Differentially Private EBMs

7. Appendix
7.1. Differentially Private Binning

While not a main contribution of this paper, for
completeness (and reproducibility) we describe the
differentially private binning algorithm used as a
preprocessing step to DP-EBMs. Our goal is to create bins
for each feature such that each bin contains roughly equal
proportions of data. For example, if the goal is to end up
with 10 bins per feature, we expect each bin to roughly
contain 1—10 of the data.

Like other DP tree implementations, we assume that the min
and max of each feature are supplied by the user (Dwork
et al., 2014; Jagannathan et al., 2009). The algorithm begins
by uniformly dividing the feature space into equal width
bins, without looking at any user data. If the user requests m
bins in total, the binning procedure creates 2 - m equal width
bins to begin with. We then create a differentially private
histogram based on those uniform bin widths, adding noise
with sensitivity 1 (Dwork et al., 2006). Theorems 4 and 5 are
also applied here to track cumulative privacy budget across
all K features and calibrate how much noise to add. Finally,
to transform the noisy equal width bins into equal density
bins, the algorithm greedily post-processes the released bin
definitions by collapsing small bins into their neighbors until
a sufficiently large ’quantile” bin is achieved. While this
method can be sub-optimal on highly skewed distributions,
we find that it works well in practice on most datasets, and
users have some control by choosing appropriate min/max
values or applying transforms to features prior to training.
The full algorithm is detailed below.

Algorithm 3 Differentially Private Quantile Binning
Input: data X, target bins m, privacy parameters ¢, §
Output: Histogram H, per feature
Target datapoints per bin: ¢ = %
for feature 0...K do

Equal width bins: Hy, = Hist(X][:, k], 2m)
Add noise to counts: Hj, = Hy, 4+ o - N(0,1)
Postprocess:
for each histogram bin b; € H r do
if |b;] < t then
Greedily collapse bins: b; 11 = b;1+1 + b;
Delete previous bin: Delete(H k> 0;)
end if
end for
Check if final bin is sufficiently large
if |b;| < ¢ then
Collapse into previous bin: b;_; = b;_1 + b;
Delete final bin: Delete(Hy,, b;)
end if
end for

7.2. Adaptations to other settings

Algorithm 2 in the main body of the paper focuses on
regression, which often can be adapted to other settings.
It also is possible to use many alternative loss functions
in DP-EBMs with no change to the privacy analysis. For
example, to adapt DP-EBMs to binary classification, we
might prefer residuals to be logits. Our proof of privacy
depends on ensuring that the sensitivity of the sum of
residuals is bounded by at most R at each iteration. In
the regression setting, we show that the sum of residuals 7'
can be framed as:
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where Z is entirely public information released from
previous iterations of the model. Therefore, simple
transformations on Z do not affect the sensitivity of each
update or the ultimate privacy guarantee of the algorithm.
For binary classification, the only modification is to line 25:
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7.3. Abnormally low AUROCs

In our experiments, some models produce AUROCs
substantially lower than 0.5. For example, on the credit
fraud dataset for ¢ = 1, DPBoost had an average test set
AUROC of 0.438. This was a bit surprising, as predicting
random labels should result in AUCs near 0.5. Further
investigation suggests that the noise DP adds to models
increases the variance of model predictions enough to make
AUCs much larger and smaller than 0.5.

For example, Figure 5 shows the distribution in AUCs for
the healthcare dataset when predictions are made completely
randomly (left), and also shows the distribution for the
same dataset when predictions are made with DP Logistic
Regression with ¢ = 0.5 (right). Both distributions have
mean 0.5, but the distribution is much wider for the model
with ¢ = 0.5. Similar behavior is observed for all DP
algorithms, including DP-EBMs with € < 0.1.
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Figure 6. Distribution of AUROCs on 5000 train/test splits of
healthcare dataset. Left: Randomly generated predictions.
Right: DP Logistic Regression (¢ = 0.5) test set AUROCs.



