1 200081, (68)

m1n71
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As shown in this analysis, the convergence speed is regulated by a node with the smallest number of connecting nodes, E'yin
E.g., when a network has a topology with small E\,;,, such that a line connects N nodes (then E,,;, = 1), the convergence
rate will be slow. As an effect of our algorithm including variance reduction, stable convergence is expected even if each

node has the statistically biased data subset. Our convergence analysis does not make any specific assumption on the data
distribution bias.

In next subsection, we show the convergence analysis for non-convex functions.
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C.2. Proof for non-convex function

We now analyze the convergence rate of the ECL-ISVR (PDMM-ISVR/ADMM-ISVR) with a potentially non-convex cost
function. First, we will bound the update variance in control variates by taking communication lag into account is bounded
by Lemma 5, and variance of the variable update for each round is bounded in Lemma 6, and the local node drift is bounded
in Lemma 7. Combining three lemmas gives us the progress made in one round in Lemma 8. The final convergence rate is
obtained from this one round progress with Lemma 9.

Preliminaries: Similar to the convergence analysis for convex functions as shown in subsection C.1, some new variables
used throughout this subsection are introduced. In ECL-ISVR (PDMM-ISVR/ADMM-ISVR), control variates are obtained
by (25) and (24). From (11) and (13), expectation of these calculated control variates on round r are given by

[ z] = KZke)C [ ( ok 1)] KZkeICvfz( ke 1)7
E[Cij] =% Zke/c g (w; Tk 1)] K Zkelc Vfi(w; o 1)7
Elej] = Zjesi keK E, vay( ke 1)

where node index is summarized by {1,...,N} € N, edge index connected to the i-th node is summarized by
{&(),...,E(F;)} € &, and inner loop index set on each round is summarized by {1,..., K} € K. To represent
control variate changes for each round update, we define 517" ; and & as

r 7,0 T

15 = IV fi(w;") — Elej ]I,

& = IV fi(w]") —Elef]>.
Average of ff‘j over cross nodes/edges is defined by

—r 1 1 r

=5 Yien E Zjes,-, fi|j-
The client drift from the starting point is defined by

r rk r,0
0" = §r Lien Lkex Ellw]™ —wi"|%.

For simple notation, the minimum number of edges associated with a node is defined by

Enin = min(E;) (1 eN).

We often use the step size scaled by inner loop iteration K, noted by
n=puK >0.

For each round after K times inner loop iterations, variables are updated as

1,0 K
wl_r+7 ,wT )

—_r+1,0 77”,K
c; =¢
r+1,0 r K

c T =¢e .
ilj ilj

r+1,0 _ nrK
c; =c;

(69)

Update variance of control variate under asynchronous communication: We will bound update variance of expected
control variate for each round in asynchronous decentralized communication, where its communication schedule is shown in
Fig. 1 and explained in section 2.

Lemma 5. For local node update using Alg. 2 with asynchronous communication, {&!, ¢ "] , &} are bounded in any round
r and any step-size i = pIK > 0 as

2 k—1 ,0
%Zkelc ]E”’w: —w;|?,

k-1 0
Eflw; ™" — w; ||

m
=3
IN

1
| /\

)

z|] + 2K ke

1mr—1 B8 or
3= +2E or.

min

(1]
&
I/\
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Proof. & is bounded by
= E|Vfi(w;") — Elef]|?
= E|[Vfi(w]®) = & Syex Vhilwi "I
a) .
7 Lrex EIVfilw]®) = V fi(w] )|
(b

< B S e Ellwl ™ — w2, (70)

A

v

where Jensen’s inequality is used for (a) and (D1) §-Lipschitz smoothness is used for (b). Since communication for
each edge is conducted once per K inner iterations at random timing on each round, the expectation of cgl j under this
asynchronous communication is represented in a recursive update manner as

Ele],] = & Crex R Ele); ] + KLV £ (w) 7)), (71)

where this indicates that expectation computation is conducted by varying communication timing k € K, where ¢;; j is not
updated for (k — 1) times, and then the dual variable Yilj is transmitted from the node j and c;); is updated, and it is used
for remaining K — (k — 1) times. By using (71), §i|; is bounded by

& = EIV£i(w®) — Elej |1
= E|Vfi(w]) = % Cpec R Ele; '] + 55V £ (wi P2
(@)
< 2 Lhex R IV Ai(w]?) — Elej P + E5ELEIV fi(w]©) = V£ (w]*7))1%)

(b)
rk— T
< Ve (L= )5 e Ly Ellw] ™ — w0, (72)
where Jensen’s inequality is used in (a), and (D1) S-Lipschitz smooth property and v/ in following is used in (b),

%= % (K is even number) .
z (K is odd number)

For simple notation, we assume that K is odd number from here, then ¢ = %

Then, =" is bounded by

= 1 1
E'=§ Yien T 2jes Sijj
2 —1 0
% DieN EL Zjeg {3 fm + QBT( > rex Ellw; —w;"|*}

2
=1=-14 .5 o (73)

IN

Variance of one round We will bound one round update variance of primal model variable.

Lemma 6. We can bound the variance of one round local node update in any round r and any step-size i = Kpu > 0:

~ .9 ~2 ~2 2
N ien Bllw] T — wi |2 < 8725207 + 47372 + - 3,0 BV fi(w])|? + K
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Proof. Local node update using (23) for one round is bounded by

% ZieN]E”AwHP
1,0 .0
= & Dien Ellw; " — w2

= £ e El = £ e lgi@ T @t - et 2

%)%EMIEH Y (Vi) + Blel] — Bl + %8

A 2 Yien Crex BIVfi(w] ™) + Eler) — Ele]]|? + %2

= e S ien Cnex BNV (w1 =V fi(w] )+ (Ble]] -V fi(w] )+ V fi(
e S ien Sker BIIV fi(w] ™) = V fi(w]©)|2 + 2= 5, |Ele}] -V £i(
+4” S iew ElIV £i(w] 0% + %

A
I/\s;

W)= (Ble}] =V f;(w] )| + 22

w2 + 4= ¥ B[] =V £i (w] )|

(d) - s 472 7“O 0202
< 4M252@r + % Zz‘e/\f E% Zjesi ff\g + % EzeN 57 ZzeNEvaZ< )”2 + 91#:[7K

- o ~2 ) 0
< AR FARPET + S e S ||V fi(wl )2+ 2

(e) o 52 r p2o
< 8i2B%07 4+ 425" + 4% DN E|IV fi(w] )| + 95\/1{ )

(74)

where Lemma 11 is used for (a), Jensen’s inequality is used for (b), Lemma 10 is used for (c), Jensen’s inequality is used for

(d), and Lemma 5 is used for (e).

Bounding the drift: We will bound local node drift ©".

O

Lemma 7. We can bound the local node drift ©" in any round r and any step-size i = uK satisfying i € [0, ﬁ)

or < 3ot | S E|Vfi(w] )| + 126257 + 12725207

Proof. A recursive bound of local node drift is given by

Eljw; " — w] |
<Eerk P plgi(w T et = ) )

(@) _ _ _
< Bllw]™ ™ = w(Vfi(w] ) + et = ) )P o

3

b) rk— r rk _r,k— rkf
< (14 ) Ellw] ™" — w12 + Kp?B|V fi(w] 1) + &) 7 — e 12 4

k—1 0
= (1 DBl = w2 + 202

+ Kp2E||[(V fi(w] ) =V fi(w] ) + (7 =V fi(w] ) + V fi(w

(¢)

+ 4K pPE||e) T = V fi(w! )| + 4K p*E | ) = Vi (w]0)]]?,

20_2

PO = (T = Vi)

< (1 gy +AKBAE]w] ™ = w]O|? + 120% + AK 2BV f(w} ) |2

(75)

where Lemma (11) is used for (a), Lemma 10 is used for (b), and Lemma 10 is used for (c) again. Unrolling (75), we obtain
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following bound:

r.k 7,0
0" = NlK Zze./\f ZkeICEHw' —w; ||
ilo? 4 47> —rk 1 7,0
("% + A S e EIV A (w0 P4+ 22 3 S BllE ™ =V fi(w] )
I rk—1 r,0 48253\
A S e Swex Bl T = £l 12) - {DE T (1 iy + 227y

IN

—
Q
~

T, 02 r
< ( £ en BNV ()2 + 14 N By Sojes: Sy £ ZzeNE )3K
7,0 ’“T r
< (#Kz 4 iENE||vfi(wi )”2 4# + 4# N Zz€N£ )3K
o - - _ ~
< (B A BV (w2 + 4 o3k
9~2 2 ~2 r P B -
= Som 120 s BV (w0 + 126°E + 123°6%07, (76)

where Jensen’s inequality and the fact that 3"} (1 + 5)" < 3K when /i € [0, 333)> Which is applied in Lemma 17 in
(Karimireddy et al., 2020), is used for (a), Lemma 5 is used for (b). O

Progress made in each round: We bound all errors in a round.

Lemma 8. Following holds in any round r and any step-size i = K p satisfying i € [0, ﬁ)
(% Cien EUs(w] "+ Aw]) 41287227 ) < (& Liew fiw] ) +126525 ) — i L oep BIV £i(w] ) [P+55 (1+4).
Proof. Staring from the Lipschitz smoothness of { f;} and taking expectation by r — 1 round provides

3 Diew U] + 8wD)) < & Yien fiwl”) + § Ton (V] ) EDw]]) + 5 Tien Bl A, (77
where Aw] is given by

r rk 1 _rk r.k
Aw; = Zke}c A(gi(w; )+et =),

and its expectation satisfies
r T, k—1
E[Aw]] = —& Ypep gi(wi ™).
From (77), update difference is bounded by
7,0 r,0
% >ien Elfi(w;™ + Awf)] — % dien filw;™)
T, k— r

ien Lrer (VW] ) BV fi(w* ]} + 3 Sien Ell Ay |2

(a) -
< — e Lien Seex (V@) E[Vfi(w]*)]) + 472507 + 272 p="

[i2 7,0 - Bo
+ 2;;\’[1 ZieNE”Vfi(wi )H2 + glzLNﬁK
(b)

< — e Cien IVAE@IONP 4 5 S en Shere |57 Sien Zrerc (VA1) = Vfi(w]))|2

~ r ~ =r 0 z
AFREOT 4 2B + WEMEHW PN +

(c) -
< (& —22B) L 3w IV LWl + sk Sien Srexc IV Fi(w! ™) =V fi(w]°)]?

223 2 p=r—1 2p® 9i° B
+43%B%07 + p2p=r— +“m®r+ ‘;N;

(d) - - = 52802
< (B = 2B) kS ien IV w0 |7 + @2BE 1+ (B 4 ap2p8 4 BB gy 90 (78)

where Lemma 6 is used in (a), inequality in (b) follows from observation that —ab = % ((b—a)*—a?)—1b? < 1((b—a)?—a?)
for any a, b € R, Jensen’s inequality is used in (c), and (D1) S-Lipschitz smoothness is used in (d).
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Multiplying 1232 to the Lemma 5 results in
126°E" < 683221 + L6, (79)

Emnin

Multiplying 2/i3? to Lemma 7 results in

opper < B 2008 SN Y f(w] ) |2 + 243 B2E + 2475 B1O"

(@) o 350 2 =332 , —_
< UERo 4 2 SN BIVA(w] )| + 127822 + (24 + g2 Bter (80)

where Lemma 5 is used in (a). Adding (78), (79), and (80) is resulted in

~2 2
(% L BU(w] +Aw])|+128%2" ) < (% Sien Filw] )+ 128227 ) (=52 8+ 12 82) 2+ (6110+ ) 42
{37 HAR B 24757 B+ - (T 6P+ 1207 B4) 107 — (§ 273" B—240° %) 3 BNV i (w] ) 1. 8D

When selecting the step-size /1 uK < 32ﬂ, it is guaranteed that (—5325+124%5%) < 0, {—%4—4&2,@34—24,&3644—
a2B3+120 < 4 i < 2 and (6/13+5%) < (£ +5%). Hence, is bounded by
A (TE2B 12351} < 0, & < (E—212B3—24/°5) < 22, and (6i5+5%) < (3+5%). Hence, (81) is bounded b

(ﬁzieNE[fi<w:’°+Aw:>}+1zﬁﬂ25r)s (% Siew i@} 12625 ) — e i BIVSi(w] )|+ 852 (1+28).
(82)

O

By using Lemma 9 and Lemma 8 for 3-Lipschitz smooth non-convex function, i € [0, ﬁ), R > 1, we obtain convergence
rate as

* Dien BNV )2 < O( 2508 /1445 + 21, (83)

where Qo=+ ZieN(fi(wil’o)—fi(wf)).
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C.3. Technical lemmas

We now summarize several technical lemmas needed for the convergence analysis. Since our convergence analysis strategy
follows the approach used in the SCAFFOLD paper (Karimireddy et al., 2020), many of lemmas shown in this subsection
are taken from (Karimireddy et al., 2020). Therefore, detailed proofs are omitted.

C.3.1. TECHNICAL LEMMAS USED IN BOTH CONVEX AND NON-CONVEX FUNCTIONS
The following lemma is useful for unrolling recursions and deriving convergence rate for the general convex function and
non-convex function.

Lemma 9 (Sub-linear convergence rate). For every non-negative sequence {d"~'},>1 and any parameters fimax > 0,c1 >
0,co > 0, R > 0, there exists a constant step-size [t < limax SUch that satisfies

W

_ 1 R+l (gm=! 4" 2 d° 2/ d0 d° 3
\IIR_R+1ZT:1( M _7+Clu+02ﬂl>§#max(R+1)+\/];17-5—1—’_2(]24'1) CS.

Proof. See Lemma 2 in (Karimireddy et al., 2020). ]

Next, a relaxed triangle inequality, which is true for the squared Lo norm, is introduced.

Lemma 10 (Relaxed triangle inequality). Let {vy, ..., v} be set of T vectors. Then, following inequality is true for any
a >0,

L v+l < U+ a)lloil® + 1+ Dllwill?, (a>0)
2. |1 X il < 7300 sl

Proof. The first statement is derived from the following identity for any a > 0,
[vi +v;]1* < (L + @) [Jwil]* + 1+ ) llvilI* = [[Vavi + Jz v
For the second inequality, we use the convexity of v — ||v||? and Jensen’s inequality as

17 Xy oill® < 2 20 [l

The following lemma is an elementary lemma about expectations of the norm of random vectors.

Lemma 11 (Separating mean and variance). Let {1, ..., ¢, } be set of T random variables, which are not necessarily
independent. First suppose that the variance of ¢; from its mean E[¢p;] = ; is bounded by E||¢; — p;||> < 2. Then,
following inequality satisfies,

Bl 32020 il < 1 X002 will? + 20,

Instead, let assume that their conditional mean is B[¢;|di—1, . .., P1] = @i, L.e., the variable {¢; — @;} form a martingale
difference sequence, and the variable is bounded by E||¢; — ;||* < 02 as before. Then, a tighter bound is obtained,

E|| X7 #ill? <2 S0, @il® + 2702,
Proof. See Lemma 4 in (Karimireddy et al., 2020). 0

C.3.2. TECHNICAL LEMMAS USED IN ONLY CONVEX FUNCTIONS

The following lemma is useful for unrolling recursions and deriving convergence rate for the strongly convex case (« > 0).
Lemma 12 (Linear convergence rate). For every non-negative sequence {d"~'},>1 and any parameters h > 0, fimax €
(0,1/h),c > 0,R > m there exists a constant step-size ji < jimax and weight w”™ = (1 — hu)'=" such that for
Qp = Y+

r=1

Up = i ZR‘H (‘%(1 — hp)d =t — %dr + cuwr> < O (hd® exp(—hpimaxR) + 75%) -

r=1
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Proof. See Lemma 1 in (Karimireddy et al., 2020). O

Lemma 13 (Upper bound of smooth convex function to the stationary point). Suppose that the function { f;} satisfies (DI)
B-Lipschitz smooth and (D2) a-convex (o« > 0). The output of f; and its stationary point {w}} imply following:

IV fi(wi) = V fi(w))|[* < 268(f (wi) - f(w]))

Proof. See Theorem 2.1.5 in (Nesterov et al., 2018). O]

Lemma 14 (Perturbed strong convexity). Suppose that function { f;} satisfies (D1) B-Lipschitz smooth and (D2) a-strongly
convex (a > 0). The following inequality holds for any three points {r;, w;, u;}, in the domain of f;:

(Vfi(ri), wi —wi) > fi(wi) = filwi) + §lwi —wil]® = Bllw; — 74>,

Proof. See Lemma 5 in (Karimireddy et al., 2020). O]



