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Abstract

This is the Supplementary Material to Paper ”The Impact of Record Linkage on Learning
from Feature Partitioned Data”, appearing in the proceedings of ICML 2021. To differentiate
with the numberings in the main file, the numbering of Theorems is letter-based (A, B, ...).
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Figure 1: Permutation Pt applied to observation matrix X̂t−1 and subsequent matrix X̂t, using
notations uA(t), uB(t), vA(t) and vB(t). Different shades represent different observations of X.

I Supplementary material on proofs

I.1 Notations
We need to refine the definitions in Section 2 (main file) to now incorporate iteration number t in the
observations affected by Pt. First, because the features of A are not affected by record linkage, we
call them anchor features. Because the features of B are affected by linkage, we call them shuffle
features. From now on, we let uB(t) (resp. vB(t)) denote the indices in [m] of the shuffle features
in X that are in observation uA(t) (resp. vA(t)) and that will be permuted by Pt, creating X̂t from
X̂t−1. For example, if uB(t) = vA(t), vB(t) = uA(t), then Pt correctly reconstructs observations
in indexes uA(t) and vA(t) in X. Figure 1 illustrates the use of these notations. We shall also
need to analyse not just classifiers θ̃∗ and θ∗ (Figure 1 in the main file) but also the sequence of
optimal classifiers built over the sequence of datasets affected by the sequence of permutations
in P̂. Each P. denotes an elementary permutation matrix, and T , the size of P̂, is unknown. We
thus have the sequence X̂0, X̂1, ..., X̂T constructing X̂T

.
= X̂ from X̂0

.
= X. We sometimes write

X̂t
.

= [x̂t1 x̂t2 · · · x̂tm] to denote the column vector decomposition of X̂t (with x̂0i
.

= xi) and let
Ŝt be the training sample obtained from the t first permutations in the sequence. Hence, Ŝ0

.
= S,

ŜT
.

= Ŝ and Ŝt
.

= {(x̂ti, yi), i ∈ [m]}. We focus on the sequence of minimizers of a given Taylor
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loss:

θ∗t
.

= arg min
θ
`F (Ŝt,θ; Γ) . (1)

We let µt
.

= (1/m) · ‖X̂t‖2F = (1/m) · ‖X̂‖2F = µ (in the main file), where ‖.‖F denotes Frobenius
norm. µt is just the average square observation norm in Ŝt, which remains invariant through
permutations. Notice that we have the relationship

θ∗0 = θ∗,

θ∗T = θ̃∗

with respect to notations in the main file (Figure 1).

I.2 Proof of Theorem 3
The proof is obtained in three steps: we first define additional assumptions useful for the proof, then
prove a helper Theorem of independent interest, and finally prove Theorem 3.

I.I.2.1 Related notations and additional properties

Definition 1 from the main file now reads more concisely as follows. Suppose that Pt is (ε, τ)-inexact
for some ε, τ ≥ 0, ε ≤ 1. Then we have:

|(xuF(t) − xvF(t))
>
FwF| ≤ ε · max

i∈{uF(t),vF(t)}
|x>i w|+ τ‖w‖2 ,∀F ∈ {A,B} . (2)

Definition A The mean operator associated to Ŝt is Rd 3 µt
.

=
∑

i yi · x̂ti.

The mean operator is a sufficient statistics for the class in linear models (Patrini et al., 2014). We can
make at this point a remark that is going to be crucial in our results, and obvious from its definition:
the mean operator is invariant to permutations made within classes, i.e. µT = µ0 if P̂ factorizes as
permutations mixing observations within one or the other class — but not between both. Since the
optimal classifier for any Taylor loss is a linear mapping of the mean operator (Lemma C below),
our bounds will appear significantly better when P̂ factorizes in such a convenient way.

We now show an additional property of our notations in (main file, Section 2).

Lemma B The following holds for any t ≥ 1:

(x̂tuA(t))B = (xuB(t))B , (3)
(x̂tvA(t))B = (xvB(t))B . (4)

Example 1 Denote for short {0, 1}m×m 3 Θu,v
.

= 1u1
>
v +1v1

>
u −1v1

>
v −1u1

>
u (symmetric) such

that 1u is the uth canonical basis vector of Rn. For t = 1, it follows

uB(1) = vA(1) , (5)
vB(1) = uA(1) . (6)
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Thus, it follows:

XAΘuA(1),vA(1)X̂
>
1B

= (xuA(1))A(x1vA(1))
>
B + (xvA(1))A(x1uA(1))

>
B − (xvA(1))A(x1vA(1))

>
B − (xuA(1))A(x1uA(1))

>
B

= (xuA(1))A(xvB(1))
>
B + (xvA(1))A(xuB(1))

>
B − (xvA(1))A(xvB(1))

>
B − (xuA(1))A(xuB(1))

>
B (7)

= (xuA(1))A(xuA(1))
>
B + (xvA(1))A(xvA(1))

>
B − (xvA(1))A(xuA(1))

>
B − (xuA(1))A(xvA(1))

>
B (8)

= (xuA(1) − xvA(1))A(xuA(1) − xvA(1))
>
B . (9)

In eq. (7), we have used eqs (3, 4) and in eq. (8), we have used eqs (5, 6).

Key matrices — The proof of our helper Theorem is relatively heavy in linear algebra notations:
for example, it involves T double applications of Sherman-Morrison’s inversion Lemma. We now
define a series of matrices and vectors that will be most useful to simplify notations and proofs. We
first define the matrix we will use most often:

Vt
.

=

(
sign(c) · X̂tX̂>t +

m

|c|
· Γ
)−1

, t = 0, 1, ..., T , (10)

where c,Γ are the loss parameters in eq. 1. Another matrix Ut, quantifies precisely the local mistake
made by each elementary permutation. To define it, we first let (for t = 1, 2, ..., T ):

at
.

= (xuA(t) − xvA(t))A , (11)
bt

.
= (xuB(t) − xvB(t))B . (12)

Also, let (for t = 1, 2, ..., T )

a+
t

.
=

[
(xuA(t) − xvA(t))A

0

]
∈ Rd , (13)

b+t
.

=

[
0

(xuB(t) − xvB(t))B

]
∈ Rd , (14)

and finally (for t = 1, 2, ..., T ),

c0,t
.

= a+
t
>

Vt−1a
+
t , (15)

c1,t
.

= a+
t
>

Vt−1b
+
t , (16)

c2,t
.

= b+t
>

Vt−1b
+
t . (17)

We now define Ut as the following block matrix for t = 1, 2, ..., T :

Ut
.

=
1

(1− sign(c) · c1,t)2 − c0,tc2,t
·
[

c2,t · ata>t (1− sign(c) · c1,t) · atb>t
(1− sign(c) · c1,t) · bta>t c0,t · btb>t

]
.(18)

Ut can be computed only when (1 − sign(c) · c1,t)2 6= c0,tc2,t. This shall be the subject of the
invertibility assumption below. Hereafter, we suppose without loss of generality that bt 6= 0, since
otherwise permutations would make no mistakes on the shuffle part.
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Figure 2: Summary of our key notations on matrices and vectors, and dependencies. The dashed
arrow means indexes do not match (eq. (22)).

There is one important thing to remark on Ut: it is defined from the indices uA(t) and vA(t) in A
that are affected by Pt. Hence, U1 collects the two first such indices (see Figure 1). We also define
matrix Λt as follows:

Λt
.

= − b

|c|
· VtUt+1 , t = 0, 1, ..., T − 1 , (19)

where parameters b, c are those defined in the Taylor loss after eq. (1). To finish up with matrices,
we define doubly indexed matrices that shall be crucial to our proofs, Hi,j for 0 ≤ j ≤ i ≤ T :

Hi,j
.

=

{ ∏i−1
k=j(Id + Λk) if 0 ≤ j < i

Id if j = i
. (20)

Key vectors — we let

εt
.

= µt+1 − µt , t = 0, 1, ..., T − 1 , (21)

which is the difference between two successive mean operators, and

λt
.

= − b

|c|
· Vt+1εt , t = 0, 1, ..., T − 1 . (22)

Figure 2 summarizes our key notations in this Section. We are now ready to proceed through the
proof of our key helper Theorem.

I.I.2.2 Helper Theorem

In this Section, we first show (Theorem E below) that under lightweight assumptions to ensure
the existence of Vt, the difference between two successive optimal classifiers in the progressive
computation of the overall permutation matrix that generates the errors is exactly given by:

θ∗t+1 − θ∗t = ν · VtUt+1θ
∗
t + ν · Vt+1εt

= Λtθ
∗
t + λt ,∀t ≥ 0 , (23)
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where Λt, εt,λt are defined in eqs (21, 19, 22) and ν is defined in Lemma C below. This holds
regardless of the permutation matrices in the sequence.

We start by the trivial solutions to the minimization of a convex Taylor loss.

Lemma C The minimum of any convex Taylor loss `F (Ŝt,θ; Γ), is:

θ∗t = ν ·
(

sign(c) · X̂tX̂>t + ν ′ · Γ
)−1

µ(Ŝ)t

= ν · Vtµt , (24)

with

ν
.

= − b

2|c|
,

ν ′
.

=
m

|c|
, (25)

meeting ν, ν ′ 6= 0.

Proof The minimizer θ∗t trivially satisfies:

2cX̂tX̂
>
t θ
∗
t + 2m · Γθ∗t = −b · µt , (26)

giving θ∗t = −b · (2cX̂tX̂>t + 2m · Γ)−1µt = ν ·
(

sign(c) · X̂tX̂>t + ν ′ · Γ
)−1

µ(Ŝ)t, as claimed.

Lemma D Suppose Vt−1 exists. Then Vt exists if the following holds:{
sign(c) · c1,t 6= 1 ,

(1− sign(c) · c1,t)2 6= c0,tc2,t .
(27)

Proof Throughout the proof, we let

ς
.

= sign(c) (28)

for short. We know that X̂t is obtained from X̂t−1 after permuting the shuffle part of observations at
indexes uA(t) and vA(t) in X̂(t−1)B by Pt (see Figure 1). So,

X̂tB = X̂(t−1)B + X̂(t−1)B(Pt − In)

= X̂(t−1)B + X̂(t−1)B(1uA(t)1
>
vA(t)

+ 1vA(t)1
>
uA(t)
− 1vA(t)1

>
vA(t)
− 1uA(t)1

>
uA(t)

) , (29)

where 1u ∈ Rn is the uth canonical basis vector. We also have

X̂tX̂
>
t =

[
XAX

>
A XAX̂

>
tB

X̂tBX
>
A X̂tBX̂

>
tB

]
=

[
XAX

>
A XAX̂

>
tB

X̂tBX
>
A X̂(t−1)BPtP

>
t X̂
>
(t−1)B

]

=

[
XAX

>
A XAX̂

>
tB

X̂tBX
>
A X̂(t−1)BX̂

>
(t−1)B

]
, (30)
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because the inverse of a permutation matrix is its transpose. We recall that XA does not change
throughout permutations, only XB does. Hence,

X̂tX̂
>
t = X̂t−1X̂

>
t−1 +

[
0 XA(X̂tB − X(t−1)B)>

(X̂tB − X(t−1)B)X>A 0

]
= X̂t−1X̂

>
t−1 +

[
0 XAΘuA(t),vA(t)X̂

>
(t−1)B

X̂(t−1)BΘuA(t),vA(t)X
>
A 0

]
, (31)

with ΘuA(t),vA(t)
.

= 1uA(t)1
>
vA(t)

+ 1vA(t)1
>
uA(t)
− 1vA(t)1

>
vA(t)
− 1uA(t)1

>
uA(t)

(symmetric, see eq. (29)
and example 1). Now, remark that

XAΘuA(t),vA(t)X̂
>
(t−1)B

= XA(1uA(t)1
>
vA(t)

+ 1vA(t)1
>
uA(t)
− 1vA(t)1

>
vA(t)
− 1uA(t)1

>
uA(t)

)X̂>tB

= (xuA(t))A(xtvA(t))
>
B + (xvA(t))A(xtuA(t))

>
B − (xvA(t))A(xtvA(t))

>
B − (xuA(t))A(xtuA(t))

>
B

= (xuA(t))A(xvB(t))
>
B + (xvA(t))A(xuB(t))

>
B − (xvA(t))A(xvB(t))

>
B − (xuA(t))A(xuB(t))

>
B (32)

= −((xuA(t))A − (xvA(t))A)((xuB(t))B − (xvB(t))B)>

= −(xuA(t) − xvA(t))A(xuB(t) − xvB(t))
>
B = −atb>t . (33)

Eq. (32) holds because of Lemma B. We finally get

X̂tX̂
>
t = X̂t−1X̂

>
t−1 − ς · a+

t b
+
t
> − ς · b+t a+

t
>
, (34)

and so we have

Vt =
(

V−1t−1 − ς · a+
t b

+
t
> − ς · b+t a+

t
>
)−1

. (35)

We analyze when Vt can be computed. First notice that assuming Vt−1 exists implies its inverse also
exists, and so

det(V−1t−1 − ς · a+
t b

+
t
>

) = det(V−1t−1)det(Id − ς · Vt−1a
+
t b

+
t
>

)

= det(V−1t−1)(1− ς · b+t
>

Vt−1a
+
t )

= det(V−1t−1)(1− ς · c1,t) , (36)

where the penultimate identity comes from Sylvester’s determinant formula. So, if in addition
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1− ς · c1,t 6= 0, then

det
(

V−1t−1 − ς · a+
t b

+
t
> − ς · b+t a+

t
>
)

= det(V−1t−1 − ς · a+
t b

+
t
>

)det
(

Id − ς ·
(

V−1t−1 − ς · a+
t b

+
t
>
)
b+t a

+
t
>
)

= det(V−1t−1)(1− ς · c1,t)det

(
Id − ς ·

(
V−1t−1 − ς · a+

t b
+
t
>
)−1

b+t a
+
t
>
)

(37)

= det(V−1t−1)(1− ς · c1,t)
(

1− ς · a+
t
>
(

V−1t−1 − ς · a+
t b

+
t
>
)−1

b+t

)
(38)

= det(V−1t−1)(1− ς · c1,t)

(
1− ς · a+

t
>

(
Vt−1 +

ς

1− ς · b+t
>

Vt−1a
+
t

· Vt−1a
+
t b

+
t
>

Vt−1

)
b+t

)
(39)

= det(V−1t−1)(1− ς · c1,t)
(

1− ς · c1,t − ς2 ·
c0,tc2,t

1− ς · c1,t

)
=

(1− ς · c1,t)2 − c0,tc2,t
det(Vt−1)

. (40)

Here, eq. (37) comes from eq. (36). Eq. (38) is another application of Sylvester’s determinant
formula. Eq. (38) is Sherman-Morrison formula and the last equation uses the fact that ς2 = 1. We
immediately conclude on Lemma D.

If we now assume without loss of generality that V0 exists — which boils down to taking Γ � 0
—, then we get the existence of the complete sequence of matrices Vt (and thus the existence of
the sequence of optimal classifiers θ∗0,θ

∗
1, ...) provided the following invertibility condition is

satisfied.

(invertibility) For any t ≥ 1, (1− sign(c) · c1,t)2 6∈ {0, c0,tc2,t}.

We shall check later (Corollary K) that the invertibility condition indeed holds in our setting.

Theorem E Suppose the invertibility assumption holds. Then we have:

1

ν
· (θ∗t+1 − θ∗t ) = VtUt+1θ

∗
t + Vt+1εt ,∀t ≥ 0 ,

where εt is defined in eq. (21).

Proof Throughout the proof, we let

ς
.

= sign(c) (41)

for short. We have from Lemma C, for any t ≥ 1,

1

ν
· (θ∗t − θ∗t−1) = Vtµt − Vt−1µt−1

= ∆t−1µt−1 + Vtεt−1 , (42)
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with ∆t
.

= Vt+1 − Vt. It comes from eq. (34),

∆t−1 =
(
X̂t−1X̂

>
t−1 + ν ′ · Γ− ς · a+

t b
+
t
> − ς · b+t a+

t
>
)−1
− Vt . (43)

To simplify this expression, we need two consecutive applications of Sherman-Morrison’s inversion
formula: (

X̂t−1X̂
>
t−1 + ν ′ · Γ− ς · a+

t b
+
t
> − ς · b+t a+

t
>
)−1

=
(
X̂t−1X̂

>
t−1 + ν ′ · Γ− ς · a+

t b
+
t
>
)−1

+
ς

1− ς · a+
t
>
(
X̂t−1X̂>t−1 + ν ′ · Γ− ς · a+

t b
+
t
>
)−1

b+t

· Qt , (44)

with

Qt
.

=
(
X̂t−1X̂

>
t−1 + ν ′ · Γ− ς · a+

t b
+
t
>
)−1

b+t a
+
t
>
(
X̂t−1X̂

>
t−1 + ν ′ · Γ− ς · a+

t b
+
t
>
)−1

,

(45)

and (
X̂t−1X̂

>
t−1 + ν ′ · Γ− ς · a+

t b
+
t
>
)−1

= Vt−1 +
ς

1− ς · b+t
>

Vt−1a
+
t

· Vt−1a
+
t b

+
t
>

Vt−1 . (46)

Let us define the following shorthand:

Σt
.

= Vt−1 +
ς

1− ς · b+t
>

Vt−1a
+
t

· Vt−1a
+
t b

+
t
>

Vt−1 . (47)
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Then, plugging together eqs. (44) and (46), we get:(
X̂t−1X̂

>
t−1 + ν ′ · Γ− ς · a+

t b
+
t
> − ς · b+t a+

t
>
)−1

= Vt−1 +
ς

1− ς · b+t
>

Vt−1a
+
t

· Vt−1a
+
t b

+
t
>

Vt−1

+
ς

1− ς · a+
t
>

Vt−1b
+
t −

a+
t
>Vt−1a

+
t ·b

+
t
>Vt−1b

+
t

1−ς·b+t
>Vt−1a

+
t

· Σtb
+
t a

+
t
>

Σt

= Vt−1 +
ς

1− ς · c1,t
· Vt−1a

+
t b

+
t
>

Vt−1

+
ς

1− ς · c1,t − c0,tc2,t
1−ς·c1,t

·

 Vt−1
+

ς
1−ς·c1,t · Vt−1a

+
t b

+
t
>

Vt−1

 b+t a+
t
>

 Vt−1
+

ς
1−ς·c1,t · Vt−1a

+
t b

+
t
>

Vt−1


= Vt−1 +

ς

1− ς · c1,t
· Vt−1a

+
t b

+
t
>

Vt−1 +
ς·

1− ς · c1,t − c0,tc2,t
1−ς·c1,t

· Vt−1b
+
t a

+
t
>

Vt−1

+
c0,t

(1− ς · c1,t)2 − c0,tc2,t
· Vt−1b

+
t b

+
t
>

Vt−1 +
c2,t

(1− ς · c1,t)2 − c0,tc2,t
· Vt−1a

+
t a

+
t
>

Vt−1

+
ςc0,tc2,t

(1− ς · c1,t)((1− ς · c1,t)2 − c0,tc2,t)
· Vt−1a

+
t b

+
t
>

Vt−1

= Vt−1 +
1− ς · c1,t

(1− ς · c1,t)2 − c0,tc2,t
·
(

Vt−1a
+
t b

+
t
>

Vt−1 + Vt−1b
+
t a

+
t
>

Vt−1

)
+

c0,t
(1− ς · c1,t)2 − c0,tc2,t

· Vt−1b
+
t b

+
t
>

Vt−1 +
c2,t

(1− ς · c1,t)2 − c0,tc2,t
· Vt−1a

+
t a

+
t
>

Vt−1

= Vt−1 +
1

(1− ς · c1,t)2 − c0,tc2,t
·


(1− ς · c1,t) · (Vt−1a

+
t b

+
t
>

Vt−1 + Vt−1b
+
t a

+
t
>

Vt−1)

+c0,t · Vt−1b
+
t b

+
t
>

Vt−1

+c2,t · Vt−1a
+
t a

+
t
>

Vt−1


= Vt−1 + Vt−1UtVt−1 . (48)

So,
1

ν
· (θ∗t − θ∗t−1) = ∆t−1µt−1 + Vtεt−1

= Vt−1UtVt−1µt−1 + Vtεt−1

= Vt−1Utθ
∗
t−1 + Vtεt−1 , (49)

as claimed (end of the proof of Theorem E).

All that remains to do now is to unravel the relationship in Theorem E and quantify the exact
variation θ∗T − θ∗0 as a function of θ∗0 (which we recall is the permutation error-free optimal
classifier), holding for any permutation P̂. We therefore suppose that the invertibility assumption
holds.

Theorem F Suppose the invertibility assumption holds. For any T ≥ 1,

θ∗T − θ∗0 = (HT,0 − Id)θ
∗
0 +

T−1∑
t=0

HT,t+1λt . (50)
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Proof We recall first that we have from Theorem E, θ∗t+1 − θ∗t = Λtθ
∗
t + λt, ∀t ≥ 0. Equivalently,

θ∗t+1 = (Id + Λt)θ
∗
t + λt . (51)

Unravelling, we easily get ∀T ≥ 1,

θ∗T =
T−1∏
t=0

(Id + Λt)θ
∗
0 + λT−1 +

T−2∑
j=0

T−1∏
t=j+1

(Id + Λt)λj

= HT,0θ
∗
0 +

T−1∑
t=0

HT,t+1λt , (52)

which yields the statement of Theorem F.

Since it applies to every permutation matrix, Theorem F applies to every record linkage algorithm.
Theorem F gives us a interesting expression for the deviation θ∗T − θ∗0 which can be used to derive
bounds on the distance between the two classifiers. We apply it now to derive one such bound.

I.I.2.3 Finalizing the proof of Theorem 3

Assuming it is diagonalizable, we let λ∗(M) (resp. λ◦(M)) denotes the maximal (resp. minimal)
eigenvalue of M.

Lemma G Suppose λ◦(Γ) > max{0,−cµt}. Then Vt is positive definite and its eigenspectrum
satisfies:

λ∗(Vt) ≤
1

m
· 1

sign(c)µt + 1
|c|λ
◦(Γ)

, (53)

λ◦(Vt) ≥
1

m
· 1

sign(c)µt + 1
|c|λ
∗(Γ)

, (54)

where c is defined in Lemma C and µt
.

= (1/m) · ‖X̂t‖2F , where ‖.‖F denotes Frobenius norm.

Proof We have ‖X̂>t w‖22 ≤ ‖w‖22‖X̂t‖2F . We get:

λ∗(Vt)
.

=

inf
w

w>
(

sign(c)X̂tX̂
>
t + ν ′ · Γ

)
w

‖w‖22

−1

≤ 1

sign(c)mµt + ν ′λ◦(Γ)

=
1

m
· 1

sign(c)µt + 1
|c|λ
◦(Γ)

, (55)

assuming sign(c)µt + 1
|c|λ
◦(Γ) > 0, which trivially holds if c ≥ 0, and implies otherwise λ◦(Γ) >

12



−cµt. Similarly,

λ◦(Vt)
.

=

sup
w

w>
(

sign(c)X̂tX̂
>
t + ν ′ · Γ

)
w

‖w‖22

−1

≥ 1

sign(c)mµt + ν ′λ∗(Γ)

=
1

m
· 1

sign(c)µt + 1
|c|λ
∗(Γ)

, (56)

as claimed. This ends the proof of Lemma G.

Lemma H Using notations of Subsection I.I.2.1, suppose (1 − c1,t)2 − c0,tc2,t 6= 01 and at 6= 0.
Then Ut is negative semi-definite iff (1− c1,t)2− c0,tc2,t < 0. Otherwise, Ut is indefinite. In all cases,
Ut is diagonalizable and for any z ∈ {λ∗(Ut), |λ◦(Ut)|}, we have

z ≤ 2 + 3(c0,t + c2,t)

2|(1− c1,t)2 − c0,tc2,t|
·max{‖at‖22, ‖bt‖22} . (57)

Proof Consider a block-vector following the column-block partition of Ut,

x̃
.

=

[
x
y

]
. (58)

Denote for short ζ .
= (1− c1,t)2 − c0,tc2,t. We have

Utx̃ =
1

ζ
·
[

(c2,t(a
>
t x) + (1− c1,t)(b>t y)) · at

((1− c1,t)(a>t x) + c0,t(b
>
t y)) · bt

]
. (59)

We see that the only possibility for x̃ to be an eigenvector associated to a non-zero eigenvalue is
that x ∝ at and y ∝ bt (including the null vector for at most one vector). We now distinguish two
cases.

Case 1. c1,t = 1. In this case, Ut is block diagonal and so we get two eigenvectors:

Ut

[
at
0

]
= − 1

c0,tc2,t
·
[
c2,t · ata>t 0

0 c0,t · btb>t

] [
a
0

]
= − 1

λ(a+
t )
·
[
at
0

]
, (60)

with (since ‖a+
t ‖22 = ‖at‖22):

λ(a+
t )

.
=

a+
t
>

Vt−1a
+
t

‖a+
t ‖22

, (61)

1This is implied by the invertibility assumption.
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and

Ut

[
0
bt

]
= − 1

λ(b+t )
·
[

0
bt

]
, λ(b+t )

.
=
b+t
>

Vt−1b
+
t

‖b+t ‖22
. (62)

We also remark that Ut is negative semi-definite. We finally remark that Ut is diagonalizable:
both non-zero eigenvalues have multiplicity 1 and eigenvalue 0 is associated to eigen subspace
complementary of the span of the two eigenvectors.
Case 2. c1,t 6= 1. In this case, let us assume without loss of generality that for some α ∈ R∗,

x = α · at ,
y = bt .

In this case, we obtain

Utx̃ =
(1− c1,t)(a>t x) + c0,t(b

>
t y)

(1− c1,t)2 − c0,tc2,t
·

[
c2,t(a>t x)+(1−c1,t)(b>t y)
(1−c1,t)(a>t x)+c0,t(b>t y)

· at
bt

]

=
α(1− c1,t)‖at‖22 + c0,t‖bt‖22

(1− c1,t)2 − c0,tc2,t
·

[
αc2,t‖at‖22+(1−c1,t)‖bt‖22
α(1−c1,t)‖at‖22+c0,t‖bt‖22

· at
bt

]
.

= λ · x̃ , (63)

and so we obtain the eigenvalue

λ =
α(1− c1,t)‖at‖22 + c0,t‖bt‖22

(1− c1,t)2 − c0,tc2,t
, (64)

and we get from the eigenvector that α satisfies

α =
αc2,t‖at‖22 + (1− c1,t)‖bt‖22
α(1− c1,t)‖at‖22 + c0,t‖bt‖22

, (65)

and so

(1− c1,t)‖at‖22α2 + (c0,t‖bt‖22 − c2,t‖at‖22)α− (1− c1,t)‖bt‖22 = 0 . (66)

We note that the discriminant is

τ = (c0,t‖bt‖22 − c2,t‖at‖22)2 + 4(1− c1,t)2‖at‖22‖bt‖22 , (67)

which is always > 0. Therefore we always have two roots,

α± =
c2,t‖at‖22 − c0,t‖bt‖22 ±

√
(c0,t‖bt‖22 − c2,t‖at‖22)2 + 4(1− c1,t)2‖at‖22‖bt‖22

2(1− c1,t)‖at‖22
. (68)

yielding two non-zero eigenvalues,

λ±(Ut) =
1

2ζ
·
(
c2,t‖at‖22 + c0,t‖bt‖22 ±

√
(c0,t‖bt‖22 − c2,t‖at‖22)2 + 4(1− c1,t)2‖at‖22‖bt‖22

)
.(69)
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Let us analyze the sign of both eigenvalues. For the numerator of λ− to be negative, we have
equivalently after simplification

(c2,t‖at‖22 + c0,t‖bt‖22)2 < (c0,t‖bt‖22 − c2,t‖at‖22)2 + 4(1− c1,t)2‖at‖22‖bt‖22 , (70)

which simplifies in c0,tc2,t < (1− c1,t)2, i.e. ζ > 0. Hence, λ− < 0.
Now, for λ+, it is easy to check that its sign is that of ζ . When ζ > 0, we have λ+ ≥ |λ−|, and

because a2 + b2 ≤ (|a|+ |b|)2, we get

λ∗(Ut) = λ+ ≤ 1

2
·
(
c2,t‖at‖22 + c0,t‖bt‖22 + |c0,t‖bt‖22 − c2,t‖at‖22|+ 2(1− c1,t)‖at‖2‖bt‖2

)
≤ c2,t‖at‖22 + c0,t‖bt‖22 + (1− c1,t)‖at‖2‖bt‖2 . (71)

Now, remark that because Vt is positive definite,

c0,t − 2c1,t + c2,t
.

= a+
t
>

Vta
+
t − 2a+

t
>

Vtb
+
t + b+t

>
Vtb

+
t

= (a+
t − b+t )>Vt(a

+
t − b+t )

≥ 0 , (72)

showing that c1,t ≤ (c0,t + c2,t)/2. So we get from ineq. (71),

λ∗(Ut) ≤
1

ζ
·
(
c2,t‖at‖22 + c0,t‖bt‖22 +

(
1 +

c0,t + c2,t
2

)
‖at‖2‖bt‖2

)
≤ 1

ζ
·
(

1 +
3

2
· (c0,t + c2,t)

)
·max{‖at‖22, ‖bt‖22}

≤ 2 + 3(c0,t + c2,t)

2((1− c1,t)2 − c0,tc2,t)
·max{‖at‖22, ‖bt‖22} . (73)

When ζ < 0, we remark that λ+ < λ− and so Ut is negative semi-definite. We also remark that Ut is
diagonalizable: non-zero eigenvalues have distinct eigenvectors eigenvalue and 0 is associated to
the eigen subspace complementary of the span of those two eigenvectors.

Whenever c1,t 6= 1, it is then easy to check that for any z ∈ {|λ+|, |λ−|}, ineq. (73) brings

z ≤ 2 + 3(c0,t + c2,t)

2|(1− c1,t)2 − c0,tc2,t|
·max{‖at‖22, ‖bt‖22} . (74)

Whenever c1,t = 1 (Case 1.), it is also immediate to check that for any z ∈ {| − 1/λ(a+
t )|, | −

1/λ(b+t )|},

z ≤ max

{
1

c0,t
,

1

c2,t

}
·max{‖at‖22, ‖bt‖22}

<

(
1 +

3

c0,t
+

3

c2,t

)
·max{‖at‖22, ‖bt‖22}

=
2 + 3(c0,t + c2,t)

2|(1− c1,t)2 − c0,tc2,t|
·max{‖at‖22, ‖bt‖22} . (75)

Once we remark that c1,t = 1 implies ζ < 0, we obtain the statement of Lemma H.
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Lemma I The following holds true:

‖b+t ‖22 = ‖bt‖22 ≤ 2ξ ·X2
∗ , (76)

‖a+
t ‖22 = ‖at‖22 ≤ 2ξ ·X2

∗ , (77)

where ξ is defined in eq. (6).

Proof Suppose Pt (ε, τ)-inexact with the ε, τ parameters used to compute ξ. To prove ineq. (76),
we make two applications of (2) with F

.
= B. Fix w .

= (1/‖xvB(t)‖2) · xvB(t). We get:

|(xvB(t) − xuB(t))
>
BxvB(t)B| ≤ ε ·max{|x>uB(t)xvB(t)|, ‖xvB(t)‖

2
2}+ τ · ‖xvB(t)‖2

≤ ε ·X2
∗ + τ ·X∗ = ξ ·X2

∗ . (78)

Fix w .
= (1/‖xuB(t)‖2) · xuB(t). We get:

|(xuB(t) − xvB(t))
>
BxuB(t)B | ≤ ε ·max{|x>uB(t)xvB(t)|, ‖xuB(t)‖

2
2}+ τ · ‖xuB(t)‖2

≤ ε ·X2
∗ + τ ·X∗ = ξ ·X2

∗ . (79)

Folding together ineqs. (78) and (79) yields

‖(xvB(t) − xuB(t))B‖
2
2 = (xvB(t) − xuB(t))

>
B (xvB(t) − xuB(t))B

≤ |(xvB(t) − xuB(t))
>
BxvB(t)B|+ |(xvB(t) − xuB(t))

>
BxuB(t)B|

≤ 2ξ ·X2
∗ . (80)

We get

‖b+t ‖22 = ‖bt‖22 = ‖(xvB(t) − xuB(t))B‖
2
2 ≤ 2ξ ·X2

∗ , (81)

which yields ineq. (76). To get ineq. (77), we switch F
.

= B by F
.

= A in our application of point
(2).

Lemma J If the data-loss calibration assumption holds,

ci,t ≤
1

12
,∀i ∈ {0, 1, 2} . (82)

Proof We remark that

c0,t
.

= a+
t
>

Vta
+
t

≤ λ∗(Vt)‖a+
t ‖22

≤ 2λ∗(Vt)ξ ·X2
∗ , (83)

and for the same reasons,

c2,t ≤ 2λ∗(Vt)ξ ·X2
∗ . (84)
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Hence, it comes from the proof of Lemma H that we also have c2,t ≤ 2λ∗(Vt)ξ ·X2
∗ . Using ineq.

(53) in Lemma G, we thus obtain for any i ∈ {0, 1, 2}:

ci,t ≤
1

m
· 2ξ ·X2

∗

sign(c)µt + 1
|c|λ
◦(Γ)

=
ξ

m
· 2|c|X2

∗
cµt + λ◦(Γ)

≤ 1

4
· 1

4
<

1

12
, (85)

as claimed. The last inequality uses the data-loss calibration assumption.

Corollary K If the data-loss calibration assumption holds, then the invertibility condition holds.

Proof From Lemma J, we conclude that (1− c1,t)2 > 121/144 > 1/144 > c0,tc2,t > 0, hence the
invertibility assumption holds.

Lemma L Using notations of Subsection I.I.2.1, if the data-loss calibration assumption holds, the
following holds true: Id + Λt � 0 and

λ∗ (Λt) ≤
ξ

m
. (86)

Proof To simplify notations, let us shift t→ t− 1. First note that λ◦(Vt−1) ≥ 1/(γλ∗(Γ)) > 0 and
so Vt−1 � 0, which implies that Λt−1

.
= ν · Vt−1Ut = νV

1/2
t−1(V

1/2
t−1UtV

1/2
t−1)V

−1/2
t−1 , i.e. Λt−1 is similar

to a symmetric matrix (V
1/2
t−1UtV

1/2
t−1) and therefore has only real eigenvalues. We have seen from the

proof of Corollary K that (1− c1,t)2 − c0,tc2,t > 0,∀t ≥ 1, which implies from Lemma H that Ut is
indefinite with two distinct eigenvalues, say −λ− ≤ 0 and λ+ > 0, with λ+ ≥ λ−. We know from
Lemma H that we can write Ut = −λ−utu>t + λ+vtv

>
t with ‖u‖2 = ‖v‖2 = 1, so

x>Λt−1x = −λ−ν · (u>t x) · x>Vt−1ut + λ+ν · (v>t x) · x>Vt−1vt. (87)

We now remark that since Vt−1 is positive definite (Lemma G), (u>t x) · x>Vt−1ut ≥ 0, (v>t x) ·
x>Vt−1vt ≥ 0,∀x, which, together with (87) shows that we have the first inequality of the following:

λ∗ (Λt−1) ≤ |ν|λ+λ∗(Vt−1) (88)

≤ |ν| · 2 + 3(c0,t + c2,t)

2((1− c1,t)2 − c0,tc2,t)
·max{‖a‖22, ‖bt‖22} · λ∗(Vt−1) (89)

≤ 2 + 3(c0,t + c2,t)

(1− c1,t)2 − c0,tc2,t
· |ν|λ∗(Vt−1)ξ ·X2

∗ . (90)

Ineq. (89) is due to Lemma H and ineq. (90) is due to Lemma I. We do not put the absolute value in
the denominator of (90) because of Corollary K. We now use Lemma J and get:

(1− c1,t)2 − c0,tc2,t ≥
(

1− 1

12

)2

− 1

144

=
5

6
. (91)
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Letting U .
= 2λ∗(Vt)ξ ·X2

∗ for short, we thus get from (83), (84) in the proof of Lemma J:

λ∗ (Λt) ≤ |ν| · 6

10
· (2 + 3(U + U))U

= |ν| · 6

10
· (2U + 6U2) . (92)

Now we want λ∗ (Λt) ≤ ξ/m, which translates into a second-order inequality for U , whose solution
imposes the following upperbound on U :

6U ≤ −1 +

√
1 +

10ξ

|ν|m
. (93)

We can indeed forget the lowerbound for U , whose sign is negative while U ≥ 0.
Since

√
1 + x ≥ 1 + (x/2)− (x2/8) for x ≥ 0 (and ξ/m ≥ 0), we get the sufficient condition

for ineq. (93) to be satisfied:

12λ∗(Vt)ξ ·X2
∗ ≤

5ξ

|ν|m
− 100

8
·
(

ξ

|ν|m

)2

. (94)

Now, it comes from Lemma G that a sufficient condition for ineq. (94) is that

ξ

m
· 12X2

∗

sign(c)µt + 1
|c|λ
◦(Γ)

≤ 5ξ

|ν|m
− 100

8
·
(

ξ

|ν|m

)2

, (95)

which, after simplification, is equivalent to

12

5
· |ν|X2

∗

sign(c)µt + 1
|c|λ
◦(Γ)

+
5ξ

2|ν|m
≤ 1 , (96)

or,

6|b|
5
· X2

∗
cµt + λ◦(Γ)

+
5ξ

2|ν|m
≤ 1 , (97)

But, the data-loss calibration assumption implies that the left-hand side is no more than (3/5) +
(5/16) = 73/80 < 1, and ineq. (86) follows.

It also trivially follows that Id + Λt has only real eigenvalues. To prove that they are all strictly
positive, we know that the only potentially negative eigenvalue of Ut, λ− (Lemma H) is smaller in
absolute value to λ∗(Ut). Vt being positive definite, we thus have under the data-loss calibration
assumption:

λ◦(Id + Λt) ≥ 1− ξ

m

≥ 1− 1

4
=

3

4
> 0 , (98)

showing Id + Λt is positive definite. This ends the proof of Lemma L.
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We recall that 0 ≤ T+ ≤ T denote the number of elementary permutations that act between
classes, and ρ .

= T+/T denote the proportion of such elementary permutations among all. If P̂ is
(ε, τ)-inexact then let

Kξ
.

=
exp(ξ) + 1

8
√

2ξ
. (99)

Theorem M If the data-loss calibration assumption holds, then the following holds for all T ≥ 1:

‖θ∗T − θ∗0‖2 ≤
ξ

1
4

m
· T 2 ·

(
ξ

3
4‖θ∗0‖2 +

ρ|ν|ξ 3
4Kξ

X∗

)
, (100)

and in addition, if P̂ is α-bounded then

‖θ∗T − θ∗0‖2 ≤
(
ξ1/4

m

)α
·

(
ξ

3
4‖θ∗0‖2 +

ρ|ν|ξ 3
4Kξ

X∗

)
, (101)

where we recall ν .
= −b/(2|c|).

Remark: we have lim0,+∞Kξ = +∞ but lim0 ξ
3
4Kξ = 0, so the RHS of (100) and (101) converge

to zero with ξ → 0 (so, as P̂ gets ‘better’).
Proof We use Theorem F, which yields from the triangle inequality:

‖θ∗T − θ∗0‖2 ≤ ‖(HT,0 − Id)θ
∗
0‖2 +

∥∥∥∥∥
T−1∑
t=0

HT,t+1λt

∥∥∥∥∥
2

. (102)

To prove Theorem M, we prove upperbounds on the two terms of (102).

Lemma N If the data-loss calibration holds then we have for all T ≥ 1:

‖(HT,0 − Id)θ
∗
0‖2 ≤

ξ

m
· T 2 · ‖θ∗0‖2. (103)

If furthermore P̂ is α-bounded, then the following holds for all T ≥ 1:

‖(HT,0 − Id)θ
∗
0‖2 ≤

(
ξ1/4

m

)α
· ξ

3
4‖θ∗0‖2 . (104)

Proof Denote for short q .
= ξ/m. Remember that we can suppose without loss of generality that

ξ ≤ 2 (Lemma 2). We would like

(1 + q)T ≤ 1 + T 2q,∀q ∈
[
0,

2

m

]
,∀T ∈ {0, 1, ...,m− 1}. (105)
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This is trivially true for T = 0, 1. Let fq(T )
.

= (1 + q)T , gq(T )
.

= 1 + T 2q. We have

f ′q(T )

g′q(T )
=

(1 + q)T−1

2q
≥ 1,∀T ≥ 1, (106)

because of the data-loss calibration assumption (implies q ≤ 1/4). Hence, to show (105), it is
sufficient to show that it holds for an upperbound on T which for simplicity we take as T = m, i.e.,
replacing the expression of q, we want(

1 +
ξ

m

)m
≤ 1 + ξm (107)

Since 1+z ≤ exp(z), we want exp(m(ξ/m)) = exp ξ ≤ 1+ξm. Since exp(z) ≤ 1+z((exp(a)−
1)/a),∀z ∈ [0, a] (the RHS is the chord of exp on points 0, a), we get, by fixing a = 2 that it is
sufficient that

m ≥ exp(2)− 1

2
, (108)

a sufficient condition for which is m ≥ 4. Hence, if the data-loss calibration assumption holds, then
(105) is true and so we get (letting again q .

= ξ/m)

‖ (HT,0 − Id)θ
∗
0‖2 ≤ λ∗(HT,0 − Id) · ‖θ∗0‖2

≤ ((1 + q)T − 1) · ‖θ∗0‖2 (109)
≤ T 2q · ‖θ∗0‖2 . (110)

(109) holds given definition (20), Lemma L; (110) holds because of (105). If furthermore P̂ is α
-bounded, then we write

T 2q
.

=
T 2ξ

m
=
T 2ξ1/4

m
· ξ

3
4 ,

and conclude

‖ (HT,0 − Id)θ
∗
0‖2 ≤

(
ξ1/4

m

)α
· ξ

3
4‖θ∗0‖2 . (111)

This ends the proof of Lemma N.

We now have a look at the rightmost term in (102). The key part of the lemma to follow relies on
remarking that whenever an elementary permutation does not permute observations between classes,
its contribution to the sums is in fact zero.

Lemma O If the data-loss calibration assumption holds then we have for all T ≥ 1:∥∥∥∥∥
T−1∑
t=0

HT,t+1λt

∥∥∥∥∥
2

≤ ξ

m
· T 2 · ρ|ν|Kξ

X∗
. (112)

If furthermore P̂ is α-bounded, then the following holds for all T ≥ 1:∥∥∥∥∥
T−1∑
t=0

HT,t+1λt

∥∥∥∥∥
2

≤
(
ξ1/4

m

)α
· ρ|ν|ξ

3
4Kξ

X∗
. (113)
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Proof Denote for short

R
.

=
T−1∑
t=0

HT,t+1λt . (114)

Using eq. (22), we can simplify R since λt = νVt+1εt, so if we define G.,. from H.,. as follows, for
0 ≤ j ≤ i:

Gi,j
.

= νHi,jVj , (115)

then we get

R
.

=
T−1∑
t=0

GT,t+1εt , (116)

where we recall that εt
.

= µt+1 − µt is the shift in the mean operator, which is the null vector
whenever Pt acts in a specific class (yuA(t) = yvA(t)). To see this, we remark

εt
.

= µt+1 − µt

=
∑
i

yi ·
[

xiA
x(t+1)iB

]
−
∑
i

yi ·
[
xiA
xtiB

]
=

∑
i

yi ·
[

0
x(t+1)iB

]
−
∑
i

yi ·
[

0
xtiB

]
=

[
0∑

i yi · (x(t+1)iB
− xtiB)

]
.

=

[
0
εtB

]
, (117)

which can be simplified further since we work with the elementary permutation Pt,

εtB = yuA(t) · (xvB(t) − xuB(t))B + yvA(t) · (xuB(t) − xvB(t))B
= (yuA(t) − yvA(t)) · (xvB(t) − xuB(t))B . (118)

Hence,

‖εt‖2 = ‖εtB‖2 = 1yuA(t) 6=yvA(t)
· ‖(xvB(t) − xuB(t))B‖2

≤ 1yuA(t) 6=yvA(t)
·
√

2ξX∗ , (119)

from Lemma I, and we see that indeed ‖εt‖2 = 0 when the elementary permutation occurs within
observations of the same class.
It follows from the data-loss calibration assumption and Lemma G that

λ∗(Vt) ≤
1

m
· 1

sign(c)µt + 1
|c|λ
◦(Γ)

=
|c|
mX2

∗
· X2

∗
cµt + λ◦(Γ)

≤ |c|
mX2

∗
· 1

2
·min

{
1

|b|
,

1

4|c|

}
≤ 1

8mX2
∗
. (120)
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We know that H.,. is a product of positive definite matrices ((20) and Lemma L), and V. is also
positive definite (Lemma G), so using (Bhatia, 1997, Problem III.6.14), Lemma L and ineq. (120),
we obtain

λ↓1 (GT,t+1)
.

= λ↓1 (νHT,t+1Vt+1)

≤ |ν| ·
(

1 +
ξ

m

)T−t−1
· 1

8mX2
∗
. (121)

So,

‖R‖2 ≤
T−1∑
t=0

λ↓1 (GT,t+1) ‖εt‖2

≤ |ν|
4
√

2
·
T−1∑
t=0

1yuA(t) 6=yvA(t)
·
(

1 +
ξ

m

)T−t−1
·
√
ξ

mX∗

=
|ν|

4X∗
· 1√

2ξ
·
T−1∑
t=0

1yuA(t) 6=yvA(t)
·
(

1 +
ξ

m

)T−t−1
· ξ
m

, (122)

from ineq. (119). Assuming T+ ≤ T errors are made by permutations between classes and recalling
q

.
= ξ/m, we see that the largest upperbound for ‖R‖2 in ineq. (122) is obtained when all T+ errors

happen during the first elementary permutations indexes in the sequence in P̂, so we get

‖R‖2 ≤
|ν|

4X∗
· 1√

2ξ
·
T+−1∑
t=0

q(1 + q)T−t−1

=
|ν|

4X∗
· 1√

2ξ
· q(1 + q)T−T+

T+−1∑
t=0

(1 + q)T+−t−1

=
|ν|

4X∗
· 1√

2ξ
· q(1 + q)T−T+

T+−1∑
t=0

(1 + q)t

=
|ν|

4X∗
· 1√

2ξ
· q(1 + q)T−T+(1− (1 + q)T+)

1− (1 + q)

=
|ν|

4X∗
· 1√

2ξ
· (1 + q)T−T+((1 + q)T+ − 1)

=
|ν|

4X∗
· 1√

2ξ
· ((1 + q)T − 1) ·

(
1− 1

(1+q)ρT

)
(

1− 1
(1+q)T

)
≤ T 2q · |ν|

4X∗
· 1√

2ξ
·

(
1− 1

(1+q)ρT

)
(

1− 1
(1+q)T

) . (123)

Ineq. (123) holds because of ineq. (105). For z > 1, we let

f(z)
.

=
1− 1

zρ

1− 1
z

=
z − z1−ρ

z − 1
. (124)
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We have lim1 f(z) = ρ,

f ′(z) =
1− ρ+ zρ− zρ

zρ(z − 1)2
, (125)

and we check that its numerator is ≥ 0 for ρ ∈ [0, 1] (it zeroes in ρ = 0, 1 and is convex in the
interval). We also have lim1 f

′(z) = ρ(1− ρ)/2,

f ′′(z) =
z1−ρ · gρ(z)

(z − 1)3
, (126)

with gρ(z)
.

= ρ(1 − ρ) − 2(1 − ρ)(1 + ρ)z − ρ(1 + ρ)z2 + 2z1+ρ, which satisfies lim1 f
′′(z) =

−(1/3) · ρ(1− ρ)(1 + ρ) ≤ 0. We see that g0(z) = g1(z) = gρ(1) = 0 and g′ρ(z) = −2(1− ρ)(1 +
ρ)− 2ρ(1 + ρ)z+ 2ρzρ ≤ −2(1− ρ)(1 + ρ)− 2ρ(1 + ρ)z+ 2ρz = −2(1− ρ)(1 + ρ)− 2ρ2z ≤ 0,
which shows f is concave increasing for z ≥ 1 and so

f(z) ≤ ρ(1− ρ)

2
z +

ρ(1 + ρ)

2
=
ρ

2
· ((1− ρ)z + 1 + ρ),∀z ≥ 1, (127)

and so f((1 + q)T ) ≤ f((1 + q)m) ≤ f(exp(qm)) = f(exp(ξ)) which brings

f((1 + q)T ) ≤ ρ

2
· ((1− ρ) exp(ξ) + 1 + ρ), (128)

and we get after (123)

‖R‖2 ≤ T 2q · |ν|
4X∗

· 1√
2ξ
· ρ

2
· ((1− ρ) exp(ξ) + 1 + ρ)

= T 2q · |ν|ρ
X∗
· (1− ρ) exp(ξ) + 1 + ρ

8
√

2ξ
. (129)

Finally, we remark that (1− ρ) exp(ξ) + 1 + ρ = exp(ξ) + 1− ρ(exp(ξ)− 1) ≤ exp(ξ) + 1 and
get the statement of (112). We then get (113) by following the same proof as for (104) in Lemma N.
This ends the proof of Lemma O.

We summarize the statements of Lemmata N and O. If P̂ is (ε, τ)-inexact then

‖θ∗T − θ∗0‖2 ≤
ξ

m
· T 2 · ‖θ∗0‖2 +

ξ

m
· T 2 · ρ|ν|Kξ

X∗

=
ξ

m
· T 2 ·

(
‖θ∗0‖2 +

ρ|ν|Kξ

X∗

)
(130)

=
ξ

1
4

m
· T 2 ·

(
ξ

3
4‖θ∗0‖2 +

ρ|ν|ξ 3
4Kξ

X∗

)
, (131)

and in addition, if P̂ is α-bounded then

ξ
1
4

m
· T 2 ≤ ξ

1
4

m
·
(
m

ξ1/4

)1−α

=

(
ξ1/4

m

)α
, (132)

which we factor in (131). This yields the proof of Theorem M.

Theorem M easily yields Theorem 3.
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I.3 Proof of Theorem 5
Remark that for any example (x, y), we have from Cauchy-Schwartz inequality:

|y(θ∗T − θ∗0)>x| = |(θ∗T − θ∗0)>x| ≤ ‖θ∗T − θ∗0‖2‖x‖2

≤ ξ
1
4

m
· T 2 ·

(
ξ

3
4‖θ∗0‖2 +

ρ|b|Lξ
|c|X∗

)
·X∗

=
ξ

1
4

m
· T 2 ·

(
ξ

3
4‖θ∗0‖2X∗ +

|b|Lξ
|c|
· ρ
)

. (133)

So, to have |y(θ∗T − θ∗0)>x| < κ for some κ > 0, it is sufficient that

m

ξ
1
4T 2

>
ξ

3
4‖θ∗0‖2X∗

κ
+
|b|Lξ
κ|c|

· ρ ; (134)

in this case, for any example (x, y) such that y(θ∗0)>x > κ, then

y(θ∗T )>x = y(θ∗0)>x+ y(θ∗T − θ∗0)>x

≥ y(θ∗0)>x− |y(θ∗T − θ∗0)>x|
> κ− κ = 0 , (135)

and we get the statement of (12). If furthermore P̂ is α-bounded, it comes

m

ξ
1
4T 2

≥
(
m

ξ
1
4

)α
, (136)

from which we get (13).

I.4 Proof of Theorem 6
For any θ∗ ∈ C, we let N(θ∗) denote an open neighborhood of θ∗ over which `F is convex, which
is guaranteed to be non empty by the assumptions on F . We proceed in two steps, first assuming
that F is convex and then relaxing the assumption.

Case 1 — F convex. We consider any convex Ridge regularized loss `F (Ŝ,θ; ΓF ) = L+R with
R

.
= θ>ΓFθ and

L
.

=
1

m
·
∑
i

F (yiθ
>x̂i) , (137)

for some convex twice differentiable F . We first focus on the approximation of L via a Taylor loss.
We perform a local Taylor-Lagrange expansion of each F (yiθ

>x̂i) in eq. (137) around 0 and obtain
that there exists c1, c2, ..., cm ∈ F ′′(I) ⊆ R+ such that

L = F (0) +
F ′(0)

m
·
∑
i

yiθ
>x̂i + J , (138)
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where I .
= [−X̂∗Θ∗, X̂∗Θ∗] (since |yiθ>x̂i| ≤ X̂∗Θ∗ by Cauchy-Schwartz inequality) and J .

=
(1/2m) ·

∑
i ci(yiθ

>x̂i)
2. Here, we have assumed that there exists some Θ∗ > 0 such that ‖θ‖2 ≤

Θ∗; we shall see that such a bound Θ∗ indeed exists for the θ which interests us. Let

c′
.

=

∑
i ci(yiθ

>x̂i)
2∑

i(yiθ
>x̂i)2

. (139)

It trivially follows that c′ ∈ F ′′(I) and

J =
c′

2m
·
∑
i

(yiθ
>x̂i)

2 . (140)

What we thus get is that for any ∀Ŝ,θ, there exists c ∈ (1/2) · F ′′(I) ⊆ R+ such that

L = F (0) +
F ′(0)

m
·
∑
i

yiθ
>x̂i +

c

m
·
∑
i

(yiθ
>x̂i)

2 , (141)

and we also observe that L is convex. We now consider the choice c .
= c∗ obtained for

θ∗
.

= arg min
θ
`F (Ŝ,θ; ΓF ) . (142)

Let us denote `P the particular Taylor loss obtained, which therefore matches `F (Ŝ,θ; ΓF ) for the
choice θ = θ∗. We now design the regularizer of the Taylor loss to ensure that its optimum is
also achieved by θ∗. It is not hard to check that the optimum of the Ridge regularized Taylor loss
`P (Ŝ,θ; ΓT ), θ◦, satisfies:

c∗X̂X̂>θ◦ + 2mΓTθ
◦ = −F ′(0)µŜ , (143)

where µŜ
.

=
∑

i yix̂i is the mean operator (Patrini et al., 2014). Let us find the equivalent expression
for loss `F via a series of Taylor-Lagrange expansions, letting zi

.
= yiθ

∗>x̂i for short:

∀i ∈ [m],∃c′i ∈ F ′′(I) : F (zi) = F (0) + F ′(0)zi +
c′i
2
z2i . (144)

Define c ∈ Rm
+ the vector with ci

.
= c′i/2. It follows that because of eq. (142), θ∗ satisfies∑

i ci(θ
∗>x̂i)x̂i + 2mΓFθ

∗ = −F ′(0)µŜ , or more concisely,

X̂Diag(c)X̂>θ∗ + 2mΓFθ
∗ = −F ′(0)µŜ . (145)

Now, we want θ◦ = θ∗, which imposes from eqs (143) and (145), c∗X̂X̂>θ∗ + 2mΓTθ
∗ =

X̂Diag(c)X̂>θ∗ + 2mΓFθ
∗, or equivalently, after simplifying,

ΓTθ
∗ = Kθ∗ + ΓFθ

∗ , (146)

where

K
.

= X̂

(
1

2m
(Diag(c− c∗1))

)
X̂> (147)
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is symmetric but not necessarily positive definite. We clearly have θ>Kθ ≥ −X̂2
∗ supF ′′(I)/2 for

any unit θ. So, if we fix

ΓT
.

= K + ΓF (148)

after picking ΓF such that its smallest eigenvalue satisfies, for some fixed λ◦ > 0,

λ◦(ΓF ) ≥ λ◦ +
X̂2
∗

2
supF ′′(I) , (149)

then we shall have eq. (146) ensured with ΓT symmetric positive definite with λ◦(ΓT ) ≥ λ◦. We
can also remark that eq. (145) yields, because X̂Diag(c)X̂> is positive semi-definite,

‖θ∗‖2 ≤
|F ′(0)|X̂∗
2λ↑1(ΓF )

, (150)

so we can posit Θ∗
.

= |F ′(0)|X̂∗/(2λ↑1(ΓF )) and in fact we can pick

I .
=
|F ′(0)|X̂2

∗

2λ↑1(ΓF )
· [−1, 1] . (151)

For any finite λ◦, X̂∗, let us define

J(λ◦, X̂∗)
.

=

{
z ∈ R : z ≥ λ◦ +

X̂2
∗

2
supF ′′

(
lim
z′→z

|F ′(0)|X̂2
∗

2z′
· [−1, 1]

)}
∩ R+ . (152)

Picking λ◦(ΓF ) in J(λ◦, X̂∗) guarantees that it satisfies eq. (149). Let us denote for short J′ to
be the leftmost set in the intersection in eq. (152). Because the argument of F ′′ is the same
for any ±z, if there exists any z < 0 in J′, then −z is also in J′. We remark that because
|F ′(0)| � ∞, the argument set of F ′′(.) converges to {0} with z → ±∞; since F ′′ is continuous
and |F ′′(0)| = F ′′(0)�∞ by assumption, we get that J′ is non-empty, and so J′∩R+ is non-empty,
thus

J(λ◦, X̂∗) 6= ∅ . (153)

So, let us define

λ∗
.

= inf J(λ◦, X̂∗) (≥ 0) , (154)

removing the dependence of λ∗ in λ◦, X̂∗ for clarity.
To summarize, for any λ◦ > 0 and any Ridge regularized loss `F (Ŝ,θ; ΓF ) satisfying F ∈ C2,

|F ′(0)|, F ′′(0) � ∞ and λ◦(ΓF ) ≥ λ∗ where λ∗ is finite and defined in eq. (154), there exists a
Taylor loss `P (Ŝ,θ; ΓT ) such that

1. `F (Ŝ,θ∗; ΓF ) = `P (Ŝ,θ∗; ΓT ) where θ∗ .
= arg minθ `F (Ŝ,θ; ΓF );

2. arg minθ `F (Ŝ,θ; ΓF ) = arg minθ `P (Ŝ,θ; ΓT );
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3. λ◦(ΓT ) ≥ λ◦.

We also check that a = F (0), b = F ′(0), and we get the statement of the Theorem when F is convex.

Case 2 — F not convex. When F is not convex, we still have for any θ∗ ∈ C because F is twice
differentiable,

`F (Ŝ,θ∗; ΓF ) = `F (Ŝ,0; ΓF ) + θ∗>∇θ`F (Ŝ,θ; ΓF )|θ=0 +
1

2
· θ∗>∇∇θ`F (Ŝ,θ; ΓF )|θ=uθ

∗ ,(155)

for some u = t · θ∗ with t ∈ [0, 1], where ∇∇ denote the Hessian, given by

∇∇θ`F (Ŝ,θ; ΓF )|θ=u =
∑
i

F ′′(yiu
>x̂i) · x̂ix̂>i + 2ΓF , (156)

positive semi-definite since θ∗ ∈ C. F being C2, F ′′ being continuous, θ∗ is a local minimum of
the loss in an open neighborhood N(θ∗) of θ∗. We still can build the equivalent Taylor loss and first
its L part as in eq. (138). However, L is not necessarily convex this time. The Hessian of the Taylor
loss regularized is now

∇∇θ`P (Ŝ,θ; ΓT ) = c∗
∑
i

x̂ix̂
>
i + 2ΓT , (157)

and so to obtain a convex regularized Taylor loss, it is sufficient to ensure, for some fixed λ◦ > 0,

2λ◦(ΓT ) ≥ λ◦ + X̂2
∗ supF ′′(I) , (158)

which is exactly ineq. (149) with its argument λ◦ halved. So, the regularized Taylor loss is in fact
convex, and the only other modification is to now ensure |F ′′(0)| � ∞ since F can be concave in
0.

Remark: throughout all results, we have assumed without loss of generality that the mean operator
µŜ 6= 0, which implies, from eqs (143) and (145) that 0 cannot be a critical point of the losses.

I.5 Strength of the regularisation imposed on the loss
The set of losses we consider, which we define as regular symmetric proper losses (RSPL), are
essentially proper, strictly convex and have no class-dependent misclassification costs Nock &
Nielsen (2008, 2009). For any such loss there exists a permissible ψ such that F .

= Fψ with

Fψ(z)
.

=
ψ(0) + ψ?(−z)

ψ(0)− ψ(1/2)
.

= aψ +
ψ?(−z)

bψ
, (159)

where ? is the convex conjugate (Nock & Nielsen, 2009). A permissible ψ satisfies dom(ψ) ⊇ [0, 1],
ψ strictly convex, differentiable and symmetric with respect to 1/2. We add the condition that ψ′ is
concave on [0, 1/2] and denote this set of losses as regular symmetric proper losses (RSPL). Popular
examples of RSPLs include the square, logistic and Matsushita losses (Nock & Nielsen, 2009), the
square loss also being a Taylor loss.
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Lemma P If `F is RSPL in Theorem 6 (main file), we can pick λ∗ .
= λ◦ + F ′′(0)X̂2

∗/2, where
X̂∗

.
= maxi ‖x̂i‖2.

Remark: as examples, F ′′(0) is respectively 1/4, 1/2 for the logistic and Matsushita losses Nock
& Nielsen (2009), which results in a relatively small value for λ∗.
Proof Since ψ is strictly convex differentiable, its convex conjugate is ψ?(z) = zψ′−1(z) −
ψ(ψ′−1(z)), from which we easily get F ′′ψ(z) = 1/(bψψ

′′(ψ′−1(−z))). Because ψ′ is concave on
[0, 1/2], ψ′′ is decreasing on [0, 1/2] and therefore increasing on [1/2, 1], achieving its minimum
for ψ′−1(−z) = 1/2, which gives −z = ψ′(1/2) = 0 and z = 0 for the arg max of F ′′ψ(z). Hence,
J(λ◦, X̂∗) becomes more explicit:

J(λ◦, X̂∗)
.

=

{
z ∈ R+ : z ≥ λ◦ +

F ′′ψ(0)X̂2
∗

2

}
, (160)

so we can just pick

λ∗
.

= λ◦ +
F ′′ψ(0)X̂2

∗

2
, (161)

as claimed.

II Supplementary material on experiments

II.1 Detailed setting
We consider the setting in which there exists a small set of features that is present in both peers, A
and B. We call them the shared features and use them for record linkage. This setting is realistic
considering, for example, that many businesses or government bodies would share basic information
about their customers (such as gender, postal code, age, contact number, etc.) (Patrini et al., 2016).
We then put noise in those shared features as a slider to vary the hardness of the task. We adopt a
simple noise injection process, inspired by thorough analyses in the area (Christen & Pudjijono,
2009). Let p be the noise probability. Each shared value is replaced with probability p by a neighbor
in the feature’s domain, i.e. if we assume a total order in the feature values (which is available for
most: binary, real or ordinal), we replace with probability p the feature value by a neighbor in the
order: if the feature is binary, then it is replaced by the other value; otherwise, we pick uniformly at
random a value in the set of neighboring ±u indexes, clamped to the observed set of values — i.e.
we do not generate unobserved feature values. If there are more than 20 recorded values for the
feature, then u = 10; otherwise, u = 2. Such a neighbor noise process follows the observed pattern
that errors in the real world often generate neighboring values, for a neighbor relationship that can
belong to the phonetic, typographic, OCR or just keyboard spaces (Christen & Pudjijono, 2009).

II.2 Detailed algorithms and baselines for record linkage
The max-weighted matching problem and the GREEDY routine — there is a particularly in-
teresting routine that we call GREEDY, which delivers a fast approximation to a problem that
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Algorithm 1 GREEDY(I)
Input: set [m]2 ⊃ I

.
= {(iA, iB)}, where iA (resp. iB) belongs to indexes of A (resp. B)

Ig ← ∅
repeat

let (i∗A, i
∗
B)

.
= arg max(i,i′)∈I c̃os(shared(xAi), shared(xBi′))

Ig ← Ig ∪ {(i∗A, i∗B)}
delete i∗A from I

delete i∗B from I

until I = ∅
return Ig

generalizes ours for record linkage: maximum weighted matching for balanced bipartite graphs
(Avis, 1983). The instance of this problem is a balanced complete bipartite graph with non-negative
weights, a feasible solution is a subset of edges covering all vertices, in which each vertex appears
once. The criterion to be maximized is the sum of weights. If we take as the total (sum-of) cosine
similarity the criterion to be maximized for record linkage and note that maximizing the criterion
for the cosine similarities is equivalent to maximizing the same criterion for (1+cosine similarity)es,
which is non-negative, then GREEDY, provided in Algorithm 1, provides a fast approximation to
record linkage, namely O(|I|2 log |I|) for a non-optimized implementation. Let us denote C∗ the
optimal value of the total cosine similarity. There exists a long-known method, the Hungarian
algorithm, that provably achieves the optimum (Kuhn, 1955), yet it requires a significantly more
sophisticated implementation to even reach O(|I|3) time complexity. We stick to the greedy algo-
rithm GREEDY not just for computational reasons and its straightforwardness of implementation:
GREEDY does provide a guaranteed good constant approximation to C∗.

Lemma Q Avis (1983) (Theorem 4) Let us denote CGREEDY as the total record linkage similarity
retrieved by GREEDY. Then CGREEDY ≥ C∗/2.

It is also believed that the actual worst-case approximation provided by GREEDY is even better
(Deligkas et al., 2017). In our experiments, we test and compare several algorithms for record
linkage in various environments. We now present those algorithms.

B does not use classes: GREEDYRL — In this case, peer B does not have the knowledge of
classes and does not use the knowledge of classes for record linkage: linking proceeds from
a straightforward use of routine GREEDY, as explained in the boxed algorithm below, where
I

.
= {(i, i′), i ∈ [m], i′ ∈ [m]}.

Algorithm GREEDYRL(I) — Let

Ig ← GREEDY(I) . (162)

Link all data following Ig, return Ŝ.

B has classes: GREEDYRL+C2 — This approach can be implemented when both A and B have
the knowledge of the true class for their respective observations, which is the setting of Patrini

2In the main file, we have merged this case with GREEDYRL+C̃ for the sake of saving space. In this SM, we chose
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et al. (2016). The algorithm simply consists in running GREEDY over the positive class only, then
GREEDY over the negative class only and finally linking the datasets according to the outputs of
GREEDY. More formally, if we denote for short SA

.
= {(xAi, yAi) : i = 1, 2, ...,m} the sample from

A, and SB
.

= {(xBi, yBi) : i = 1, 2, ...,m} the sample from B, then the algorithm can be summarized
as follows, with I+

.
= {(i, i′) : yAi = yBi′ = +1} and I−

.
= {(i, i′) : yAi = yBi′ = −1}.

Algorithm GREEDYRL+C(I+, I−) — Let

I+g ← GREEDY(I+) , (163)
I−g ← GREEDY(I−) . (164)

Link the datasets following I+g and I−g , return Ŝ.

B does not have classes but learns them: GREEDYRL+C — In this case, peer B does not have
the knowledge of classes but computes classes using a simple four-steps practical approach relying
on shared features:

(i) we run GREEDY as in GREEDYRL and then discard couples in Ig whose similarity is below the
median similarity. We then assign a label to the observations of B still appearing in Ig, by using
the correspondence with A in Ig;

(ii) to complete labelling in B, we use a simple k-NN algorithm inside B which gives a label to
the remaining observations based on the labels computed from step (i) only. At this stage, all
observations in B are given a class;

(iii) We then run GREEDYRL+C using the predicted classes for B. Notice that we have no guarantee
that the class proportions in B will be the same as in A. For that reason, we end up in general
with a subset of observations in A and B being not linked;

(iv) to complete linkage, we just run GREEDYRL in the subset of remaining observations.

The overall algorithm is sketched in the box below.

to keep them apart to clearly distingush between the case where there is no noise from the case where there is some
noise in RL.
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Algorithm GREEDYRL+C— Let I .
= {(i, i′), i ∈ [m], i′ ∈ [m]}, and

Ig ← GREEDY(I) . (165)

Let ς be the median similarity in Ig. Discard from Ig all couples with similarity below ς and
affect classes to observations of B using the remaining couples:

∀(i, i′) ∈ Ig, yBi′ ← yAi . (166)

Let S∅B denote the subset of observations of B without a label, and ScB denote the subset of
observations of B with a label (the total set of observations of B is S∅B ∪ ScB). Use a k-NN rule
to give a label to observations from S∅B:

∀xBi′ ∈ S∅B, yBi′ ← k-NN(ScB) . (167)

Let I+ .
= {(i, i′) : yAi = yBi′ = +1} and I−

.
= {(i, i′) : yAi = yBi′ = −1}. Run

GREEDYRL+C(I+, I−). Let IA ⊆ [m] and IB ⊆ [m] denote (indexes of) the subsets of
observations not linked in A and B (we have |IA| = |IB|). Run GREEDYRL(IA × IB), link all
data, return Ŝ.

B has noisy classes: GREEDYRL+C̃ — This corresponds to running GREEDYRL+C in an en-
vironment where A has the knowledge of the true class but B has a knowledge of noisy classes.
To conform with the vertical partition setting, we simulate permutation noise over classes in B
by the following process: starting from setting GREEDYRL+C / true classes, given a proportion
p′, we permute a random positive class and a random negative class for [mp′] iterations in B,
where [.] gives integer rounding. We then run GREEDYRL+C as in the noise-free setting. To
distinguish with the noise-free environment, we call this approach GREEDYRL+C̃(p′). We consider
p′ ∈ {0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.15, 0.2}. Remark that p′ = 0.2 can be considered a fairly
large noise proportion.
‘IDEAL’ — because we use simulated domains, we are able to compute the performances of the
ideal record linkage. In this case, Ŝ = S.

Algorithm ‘IDEAL’ — return S.

‘Ideal’ gives our ‘optimal’ baseline to compare against the practical approaches to record linkage
developed thereafter.

II.3 Domains
To have reliable baselines against which to compare our algorithms, we have used UCI domains
(Blake et al., 1998) from which we have generated our distributed data using the following process:
given a set of shared features, split randomly the remaining features between A and B. The shared
features of B are then noisified using the process describes above in Subsection II.1. A always has
access to the classes. Remark that since only the shared features of B are noisified, this guarantees

31



Domain m d s shared linear correlations wrt class C.Err
magic 19020 10 4 0, 1, 2, 3 0.29, 0.25, 0.11,−0.02 10−4

page 5473 10 3 0, 1, 2 −0.12,−0.03,−0.09 1.83
sonar 208 60 3 0, 1, 2 0.27, 0.23, 0.19 3.69
winered 1599 11 2 7, 8 −0.15,−0.003 6.02
eeg 14980 14 4 0, 1, 2, 3 0.01,−0.08, 0.04,−0.08 6.08
phishingH 11055 30 5 5, 6, 7, 13, 25 0.34, 0.30, 0.71, 0.69, 0.34 7.39
winewhite 4898 11 3 0, 1, 2 −0.08,−0.21,−0.0007 8.57
breast-wisc 699 9 2 0, 1 −0.68,−0.78 9.21
fertility 100 9 3 2, 3, 4 −0.02,−0.09, 0.03 12.22
banknote 1372 4 1 0 −0.72 13.14
creditcard 14599 23 4 1, 2, 3, 4 −0.02, 0.01,−0.02, 0.004 14.96
qsar 1055 41 4 2, 5, 8, 9 −0.28,−0.16,−0.05, 0.16 16.67
transfusionH 748 4 1 0 −0.24 17.36
transfusionL 748 4 1 3 −0.03 17.80
firmteacher 10800 16 2 0, 1, 2, 3, 4 −0.22, 0.29,−0.25, 0.18, 0.10 19.78
ionosphere 351 33 1 0 0.45 20.57
phishingL 11055 30 4 0, 1, 2, 3 0.09, 0.05,−0.06, 0.05 24.35

Table A1: UCI domains used (Blake et al., 1998). For each domain, we indicate the total number of
examples (m), total number of features (d) and the number of shared features used in our simulations
(s). We then indicate the list of shared features (indexes as recorded in the UCI) and the list of
linear correlations with the class for each of them. We finally indicate the average class errors in
record linkage for GREEDYRL (C.Err), i.e. the proportion of examples from one class matched by
GREEDYRL with examples from the other class. Domains are listed in increasing value of C.Err.

that the final observation matrix, X̂, obtained after record linkage indeed meets the decomposition

X̂
.

=

[
XA

XBP̂

]
(168)

for some unknown P̂, where the shared features in the matrix are those of A. This guarantees that
the differences between learning algorithms are not due to the (variable) effect of noise in features
but to the errors of P̂ following mistakes in record linkage. Table A1 presents the domains we have
used. For two of them (phishing, transfusion), we have considered two versions, one in which the
shared attributes are highly correlated with the class (H) and one in which they are not (L). Remark
that the proportion of linkage errors between classes ranges between ≈ 0 to ≈ 25%, which is very
significant, and the proportion of shared features among all ranges from ≈ 3% to > 30%.

II.4 The class is key to optimizing record linkage
Results are displayed in Table A2. From those results, several observations come to the fore. First,
the larger the number of errors of record linkage among classes for GREEDYRL (Table A1, C.Err),
the more beneficial are the approaches using the class information for record linkage. On domains

32



firmteacher, ionosphere, phishing, using the class information is almost always on par with or
(significantly) better than GREEDYRL. Second, the improvement can be extremely significant
as witnessed by domains creditcard or firmteacher, with almost 20 % improvement when using
(even noisy) classes on creditcard, and still up to 6% improvement when using predicted classes
(GREEDYRL+C) on creditcard. This is very good news because the shared features we used on
creditcard — sex, education, marriage, age — are typically those that would be shared in a federated
learning setting.

Another observation may be made: on all domains but one (banknote), carrying record linkage
is susceptible to compete against ‘Ideal’. On the majority of domains, there exists a version of
GREEDYRL[as is — +C — +C — +C̃] which beats ‘Ideal’ — even when not statistically in most
cases —. On few domains, page, sonar, transfusion (both H and L), using class information yields
results that almost always beat the ‘Ideal’ baseline. One explanation comes from the fact that all
learners, including ‘Ideal’, use AdaBoost for a limited number of iterations. On these domains, the
models learned after record linkage tend to be slightly less sparse than for ‘Ideal’. So, it seems
reasonable that record linkage, when carefully used as may be the case with class information, may
force the spread of AdaBoost’s feature leveraging to a larger number of relevant features, compared
to ‘Ideal’ which focuses on a smaller set during the thousand iterations allocated and thus comes up
with a model that can less accurate. Also, considering phishing, we see that having shared features
that are more correlated with the class (phishingH vs phishingL) certainly helps to compete against
‘Ideal’, in particular when one peer does not have classes. The same observation can be made for
transfusion, even when the gains with more correlated features are less important in this case, which
can be due to the small number of shared features.

If we now compare the two approaches of GREEDYRL using class information (with classes,
even noisy, vs without), then it is apparent that having noisy classes — with up to 20% noise —
can very significantly help against GREEDYRL compared to carrying out record linkage without
ground class information (but learning classes) as in GREEDYRL+C. Our approach that learns
classes in GREEDYRL+C is simple but still manages to deliver significant improvements in some
cases, typically high noise for shared features (winewhite, creditcard) or shared features sufficiently
correlated with class (transfusionH).

Finally, we keep in mind that these results are obtained for simulations that include in general
a small number of shared features (2.8 on average) and a shared feature noise that ranges up to
p =30%, which would correspond to relatively challenging practical settings. This suggests that if
we exclude pathological domains like banknote in our benchmark, there would be for most domains
good reasons to carry out tailored approaches to record linkage for learning with the ambition to
challenge the unknown learner having access to the ideally linked data. This is not surprising: it
is known that the sufficient statistics for the class is very simple for many relevant losses (Patrini
et al., 2014), so we should not expect perfect record linkage to be necessary to improve learning
performance.

II.5 Observation of immunity of large margin classification to record link-
age mistakes

In Section 3 (main file), we essentially show that all examples receiving large margin classification
on θ∗0 are given the right class by θ∗T . To our knowledge, such a result has never been documented,
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winewhite, GREEDYRL+C(5) creditcard, GREEDYRL+C(10)

Figure 3: Margin distribution on two domains with shared attribute noise p = 0.3. The magenta
histogram displays the distribution of margins of θ∗= θ∗0 on training. The green curve is the
cumulated relative error of θ̃∗= θ∗T above some margin x. For example, on winewhite, less than
20% of the errors on training happen on examples with positive margin, and approximately no error
happens on examples with positive margin above 0.5 — in other words, all examples with margin
above 0.5 on θ∗0 receive the right class from θ∗T and so, following Definition 4, θ∗T happens to be
immune to record linkage at margin 0.5. Since the maximal margin recorded for θ∗0 is ≈ 3.0, we
see in this example that immunity occurs for a comparatively small positive margin (best viewed in
color, see text for details).

even experimentally, but it would represent a significant support for federated learning since one
can hope, by joining diverse databases, to increase not just the accuracy of classifiers but in fact the
optimal margins over examples, thereby bringing immunity to the mistakes of record linkage for
examples that would attain sufficiently large margins. But how ‘large’ a margin is necessary? On
each domain, we have computed the margin distributions of θ∗0 — approximated by the output of
AdaBoost ran on the training sample S for twice the usual number of iterations, that is, 2000 (we
do this for all cross validation folds). We then compute, for all examples, whether they are given
the right class by θ∗T . We finally compute the cumulative error distribution, in between 0 and 1,
of θ∗T . For any x ∈ [κm, κM ] (the interval of observed margins), the cumulative error on x is just
the proportion of errors occurring for margins in the interval [x, κM ]. When x = κm, this is just
1. Figure 3 provides two examples of curves obtained, which does not just validate immunity: on
winewhite, it shows that it can happen for a quite small margin (≈ 0.5) with respect to the maximal
margin (κM ≈ 3.0), which reinforces the support for federated learning. On creditcard, we have
κM ≈ 188 while immunity happens at margin ≈ 100. Less than 1% of mistakes have margin larger
than 30.

Finally, in table A3, we provide the minimal immunity margin on one domain for GREEDYRL+C̃,
for different values of p′, that is, the minimal κ for which there is no error on examples with margin
≥ κ on θ∗0. We can see that this minimal margin largely increases with noise, and so increasing
noise in the record linkage process degrades the margin picture, which is also consistent with the
fact that the error of θ∗T also significantly increases.
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II.6 RL impact on ML via ξ or T
According to Theorem 3 (main file), the size of P (T ) and parameter ξ should be a reasonable handle
on how the training and test errors behave. For several datasets, we have extensively computed an
upperbound of ξ which amounts to consider ε = 0 in (6). In this case, we get ξ ≤ B for

B
.

= max
t

max{‖at − bt‖2, ‖a′t − b′t‖2}, (169)

where at, bt,a′t, b
′
t are the four observations involved in Pt (Section 3, main file), and the size of Pt

is (under)estimated using the linear time algorithm before (6) (main file). If our theory holds, then
diagrams giving errors as a function of ξ or T should have a commonpoint: the spread of the error(s)
should be more important as we move alongside the x axis, remembering that Theorem 3 gives
one-sided inequalities (i.e. not lowerbounds). If we were to plot results, we then should reasonably
expect datapoint to spead in a cone whose apex should appear at the left of the plot, among the
smallest values of ξ or T . Tables A4 and A5 summarize a series of results for a subset of domains
and a subset of algorithms considered, on which we have approximated the corresponding cone
for breast-wisc (ξ), displaying that it indeed does fit the formal shape that the theory suggests. The
general cone pattern is clearly visible for most domains, for both ξ and T and on training and testing.
Furthermore, on almost all domains, a larger amount of noise clearly ‘pushes’ the results towards
the right of the plot, i.e. towards the degradation of the parameter ξ or T . That it also fits test errors
is not unexpected but given the uncertainty on estimating test errors, the accuracy of the fit and
picture on testing is good news. Indeed, it suggests that it could be possible to estimate the impact
of record linkage on testing ML models, which is quite downstream the pipeline considering how
RL is upstream in the process. That such criteria could survive not just one (learning ML model) but
two (evaluating the ML model on test data) major sources of uncertainty is good news. Our plots
suggest it is crucial to estimate the range of parameters ξ or T – they can fluctuate very significantly
depending on the domain. Provided this can be done and good estimation is available for ξ or
T , one could not just be able to understand where the current ML model stands, but eventually
where could any model stand by fitting this conic region. Some particular cases emerge from our
experiments: domain ionosphere does not display the expected shape for ξ, but this could be due to
the exceptional small range of ξ of ≈ .1 width. The plots for T clearly display the expected shape.
Domain page display, for a few runs, an improvement of the test error as p′ increases. However, this
appears for a moderate value of the RL noise (p = 0.1) for a domain in which greedy RL performs
already very well without using the class information (Table A1).
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Domain Noise p ‘Ideal’ GREEDYRL[as is — +C — +C — +C̃] #
as is +C(k) +C +C̃(p′) beats

1 2 5 10 0.01 0.02 0.03 0.04 0.05 0.10 0.15 0.20 ideal

magic
0.05 21.14 21.15 21.08 21.08 21.06 21.11 21.15 21.04 21.10 21.08 21.19 21.21 21.65 ∗22.28 ∗22.70 7
0.1 21.14 21.19 21.42 ∗21.53 21.21 21.17 21.08 21.21 21.08 21.17 21.18 21.33 ∗21.82 ∗22.57 ∗23.58 2
0.3 21.16 21.14 21.26 21.33 21.14 21.16 21.14 21.06 21.16 21.24 ∗21.62 ∗21.72 ∗∗22.34 ∗∗23.75 ∗∗25.31 4

page
0.05 27.62 25.16 25.31 25.36 25.31 25.14 25.85 25.82 ∗27.26 ∗27.28 ∗27.66 ∗28.02 ∗29.23 ∗30.31 ∗31.04 9
0.1 27.17 26.11 26.03 25.43 ∗24.65 ∗24.61 25.63 26.63 26.31 26.55 26.48 27.39 27.96 ∗31.32 ∗34.59 10
0.3 27.66 24.83 ∗26.43 26.18 25.79 25.14 ∗25.87 25.67 26.24 26.49 26.82 26.65 28.10 29.21 33.44 11

sonar
0.05 26.93 25.95 25.00 28.31 24.95 26.40 26.92 24.50 25.45 22.55 24.05 24.48 23.07 23.05 25.90 13
0.1 26.88 26.45 25.45 28.38 24.52 27.45 26.88 24.98 27.40 25.48 26.50 28.40 25.02 29.33 25.55 8
0.3 26.02 25.05 26.45 24.55 24.98 25.02 25.50 23.59 22.14 22.62 24.07 24.55 25.50 27.02 26.90 11

winered
0.05 26.08 26.58 26.20 26.32 26.45 26.58 26.77 26.45 26.83 26.20 26.45 26.33 26.64 28.20 ∗28.77 0
0.1 26.57 26.76 27.26 27.26 26.82 27.57 27.01 26.82 26.82 26.76 26.39 26.88 26.76 27.95 28.64 0
0.3 26.58 27.58 27.01 27.20 27.64 26.89 26.89 26.83 26.70 27.01 26.64 26.83 26.76 26.82 27.08 0

eeg
0.05 45.18 45.05 44.43 44.99 43.88 44.16 45.16 45.29 45.59 45.72 45.62 45.84 46.46 46.47 46.50 6
0.1 45.79 45.92 45.47 45.61 45.20 45.80 45.79 45.83 46.03 45.74 46.19 46.45 43.96 ∗43.42 43.99 7
0.3 45.19 46.10 46.08 46.58 46.68 46.60 45.18 45.40 45.45 45.96 45.02 45.61 45.07 45.07 45.04 5

phishingH
0.05 8.03 8.40 8.08 8.18 8.70 8.62 8.17 8.05 8.05 8.14 8.23 ∗8.95 ∗10.84 ∗∗12.85 ∗∗15.41 0
0.1 7.92 8.35 8.23 8.16 8.36 8.51 7.92 ∗7.76 8.01 8.21 8.72 8.76 ∗9.61 ∗∗12.86 ∗∗15.29 1
0.3 7.96 8.90 9.15 8.91 9.01 8.86 8.39 ∗8.09 ∗8.17 8.46 8.67 9.05 ∗11.49 ∗∗13.5 ∗∗15.46 0

winewhite
0.05 30.58 30.34 30.30 30.28 30.36 30.31 30.60 30.65 30.65 30.69 30.65 30.85 30.30 30.69 30.30 7
0.1 30.99 31.11 30.91 30.97 30.97 30.85 30.75 30.95 31.03 31.26 31.03 31.11 31.58 31.60 31.95 6
0.3 30.95 32.79 ∗31.44 ∗31.36 ∗31.31 ∗31.16 ∗30.97 ∗31.19 ∗31.17 ∗30.89 ∗31.07 ∗30.99 ∗31.48 32.01 32.97 0

breast-wisc
0.05 3.00 3.71 3.43 3.57 3.57 3.43 ∗2.43 2.57 3.29 3.29 3.14 3.57 3.43 3.57 3.00 2
0.1 3.00 3.86 3.86 3.43 3.29 4.29 3.15 3.29 3.00 3.29 3.00 3.72 4.01 4.29 5.30 0
0.3 2.71 6.29 5.58 5.72 5.57 ∗4.86 ∗3.28 ∗3.43 ∗3.43 ∗3.85 ∗3.86 ∗4.14 ∗4.43 4.86 6.01 0

fertility
0.05 43.00 49.00 43.00 33.00 41.00 44.00 42.00 43.00 52.00 50.00 52.00 52.00 43.00 48.00 55.00 3
0.1 43.00 41.00 41.00 47.00 42.00 52.00 45.00 44.00 44.00 50.00 47.00 44.00 53.00 47.00 55.00 3
0.3 46.00 50.00 55.00 58.00 49.00 59.00 49.00 49.00 54.00 50.00 54.00 54.00 53.00 55.00 43.00 0

banknote
0.05 2.77 13.26 13.71 13.92 12.83 13.92 ∗7.95 ∗7.65 ∗7.43 ∗7.80 ∗7.72 ∗8.31 ∗9.98 12.82 14.93 0
0.1 2.77 14.94 14.79 14.50 15.23 14.79 ∗11.88 ∗11.51 12.68 ∗12.31 12.53 13.63 14.72 16.25 17.27 0
0.3 2.91 12.89 13.84 12.74 12.39 12.97 10.06 10.64 11.15 10.78 11.73 12.03 13.55 14.69 16.91 0

creditcard
0.05 23.26 23.26 23.26 23.26 23.26 23.26 23.26 23.26 23.26 23.26 23.26 23.26 23.26 23.26 23.26 0
0.1 23.26 41.87 40.66 41.46 ∗36.91 36.89 ∗∗23.26 ∗∗23.26 ∗∗23.26 ∗∗23.26 ∗∗23.26 ∗26.19 42.65 43.08 44.36 0
0.3 23.26 42.49 41.19 42.03 ∗38.82 ∗36.51 ∗∗23.26 ∗∗23.26 ∗∗23.26 ∗24.72 ∗25.01 ∗32.28 40.87 41.75 40.89 0

qsar
0.05 21.80 23.51 23.60 22.94 23.03 24.17 21.62 21.90 21.72 21.72 22.19 22.19 22.28 22.38 23.51 3
0.1 21.51 23.22 23.02 23.40 23.78 23.31 22.27 21.79 21.70 21.99 21.79 21.89 22.36 22.75 22.75 0
0.3 21.81 22.85 23.13 22.19 23.13 22.27 22.19 22.28 22.28 21.81 21.71 21.90 22.00 22.66 22.76 1

transfusionH
0.05 39.57 36.10 ∗33.82 ∗34.09 ∗34.89 ∗34.36 ∗39.03 ∗39.84 ∗39.71 ∗38.77 ∗38.64 37.44 ∗34.89 ∗33.43 35.03 12
0.1 39.72 35.83 36.09 35.95 ∗33.55 ∗33.28 ∗40.38 ∗38.92 ∗37.57 36.89 34.88 34.89 ∗33.16 ∗33.82 34.63 13
0.3 38.37 35.55 35.83 34.08 34.89 34.89 ∗38.65 ∗37.98 ∗37.44 37.04 37.17 35.97 35.62 35.03 34.89 13

transfusionL
0.05 38.64 34.65 34.77 34.76 34.22 34.89 38.23 36.90 37.43 34.90 33.96 34.23 33.17 34.63 33.57 14
0.1 39.02 35.15 34.75 35.29 35.16 34.48 37.16 38.09 38.09 37.17 36.36 33.68 33.55 33.55 33.41 14
0.3 39.29 34.09 33.41 35.16 34.76 34.63 ∗39.29 ∗38.77 ∗37.82 35.82 ∗37.02 35.82 35.56 34.08 32.48 13

firmteacher
0.05 12.45 17.57 18.03 18.23 17.75 18.00 ∗∗12.71 ∗∗12.68 ∗∗12.71 ∗13.06 ∗∗13.02 ∗∗13.35 ∗14.81 ∗15.90 17.38 0
0.1 12.39 21.03 21.06 21.29 21.51 21.54 ∗∗12.89 ∗∗12.71 ∗∗12.73 ∗∗12.72 ∗∗13.14 ∗∗13.36 ∗∗14.82 ∗16.98 ∗18.06 0
0.3 12.35 20.45 ∗21.12 ∗21.16 20.32 20.34 ∗∗12.54 ∗∗12.45 ∗∗12.42 ∗∗12.73 ∗∗12.81 ∗∗13.00 ∗∗14.54 ∗∗16.05 ∗∗17.44 0

ionosphere
0.05 11.95 19.04 19.34 19.61 20.19 19.34 14.51 14.23 16.49 14.79 16.48 14.80 17.63 19.35 19.35 0
0.1 10.28 16.25 14.54 15.13 15.96 16.54 13.42 14.56 15.41 15.68 15.39 15.68 15.39 15.97 16.26 0
0.3 10.84 17.95 19.38 ∗22.50 20.23 17.93 ∗13.97 ∗13.40 13.70 14.55 15.98 17.38 15.68 18.24 18.23 0

phishingL
0.05 7.97 14.80 14.82 14.99 15.02 14.98 ∗∗7.91 ∗∗8.27 ∗∗8.44 ∗∗8.45 ∗∗8.61 ∗∗8.83 ∗∗9.94 ∗∗10.16 ∗∗11.18 1
0.1 7.89 11.11 11.11 11.11 11.11 11.11 ∗∗8.02 ∗∗7.92 ∗∗7.82 ∗∗7.82 ∗∗7.91 ∗∗8.11 ∗∗8.50 ∗∗9.32 ∗10.65 2
0.3 7.91 13.73 13.73 13.73 13.73 13.73 ∗∗8.29 ∗∗8.51 ∗∗8.47 ∗∗8.44 ∗∗8.60 ∗∗8.80 ∗∗9.16 ∗∗9.81 ∗∗10.54 0

Table A2: Results (test errors) comparing, for three values of the shared features noise (p), the
various approaches built on top of GREEDYRL to ‘Ideal’. Domains are listed in the same order as
in Table A1. Grey shaded cells are the results of ‘Ideal’ and GREEDYRL (indicated ‘as is’). Red
text denote results that are statistically outperformed by GREEDYRL; green text denote results of
GREEDYRL[+C — +C — +C̃] statistically better than greedyER. One star (∗) indicated p-value in
(10−6, 10−2], two stars (∗∗) indicated p-value ≤ 10−6 (best viewed in color). The rightmost column
(’# beats ideal’) records the number of columns in which a version of GREEDYRL is better (but
not necessarily statistically better) than ‘Ideal’ (max = 14).

p′ = 0 p′ = 0.01 p′ = 0.02 p′ = 0.03 p′ = 0.04 p′ = 0.05 p′ = 0.1 p′ = 0.15 p′ = 0.2
0.068 0.086 0.218 0.359 0.362 0.513 0.891 1.113 0.913

Table A3: Minimal immunity margin on domain magic (p = 0.3) for GREEDYRL+C̃.
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x = ξ (upperbound) T (lowerbound)
y = Train err. Test err. Train err. Test err.

winered

breast-wisc

ionosphere

Table A4: Train and test errors as a function of an upperbound on ξ or lowerbound on the permutation
size T , for GREEDYRL+C̃(p′), for p′ ranging in between 0 (GREEDYRL+C above) and .5. The size
of the disks is correlated with the amount of noise p′. See text for the meaning of dashed axes on
breasc-wisc.
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ξ (upperbound) T (lowerbound)

page

winewhite

firmteacher

Table A5: More results on test errors, conventions follow Table A4.
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