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Abstract

A novel asynchronous decentralized optimization
method that follows Stochastic Variance Reduc-
tion (SVR) is proposed. Average consensus algo-
rithms, such as Decentralized Stochastic Gradient
Descent (DSGD), facilitate distributed training of
machine learning models. However, the gradient
will drift within the local nodes due to statistical
heterogeneity of the subsets of data residing on
the nodes and long communication intervals. To
overcome the drift problem, (i) Gradient Tracking-
SVR (GT-SVR) integrates SVR into DSGD and
(ii) Edge-Consensus Learning (ECL) solves a
model constrained minimization problem using
a primal-dual formalism. In this paper, we refor-
mulate the update procedure of ECL such that it
implicitly includes the gradient modification of
SVR by optimally selecting a constraint-strength
control parameter. Through convergence analysis
and experiments, we confirmed that the proposed
ECL with Implicit SVR (ECL-ISVR) is stable and
approximately reaches the reference performance
obtained with computation on a single-node using
full data set.

1. Introduction

While the use of massive data benefits the training of ma-
chine learning (ML) models, aggregating all data into one
physical location (e.g., cloud data center) may overwhelm
available communication bandwidth and violate rules on
consumer privacy. In the European Union’s General Data
Protection Regulation (GDPR) (Custers et al., 2019) (article
46), a controller or processor may transfer personal data to
a third country or an international organization only if the
controller or processor has provided appropriate safeguards.
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Our goal is to facilitate ML model training without reveal-
ing the original data from local nodes. This requires edge
computing (e.g., (Shi et al., 2016; Mao et al., 2017; Zhou
et al., 2019)), which brings computation and data storage
closer to the location where it is needed.

A representative collaborative learning algorithm is FedAvg
(McMabhan et al., 2017) for centralized networks. In FedAvg,
the model update differences on a subset of local nodes are
synchronously transmitted to a central server where they are
averaged. Average consensus algorithms, such as DSGD
(Chen & Sayed, 2012; Kar & Moura, 2013; Ram et al.,
2010), Gossip SGD (GoSGD) (Ormandi et al., 2013; Jin
etal.,2016; Blot et al., 2016), and related parallel algorithms
(Sattler et al., 2019; Lim et al., 2020; Xie et al., 2019; Jiang
etal., 2017; Lian et al., 2017; Tang et al., 2018) have been
studied. However, it has been found empirically that these
average consensus algorithms (even with model normaliza-
tion (Li et al., 2019)) do not perform well when (i) the data
subsets held on the local nodes are statistically heteroge-
neous,' (ii) use asynchronous and/or sparse (long update
intervals) communication between local nodes, and (iii) the
networks have arbitrary/non-homogeneous configurations.

In such scenarios, the gradient used for model update will
often drift within the local nodes, resulting in either slow
convergence or unstable iterates. An effective approach to
overcome this issue is introduced in SCAFFOLD (Karim-
ireddy et al., 2020), where SVR is applied to FedAvg. Later,
the gradient control rule of SVR was applied to DSGD in
GT-SVR (Xin et al., 2020). In GT-SVR, each local-node gra-
dient bias is modified using expectations of both the global
and local gradients (control variates) for each update itera-
tion. Representative methods to calculate control variates
are Stochastic Variance Reduced Gradient descent (SVRG)
(Johnson & Zhang, 2013) and SAGA (Defazio et al., 2014).
It is straightforward to include SVR in various algorithms,
as externally calculated control variates are just added to the
local stochastic gradient. However, there are uncertainties in
the implementation of the control variable calculation. For
example, SVRG updates the control variables by using first
order local node gradients for each regular update interval,
while a different update timing was used in SAGA.

IThis class of problems has also been referred to as “non-IID".
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Another important approach towards addressing the gradient
drift issue is to solve a linearly constrained cost function
minimization problem to make the model variables iden-
tical among the nodes. A basic solver for this problem
applies a primal-dual formalism using a Lagrangian func-
tion. Representative algorithms on decentralized networks
are the Primal-Dual Method of Multipliers (PDMM) (Zhang
& Heusdens, 2017; Sherson et al., 2018) and its extension
to non-convex DNN optimization named Edge-Consensus
Learning (ECL) (Niwa et al., 2020). When applying PDMM
to centralized networks, it reduces to the recently developed
FedSplit method (Pathak & Wainwright, 2020). By using
the primal-dual formalism, the gradient modification terms
result naturally from the dual variables associated with the
model constraints. However, without a careful parameter
search to control the constraint strength, this approach may
not be effective in preventing gradient drift.

SVR may be applicable even for the primal-dual formalism.
In fact, it was recently reported in (Rajawat & Kumar, 2020)
that externally calculated control variates using, e.g., SVRG
or SAGA can be added to the stochastic gradient of the
update procedure of PDMM. It is natural to assume that the
primal-dual formalism and SVR are not independent, but
linked because both approaches are expected to be effective
in terms of gradient drift reduction. Hence it is desirable to
develop an algorithm that simultaneously takes advantage
of both approaches when computing the gradient control
variates instead of adding SVR externally to an existing
method as (Rajawat & Kumar, 2020). Thus, we propose to
derive the control variates by solving a model constrained
minimization problem with a primal-dual formalism. Since
the constraint strength control parameter is included in a
primal-dual formalism, its optimal selection is natural. Thus,
our novel approach represents an advance over many SVR
studies for decentralized optimization as it eliminates the
implementational ambiguity of the control variates.

In this paper, we propose ECL-ISVR, which reformulates
the primal-dual formalism algorithm (ECL) such that it im-
plicitly includes the gradient control variates of SVR (see
Sec. 5). By inspection of the physical meaning of e.g., dual
variables in ECL, we noticed that they are proportional to
the local gradient expectation, which are components of the
gradient control variates of SVR. By optimally selecting
the constraint strength control parameter to scale dual vari-
ables, the update procedure matches that of SVR. By doing
so, we avoid the implementational ambiguity of the control
variates of SVR because they are implicitly updated in the
primal-dual formalism algorithm. Since it eliminates addi-
tional external operations as in (Rajawat & Kumar, 2020),
the proposed algorithm is expected to have small update
errors and to be robust in practical scenarios. We provide a
convergence analysis for ECL-ISVR for the strongly convex,
general convex, and non-convex cases in Sec. 6. We evalu-
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Figure 1. Decentralized network with asynchronous arbitrary node
connections and example procedure/communication schedule.

ate and confirm the advantages of the proposed algorithms
using benchmark image classification problems with both
convex and non-convex cost functions (Sec. 7).

2. Preliminary steps

We define symbols and notation in subsection 2.1. In sub-
section 2.2, definitions that are needed for the convergence
analysis are summarized.

2.1. Network settings and symbols

We now introduce the symbols and notations used through-
out the paper. Let us consider a decentralized network in
Fig. 1, a set N of N local nodes is connected with arbi-
trary graphical structure G(N, E), where £ is a set of E
bidirectional edges. A local node communicates with only
a small number of fixed nodes in an asynchronous man-
ner. We denote set cardinality by |- |, so that N = |V
and E = |£]. The index set of neighbors connected to
the i-th node is written as & = {j € N|(4,7) € £}. For
counting the number of edges, we use F; = |£;|, implying
E =3, cnEi. The data subsets x; are sets of cardinality
|z;| containing (-dimensional samples available for each
local node ¢ € N. The x; may be heterogeneous, which
implies that «; and x; (i # j) are sampled from different
distributions. A communication schedule example is shown
in Fig. 1. Assuming that the computational/communication
performance of all local nodes is similar, K updates will be
performed at each local node for each node communication
round r € {1,..., R}, namely each round contains K inner
iterations for each edge. Each node communicates once per
round and the set of neighbor nodes connected with node ¢
at iteration (r, k) is denoted by /"

Our distributed optimization procedure can be applied to any
ML model. Prior to starting the training procedure, identical
model architectures and local cost functions f; are defined
for all nodes (f; = f;|4,j € N). The cost function at local
node i is f;(w;) = Ey,~a, [fi(wi; xi)], where w; € R™
represents the model variables at the ¢-th local node and
X denotes a mini-batch data sample from x;. The cost
function f; : RS — R is assumed to be Lipschitz smooth
and it can be convex or non-convex (e.g., DNN). Thus, f;
is differentiable and the stochastic gradient is calculated as
gi(w;) =V f;(w;; xi), where V denotes the differential op-



Asynchronous Decentralized Optimization with Implicit Stochastic Variance Reduction

erator. Our goal is to find the model variables that minimize
the global cost function f(w) = + Y., fi(w;) while
making the local node models identical as much as possible
(w; =wj;), where the stacked model variables are given by
w=[w],..,w]T€R¥™ and T denotes transpose.

2.2. Definitions

Next, we list several definitions that are used in the theoreti-
cal convergence analysis.

(D1) S-Lipschitz smooth: When f; is assumed to be Lips-
chitz smooth, there exists a constant 3 € [0, oo] satisfying

IV fi(wi) =V fi(w)]| < Bllwi — will,
This assumption implies the following inequality:

fz(uz) < fi(wi)+ <Vfi(wi), u; _wi> +§HU1 _wi||2~

(W, wi, uz)

(D2) a-convex: When f; is assumed to be convex, there
exists a constant « € (0, 8) satisfying for any two points

{wi»ui},

fi(wi) > fi(w;) +(V fi(w:), u; —w;) + %Hw —wi||2~

Although a = 0 is allowed for general convex cases, o >0
is guaranteed for strongly convex cases.

(D3) o2-bounded variance: g;(w;) = V f;(w;; ;) is an
unbiased stochastic gradient of f; with bounded variance,

Elllgi(ws) — Vfi(wi)lI’] < 0*  (¥i, w;).

3. Average consensus and its SVR application

Average consensus algorithms, such as DSGD, aim to solve
a simple cost minimization problem:

inf,, f(w). (D

The algorithms follow model averaging with a local node
update based on stochastic gradient descent (SGD) using the
forward Euler method with step-size y (>0) as w:’k“ =
wir’k - ,ugi(wir’k ), where 7 labels the update round and k
denotes inner iteration. The forward update procedure is
decomposed into K updates of w; performed on NV local
nodes. In e.g., FedProx (Li et al., 2019), a normalization
term to make the N node model variables be closer with

weight v (>0) is added to the cost function as

info f(w) + 5> ,cn ZjGSi

It has been reported that in heterogeneous data settings
and/or long communication intervals, (K # 1), so-called
gradient drift commonly occurs in average consensus algo-
rithms. An approach that aims to address this issue is to
apply an SVR method to DSGD, such as SVRG (Johnson &
Zhang, 2013) and SAGA (Defazio et al., 2014). A modified
gradient g;(w;) is obtained by using global ¢; and local

w; —wj||2. 2)

control variate ¢;, respectively, for correcting the gradient
on the ¢-th node as

gi(wi) < gi(wi) + & — ¢, 3)
where the modified gradient is unbiased as the global variate
is ¢; =E; » x[g;(w;)] and the local control variate is ¢; =
E, k[gi(w;)], where E; ,. , and E, 1, denote expectation w.r.t.
both nodes connected with i-th node (j €N;) and time (r, k)
and that w.r.t. time, respectively. It immediately follows
that E; , 1[g:(w;)] = E; x[g:(w;)]. The advantage of the
approach is that the variance of g;(w;) is guaranteed to
be lower than that of g;(w;) if Var[e;] < 2Cov]g; (w;), ¢;].
GT-SVR (Xin et al., 2020) integrates SVR techniques into
DSGD for a fully-connected decentralized network.

It is discussed above that the gradient modification of (3)
results in gradient variance reduction. However, the imple-
mentation of the control variates {¢;, ¢;} is ambiguous. For
a better implementation, the modification must be formu-
lated as the result of a change in the cost function. Based on
such a cost function perspective, we provide mathematically
rigorous derivations of distributed consensus algorithms that
facilitate further extension in the future.

4. Primal-dual formalism

4.1. Problem definition

DSGD solves the decentralized model learning problem
using a straightforward cost minimization approach (1). In-
stead, we reformulate this problem as a more general linearly
constrained minimization problem that is more effective in
making the model variables identical across the nodes by
reducing gradient drift:

inf f(w) s.t. Ay jwi+Ajw; =0, (VieN,je&;), (4)

where A;; €R™>™ is the constraint parameter for the edge
(4,7) at node i. Since the set of A;; must force the model
variables to be identical over all nodes, we use identity
matrices with opposite signs, {A;;, Aj;} = {I, —1}.

The linearly constrained minimization problem for convex
cost function can be solved using a primal-dual formalism
(Fenchel, 1949). An effective approach to solve (4) on an
asynchronous decentralized network is PDMM (Zhang &
Heusdens, 2017; Sherson et al., 2018) and its extension
to optimize non-convex DNN models, ECL (Niwa et al.,
2020). Then, f; is assumed to be B-Lipschitz smooth but not
necessarily convex, and it is natural to solve the majorization
minimization of f; by defining a locally quadratic function
g; around wf’k,

r.k

k k k
qi(wi) = fi(w]")+(gi ("), wi —w; il

>+2%||’wi*wi

When the step-size p is sufficiently small, <1/, then
gi(w;) > fi(w;) is guaranteed everywhere. By replacing
f(w) in (4) by g(w) = % >, ¢i(w;), a dual problem
can be defined.
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To formulate the dual problem, we first define some vari-
ables. Let A = Diag{[A1,...,Ax]|} be a block diago-
nal matrix with the A; =Diag{[A;¢,(1),.--, Ajje,(E)]} €
RE:mxEim agsociated with the linear constraints. We
will use lifted dual variables for controlling the constraint
strength to facilitate asynchronous node communication.
The lifted dual variables are written as A=[AT, AT ... AL ]T,
with each lifted dual variable element held at a node relat-
ing to one of its neighbours, A\;=[Xj¢, (1), Njjg, ()] €
REi™_ We will use an indicator function to enforce the
equality of the lifted variables, A;; = A;);. For this pur-
pose, we define tyq(») as the indicator function that takes
the value O for b= 0 and is oo elsewhere. Finally, let ¢* be
the convex conjugate of ¢q. Then, the dual problem of (4)
can be formulated as (refer to (Niwa et al., 2020) for more
detail):

ian q* (JTAT>‘> + chr(I—P) (A)ﬂ (5)

where the mixing matrix J connects w and A and is given
by J = Diag{[J,...,Jn]} composed of J; = [I,....I]T €
REimxm and where P € RF™*E™ denotes the permuta-
tion matrix that exchanges the lifted dual variables between
connected nodes as A;; = Xj; (Vi € N,j € &). We
note that the convex conjugate function is ¢* (JTATA) =
sup,, ((A, AJw) — g(w)). The indicator function that en-
forces equality on the lifted dual variables takes the value
zero only when (I —P)X =0 is satisfied.

4.2. Update rules of ECL

We now briefly review the update rules of ECL, which aim
to solve (5). Since the two cost terms in (5) are ill-matched
because the indicator function is nondifferentiable, it is dif-
ficult to reduce overall cost by, e.g., subtracting a scaled
cost gradient. In such situations, applying operator split-
ting e.g., (Bauschke et al., 2011; Ryu & Boyd, 2016) can
be effective. The existing form of ECL allows two flavors
of operator splitting, Peaceman-Rachford Splitting (PRS)
(Peaceman & Rachford, 1955) and Douglas-Rachford Split-
ting (DRS) (Douglas & Rachford, 1956), to obtain recursive
variable update rules associated with PDMM (Zhang &
Heusdens, 2017; Sherson et al., 2018) and ADMM (Gabay
& Mercier, 1976), respectively. In ECL, the augmented
Lagrangian problem, which adds a model proximity term
£]1Jw —PIw"*|? (p > 0) to g;, is solved. The resulting
alternating update rules of the primal variable w and aux-
iliary lifted dual variables {y, z} constitute PDMM-SGD
(PRS) and ADMM-SGD (DRS):

w"* = arg min (g(w)
w
+ 3 AJw — 2°F|2 + £ Jw — PIw™* %), (6)
y kL = 2k 9 A Jw R @)

] _ {Py“k“ (PDMM-SGD)

. (8
ipyrktl 4 12nk (ADMM-SGD) ®

Algorithm 1 Previous ECL (Niwa et al., 2020)

1: > Set w; = w; = u;|;(~ Norm), z;; =0, f, 1, s, pi,

i, Ay

2: forr € {1,..., R} (Outer loop round) do

3:  forie N do

4 for k € {1,..., K} (Inner loop iteration) do
5: > Stochastic gradient calculation
6
7
8

9i(w;) < V fi(wi, xi)

> Update local primal and lifted dual variables

w;i  {w; — pgi(wi) + p 3 ee, (AL 21l
+pitti);) /(1 + pEi(ni + pi))

9: for j € & do
11: end for
12: > Procedure when communicated with j-th node
13: for j € & % (at random time) do
14: communicate;_;(w;, y;;)
15: Uj|j < Wy
6. . gl/m ) (PDMM-SGD)
5%i; + 5Y5; (ADMM-SGD)
17: end for
18: end for
19:  end for
20: end for

where the penalty term Z[|AJw —z"*||? (n > 0) in (6)
results from the linear constraints in (4). It reduces the gra-
dient drift for each local node, so that the model variables
over the NV nodes are close. The update rules (6)—(8) can
be decomposed into procedures on the local nodes, as sum-
marized in Alg. 1. A pair of a primal model variable and
a dual variable {w;,y;|;} or their update differences are
transmitted between nodes according to the communication
schedule of Fig. 1. Since DRS uses averaging with the
previous value, the computation memory of ADMM-SGD
(DRS) is larger than that of PDMM-SGD (PRS).

In PDMM and ECL, the following problems (P1), (P2)
remain unsolved:

(P1) Non-optimal n;: Since 7; is associated with constrained
force strength, it is empirically scaled such that it is inversely
proportional to the parameters, i.e., the number of model
element e as 7; <1/ Ve, similar to model initialization of
(He et al., 2015). In our pre-testing using open source?, ECL
requires careful selection of 7); to prevent gradient drift.

(P2) Doubled communication requirement: In ECL, a pair
of primal and dual variables {w;,y;;} are transmitted,
whereas DSGD exchanges only w;. When the variable up-
date dynamics is stable, ignoring the proximity term (p; =0)
may be allowed. Then, ECL transmits only Yjli» where its
variable dimension is identical to that of w;.

2https ://github.com/nttcslab/edge-consensus-learning
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5. Proposed algorithms (ECL-ISVR)

As noted in Sec. 1, it is natural to assume that the primal-
dual formalism (ECL) and SVR must be related because
both approaches aim to reduce gradient drift. More specif-
ically, the w;-update procedure in Alg. 1 is similar to the
gradient modification of SVR in (3), as mA iliZili is added
to the stochastic gradient. If the gradient control variates of
SVR can be represented by means of dual variables with op-
timal 7;-selection in ECL, we can eliminate the ambiguities
in control variate implementation of SVR. Hence, the aim
of this section is to derive the SVR gradient modification
(3) by simply reformulating the update procedure in Alg. 1.

In Subsec. 5.1, we start with investigating the physical
meaning of various terms (e.g., A}Ijz“ ;) and reformulate
the w;-update procedure to match that of SVR. This will
include optimal 7);-selection, thus solving (P1). After refor-
mulation, the w;-update procedure follows SVR, achieving
a stable variable update dynamics and additional model
normalization will be unnecessary, (p; =0), thus halving
the communication requirement and solving (P2). Our new
algorithms, ECL-ISVR composed of PDMM-ISVR (PRS)
and ADMM-ISVR (DRS), are summarized in Subsec. 5.2.

5.1. The correspondence between ECL and SVR

We first discuss some preliminaries needed for investigat-
ing the terms in Alg. 1. The permutation matrix satisfies
PP = I, furthermore ATA = I, and PAP = —A be-
cause {A;|;,A;j;} ={I, —I}. The mixing matrix satifies
JTJ = Diag{[F11,..., ENI]}.

To model the update lag of the variables resulting from asyn-
chronous communication (variables are exchanged once per
K inner iterations with random timing for each edge as
shown in Fig. 1) we define an additional variable to keep
track of the updates through the individual edges for the
round as uj; = w;’ﬂ(l’]’r) € R™, where (i, j,r) denotes
the inner iteration index for communicating from the i-th
node to the j-th in round r. Since the dual variables are asso-
ciated with the primal variables as in (7) and transmitted be-
tween nodes by (8), it is natural to represent AZ.lezﬂ FER™
considering the update lag by using uq . This variable

“N]
T GRE m.

can be stacked as u = [u],... € RE™ composed of

u;= [ug‘gi(l),..., u;[igi(Ei)}
To investigate the physical meaning of AiT| Zilj in Alg. 1,
we substitute the PRS update procedure (7) into (8) with
initialization 21 = 0, with the replacement of Jw in (7)
by u to model communication lags. The result is different
when 7 is an odd number and when it is an even number.
When r is an odd number, it results in

ATzr,O :ATP(ZT—LO _ 2Aur—1)
=ATP(2""20 - 2Au""2) — 2ATPAw" !
—ATPz10_ 23 (" VP AT(PAPPu? + Au2 1)

r—1)/2 _
_22( )/ (Pu 2l _ g2 1)

(PRS). (9

In the next round (r + 1 is then even), the update is

ATz 10— (/2 (P 211,20y L oPyT (PRS). (10)

Remembering that the u;); represents the model variables,
(9) and (10) show that ATz in PRS is the cumulative sum
of model differences between nodes and it is updated every
two rounds.

We now compare the results (9) and (10) to SVRG and
SAGA. There similar model differences between nodes with
appropriate scaling are used to represent the global control
variate ¢; =E; , 1 [g; (w;)] (F€&;). To cancel out the effect
of the step-size y, the number of the inner loop iteration K,
and that of connected nodes E;, multiplying > . ek ‘ il Zili
with —1/(uK E;) is the optimal choice for PRS. Assuming
that r is an odd number, this results in

1 T _r0
/J.KE ZjES A'\jzi\j

= ;LKEL > jce, er R 2(u Q\lj ! —Uffi) (PRS). (11)

Similarly to PRS, substituting (7) into the update rule of
DRS (8) with initialization z':°=0 results in

ATZT+1,O — %ATP(ZT’O _ QAUT) + %ATzr,O
=1AT(I+P)2""— LAT(PAPP+A)u" ' —~ATPAPPu’
—JAT(I4+P)z" 0+ 35 (P —Du! + Pu’

=15 (P -Du' + Pu"  (DRS), (12)

for any r. Although an offset Pu" is added in (12), this can
be ignored as it is just a fraction that arises in the recursive
formulation of model differences between nodes. It is ap-
propriate for DRS to select —1 / (LK E;) as scaling factor.
Then, multiplying with > z;); results in

JEE; zIJ
1 T _r+1,0
T uKE; Zjeé‘i ili il
1
=kE jee (imn 3w —uj,) —uf,) (DRS). (13)

From (11) and (13), it is found that Z;ee
appropriate scaling 1/(uK E;) is associated w1th the global
control variates ¢;. However, difference between PRS and
DRS exists, namely the primal model variables of the same
round are used in DRS as (u! uél ;)» while those of a

ilj

different round are used in PRS as (u?‘l - le) While
the performance differences between PRS and DRS are
investigated in the experiments in Sec. 7, we expect the
convergence rate not to differ significantly since there are no
essential differences in the physical meaning of the variables

defined in (11) and those in (13).

Since the existing terms in Alg. 1 are associated with the
global control variate, we would like to see if we can also
identify the local control variate ¢; =E, x[g;(w;)] within
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ECL. To this purpose, let us reformulate the w;-update pro-

cedure in Alg. 1 such that it matches with SVR’s update rule
(3) with p; = 0 to reduce the communication requirements:

k+1
w T

rk
= (W) " —pgi (W) 3 e AT 2000) /(1 pm Er) (14)
(1 117;7/ i) (W] —agi(w]))+ 1+ZZiE 2jee A
rk rk
7“[91'('“’1 )+ 1+umE {2168 (w; AT\J ilj )
— pEigi(w]*)}]. (15)
Hereafter, we write T; =1/(1+ un; E;) € [0, 1] to simplify
notation. Since w; is recursively updated following (14),

the term 1, T; {3 ¢ (wi — A} 2)5) — pEigi (w;) } in (15)
can be written as a summation of three terms 77, 7>, and 73,

rk r.k
YA e (W) — AT 200 — pEigi(w]™)
where

To=n Ty D0, (16)
r T _rk—1
To=—nY; deg{ ili il — i ;Y (Az|] ilj +

:wi

TAl\J :\Jk 2 T(T i 1AZ|J zllﬂo)}’ (17)
T:*/mvET{gv( R+ g (w] T+
TQQZ( rk 2) ,~~7+T1(‘7 1)K+k91(’wil’0)}~ (18)

‘When the number of update iterations is sufficient, 77 can
be ignored because 7; — 0. In 73 and 73, the summation of
geometric progression weight is included. Investigating the
infinite sum of this geometric progression, it is guaranteed
to be one, independently of 7;-selection, as

e BTy
i BT (14Tt +15°) = B =1, (19)

This indicates that the weighted summation in (17) and (18)
is an implementation of the expectation computation over
both outer () and inner iterations (k) as

7—2 ThT Z]GS( ilj z\j Tk[Az|jzl|]]) (20)
T3 = —Epklgi(w;)] = —cy, 21

where the mean of 73 will be zero and the time constant in
the expectation computation is larger when increasing 7;.
Since T3 corresponds to a local control variate as in (21),
7; must be selected such that 75 is matched with the global
control variate. From (11) and (13), we can set the optimal
n; as ;L =1/(uK E;), and this results in

ni = 1/(pEi(K — 1)), (22)

where the number of inner loops is imposed to be K > 2
since 1; > 0. Then, (15) is reformulated such that it follows
the SVR update rule (3):

rk+1

wi T = Wl — g (wiF) et — ey, (23)

where the gradient control variates are given by substituting
(23) into (17) and (18) as

rk
\J Zilj

Algorithm 2 Proposed ECL-ISVR
1: > Set w; =w;(~Norm),

Zi|j :07/JH CC/“A

ilj

2: forr € {1,..., R} (Outer loop round) do
3: foric N do
4: for k € {1,..., K} (Inner loop iteration) do
5: > Stochastic gradient calculation
6: gi(w;) < V fi(wi, x:)
7: > Update local primal and lifted dual variables
. rk 1
8: Ww; < Wi — M[gz( )+ WKE; {Zjegi
rk rk
(w] AT\J i)~ nEigi(w; ")}
9: for j € 8 do
10: Yi|j < Zi|j — 2A, ilj W
11: end for
12: > Procedure when communicated with j-th node
13: for j Ef’k (at random time) do
14: communicate; ,;(y;|;)
Yils (PDMM-ISVR)
15: ZZ‘] < 1J| 1
16: end for
17: end for
18:  end for
19: end for
—7',k r, T _rk—1
&' = —imE Ljec Al 7 — w (Al T+
T k=2 (r—=1)K+k—1AT
)Azu e +) Al Z‘j 91,(24)
e = g+ (1= g w )+
(1= 4)2i (w7 2) 4, (1= ) =Dk g, (] 0) ) (25)

We now have found the surprising fact that the gradient con-
trol variates of SVR are implicitly included in the primal-
dual formalism (ECL) by optimally selecting 7; as (22).
That is, SVR originates from the model-constrained mini-
mization problem in (4).

5.2. Update rules of ECL-ISVR

The final algorithm forms for our ECL-ISVR are summa-
rized in Alg. 2, where w;-update procedure is obtained by
substituting (22) into (15). Compared with ECL in Alg. 1,
it is upgraded (i) to include the optimization of n;, which
results in the w;-update procedure matching SVR and (ii)
to halve the communication requirement as only the lifted
dual variable are transmitted between connected nodes (this
communication requirement is the same as DSGD).

It remains an open question whether it is possible to recover
the data from y;|; since this variable reflects the statisti-
cal properties of the data. Since the lifted dual variable
is basically an update difference of model variables as in
(11) and (13), it will not be possible to estimate the data or
even the model variable without tracking of y;|; over a long,

. . . _— 1,0
continuous time, with the initial model value w;”
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6. Convergence analysis of ECL-ISVR

We conducted a convergence analysis for Alg. 2 for strongly
convex, general convex, and non-convex cost functions. The
detailed proofs are provided in the supplementary material.
In our convergence analysis, we used the same mathematical
techniques and proof strategies as the SCAFFOLD paper
(Karimireddy et al., 2020).

Proof sketch: We model the variable variance due to asyn-
chronous communication lags in the supplementary material.
We combine these variances with the lemmas in the SCAF-
FOLD paper to complete our convergence analysis for Alg.
2. Note that difference between PDMM-ISVR and ADMM-
ISVR is not considered because they just differs in model
difference computation between connected nodes, as in (11)
and (13). The final results are given in the Theorem 1:

Theorem 1. Suppose that the functions { f;} satisfy (DI)
B-Lipschitz smooth and (D3) o2-bounded variance. Then,
in each of following cases with appropriate step-size setting,
the output of ECL-ISVR (PDMM-ISVR and ADMM-ISVR)
in Alg. 2 satisfies

Strongly convex: { fl} satisfies (D2) a-convex with o > 0,

e [O,min(QwK, 7az)) R > max(22, 3), then

2,20 (gEr{aDf exp(—min( w7 3 ) R)+ e (3+3)})

mzn_1

Swhere Qo = 3 2 en El(filwf) — fi(w)))], D§ =
* SienIfi(w; )= fi(w)) |12 + |V fi(w]) —Ele; °]|?),
and Frnin =min(FE;) denotes the minimum number of edges
associated with a node and assumed to be F,,;, > 2.
General convex: {[;} satisfies (D2) a-convex with o = 0,
1€ [0, grpie ), R > 1, then

Qo < O( gy { s /3+ 5 + 2D},
Non-convex: 11 € [0, W)’ R > 1, then
30v/Qo 18 38Q
0 O/ B + 504),
where Q. = %ZieNEHVfi(w:’O)HQ and Qo =
* S ien (filw;0) = fi(w*)).

7. Numerical experiments

We evaluated the constructed algorithms by investigating
the learning curves for the case that statistically heteroge-
neous data subsets are placed at the local nodes. We aim to
identify algorithms that nearly reach the performance of the
reference case where all data are available on a single node.

7.1. Experimental setup

Data set/models: We prepared the following three problem
settings (T1)—(T3):

3Further investigation is needed to provide a lower bound of
Q. for finite R. In principle, the model variables {w*} tend to be
the same as the iteration R goes to oo due to the introduced control
variants, which will eventually lead to nonnegativity of (2.

(N1) Multiplex ring N d7r¢2 Fps

Node #1
& = {2.8}

Node #2
&={1.7}

Figure 2. Decentralized network composed of /N =8 local nodes
with (N1) multiplex ring and (N2) random topologies

(T1) Fashion MNIST with a convex model: Fashion MNIST
(Xiao et al., 2017) consists of 28 x 28 pixel of gray-scale
images in 10 classes. The 60,000 training samples are
heterogeneously divided over /N = 8 nodes. Each local node
holds a different number of data and they are composed of
8 randomly selected classes out of a total of 10 classes. The
same 10, 000 test images are used on all nodes for evaluation.
For the classification task, we use logistic regression with an
affine transformation. The associated logistic loss function
is convex.

(T2) Fashion MNIST with a non-convex model: The data
setting is the same as (T1). We applied a (non-convex)
ResNet-32 (He et al., 2016) with minor modifications. Since
the statistics in mini-batch samples are biased in our hetero-
geneous data setting, group normalization (Wu & He, 2018)
(1 group per 32 ch) is used instead of batch normalization
(Ioffe & Szegedy, 2015) before each convolutional layer. As
a cost function, cross-entropy (CE) is used. wj; is initialized
by He’s method (He et al., 2015) with a common random
seed.

(T3) CIFAR-10 with a non-convex model: The CIFAR-10
data set consists of 32x32 color images in 10 object classes
(Krizhevsky et al., 2009), where 50,000 training images
are heterogeneously divided into /N =8 nodes. Each local
node holds 8 randomly selected data classes. For evaluation,
the same 10,000 test images are used for all nodes. CE
with ResNet-32 using group normalization is used as a non-
convex cost function.

For all problem settings (T1)—(T3), squired L, model nor-
malization with weight 0.01 is added to the cost function.
The step-size p = 0.002 and the mini-batch size 100 are
used in all settings. Since the mini-batch samples are uni-
formly selected from the unbalanced data subsets (8 out of
10 classes), gradient drift will occur in all settings.

Networks: To investigate the robustness in practical scenar-
ios (heterogeneous data, asynchronous/sparse communica-
tion, and various network configurations), we prepared two
network settings composed of N =8 nodes, as in Fig. 2.

(N1) Multiplex ring topology: Each node is connected with
its two neighboring nodes only (E; =4, E=32).
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Figure 3. Learning curves using test data set of (T1)-(T3) for (N1) multiplex ring and (N2) random topologies of Fig. 2. Node-averaged
classification accuracy is drawn as a solid line and one standard deviation is indicated by a light color.

(N2) Random topology: The number of edges for each
local node is non-homogeneous (E; € (2,4), E =20) and
identical over all experiments.

The communication between nodes was performed in an
asynchronous manner as shown in Fig. 1. The communica-
tion for each edge is conducted once per K =8 local updates
on average, with R=8, 800 rounds for (N1) and R=5, 600
rounds for (N2).

Optimization algorithms: The proposed ECL-ISVR
(PDMM-ISVR and ADMM-ISVR) in Alg. 2 is compared
with conventional algorithms, namely (1) DSGD, (2) Fed-
Prox, (3) GT-SVR (implemented by GT-SAGA (Xin et al.,
2020)), (4) D? (Tang et al., 2018), and (5) ECL (PDMM-
SGD and ADMM-SGD) in Alg. 1 with 7;=3.0/\/e, p;=
0.1. In addition, we prepared a reference model, which is a
global optimization model trained by applying vanilla SGD
on a single node that has access to all data. The aim of all
algorithms is to reach the score of the reference model.

Implementation: We constructed software that runs on a
server that has 8 GPUs (NVIDIA GeForce RTX 2080Ti)
with 2 CPUs (Intel Xeon Gold 5222, 3.80 GHz). PyTorch
(v1.6.0) with CUDA (v10.2) and Gloo* for node communi-
cation was used. A part of our source code’ is available.

7.2. Experimental results

Fig. 3 shows node-averaged classification accuracy learn-
ing curves for the test data set/model (T1)—(T3) for both
the multiplex ring (N1) and random (N2) topologies. The
horizontal axis displays the number of rounds in the upper
row and the processing time in the lower row. While the
processing time is the addition of (i) local node computation
time for training/test data sets and (ii) communication time,
these are shown separately in the supplementary material.

4https ://pytorch.org/docs/stable/distributed.html
5https ://github.com/nttcslab/ecl-isvr

In almost all settings, PDMM-ISVR (ECL-ISVR) per-
formed closest to the single-node reference scores and
second-best was ADMM-ISVR (ECL-ISVR). The perfor-
mance difference between them was slight. Their processing
time was almost the same as that of DSGD, but it is slower
than the single-node reference due to the heterogeneous data
division over the N nodes. Of the conventional algorithms,
the performance with PDMM-SGD (ECL) was better, but
its processing time was nearly 1.5 times that of DSGD.
This is caused by the doubled communication requirement
issue. In addition, ADMM-SGD (ECL) was unstable in
some cases, as shown in (T2)&(N2) and (T3)&(N2). This
may be caused by a non-optimal parameter choice {7;, p; }.
GT-SVR takes the best score in (T1), however it did not
reach the single-node reference scores in (T2) and (T3),
even though the SVR technique was applied. This indicates
that our control variate implementation (24)-(25) provides
robust performance in practical scenarios. FedProx, D2, and
DSGD did not work well, likely because of gradient drift.
The proposed ECL-ISVR appears to be robust to network
configurations as the network configuration does not affect
performance significantly. In summary, the experiments
confirm the effectiveness of the proposed ECL-ISVR.

8. Conclusion

We succeeded in including the gradient control rules of SVR
implicitly in the primal-dual formalism (ECL) by optimally
selecting 7; as (22). Through convergence analysis and
experiments using convex/non-convex models, it was con-
firmed that the proposed ECL-ISVR algorithms work well
in practical scenarios (heterogeneous data, asynchronous
communication, arbitrary network configurations).
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