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Abstract

We consider the optimal approximate posterior

over the top-layer weights in a Bayesian neural

network for regression, and show that it exhibits

strong dependencies on the lower-layer weights.

We adapt this result to develop a correlated ap-

proximate posterior over the weights at all layers

in a Bayesian neural network. We extend this

approach to deep Gaussian processes, unifying

inference in the two model classes. Our approx-

imate posterior uses learned “global” inducing

points, which are defined only at the input layer

and propagated through the network to obtain in-

ducing inputs at subsequent layers. By contrast,

standard, “local”, inducing point methods from

the deep Gaussian process literature optimise a

separate set of inducing inputs at every layer, and

thus do not model correlations across layers. Our

method gives state-of-the-art performance for a

variational Bayesian method, without data aug-

mentation or tempering, on CIFAR-10 of 86.7%,

which is comparable to SGMCMC without tem-

pering but with data augmentation (88% in Wen-

zel et al. 2020).1

1. Introduction

Deep models, formed by stacking together many simple

layers, give rise to extremely powerful machine learning

algorithms, from deep neural networks (DNNs) to deep

Gaussian processes (DGPs) (Damianou & Lawrence, 2013).

One approach to reason about uncertainty in these models

is to use variational inference (VI) (Jordan et al., 1999). VI

in Bayesian neural networks (BNNs) requires the user to
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specify a family of approximate posteriors over the weights,

with the classical approach being independent Gaussian dis-

tributions over each individual weight (Hinton & Van Camp,

1993; Graves, 2011; Blundell et al., 2015). Later work

has considered more complex approximate posteriors, for

instance using a Matrix-Normal distribution as the approxi-

mate posterior for a full weight-matrix (Louizos & Welling,

2016; Ritter et al., 2018) and hierarchical variational infer-

ence (Louizos & Welling, 2017; Dusenberry et al., 2020).

By contrast, DGPs use an approximate posterior defined

over functions – the standard approach is to specify the

inputs and outputs at a finite number of “inducing” points

(Damianou & Lawrence, 2013; Salimbeni & Deisenroth,

2017).

Critically, these classical BNN and DGP approaches de-

fine approximate posteriors over functions that are indepen-

dent across layers. An approximate posterior that factorises

across layers is problematic, because what matters for a

deep model is the overall input-output transformation for

the full model, not the input-output transformation for in-

dividual layers. This raises the question of what family of

approximate posteriors should be used to capture correla-

tions across layers. One approach for BNNs would be to

introduce a flexible “hypernetwork”, used to generate the

weights (Krueger et al., 2017; Pawlowski et al., 2017). How-

ever, this approach is likely to be suboptimal as it does not

sufficiently exploit the rich structure in the underlying neural

network. For guidance, we consider the optimal approxi-

mate posterior over the top-layer units in a deep network for

regression. Remarkably, the optimal approximate posterior

for the last-layer weights given the earlier weights can be

obtained in closed form without choosing a restrictive fam-

ily of distributions. In particular, the optimal approximate

posterior is given by propagating the training inputs through

lower layers to compute the top-layer representation, then

using Bayesian linear regression to map from the top-layer

representation to the outputs.

Inspired by this result, we use Bayesian linear regression to

define a generic family of approximate posteriors for BNNs.

In particular, we introduce learned “pseudo-outputs” at ev-

ery layer, and compute the posterior over the weights by

performing linear regression from the inputs (propagated

github.com/LaurenceA/bayesfunc
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from lower layers) onto the pseudo-outputs. We reduce the

burden of working with many training inputs by summaris-

ing the posterior using a small number of “inducing” points.

We find that these approximate posteriors give excellent

performance in the non-tempered, no-data-augmentation

regime, with performance on datasets such as CIFAR-10

reaching 86.7%, comparable to SGMCMC witout temper-

ing but with data augmentation (88%) (Wenzel et al., 2020).

Our approach can be extended to DGPs, and we explore

connections to the inducing point GP literature, showing

that inference in the two classes of models can be unified.

Concretely, our contributions are:

• We propose an approximate posterior for BNNs based

on Bayesian linear regression that naturally induces

correlations between layers (Sec. 2.1.

• We provide an efficient implementation of this poste-

rior for convolutional layers (Sec. 2.2.

• We introduce new BNN priors that allow for more

flexibility with inferred hyperparameters (Sec. 2.3).

• We show how our approximate posterior can be natu-

rally extended to DGPs, resulting in a unified approach

for inference in BNNs and DGPs (Sec. 2.4).

2. Methods

To motivate our approximate posterior, we first consider the

optimal top-layer posterior for a Bayesian neural network

in the regression case. We consider neural networks with

lower-layer weights {Wℓ}
L
ℓ=1, Wℓ ∈ R

Nℓ−1×Nℓ , and out-

put weights, WL+1 ∈ R
NL×NL+1 , where the activity, Fℓ,

at layer ℓ is given by,

F1 = XW1,

Fℓ = φ (Fℓ−1)Wℓ for ℓ ∈ {2, . . . , L+ 1} , (1)

where φ(·) is an elementwise nonlinearity. The targets, Y,

depend on the neural-network outputs, FL+1 ∈ R
P×NL+1 ,

according to a likelihood, P (Y|FL+1). In the following

derivations, we will focus on ℓ > 1; corresponding expres-

sions for the input layer can be obtained by replacing φ(F0)
with the inputs, X ∈ R

P×N0 . The prior over weights is

independent across layers and output units (see Sec. 2.3 for

the form of Sℓ),

P (Wℓ) =
∏Nℓ

λ=1 P
(

wℓ
λ

)

,

P
(

wℓ
λ

)

= N
(

wℓ
λ

∣

∣

∣
0, 1

Nℓ−1
Sℓ

)

, (2)

where wℓ
λ is a column of Wℓ representing all the input

weights to unit λ in layer ℓ. To fit the parameters of the

approximate posterior, Q
(

{W}L+1
ℓ=1

)

, we maximise the ev-

idence lower bound (ELBO),

L = E
Q({W}L+1

ℓ=1 )
[

log P
(

Y|X, {W}L+1
ℓ=1

)

+ log P
(

{Wℓ}
L+1
ℓ=1

)

− logQ
(

{Wℓ}
L+1
ℓ=1

) ]

(3)

To build intuition about how to parameterise Q
(

{W}L+1
ℓ=1

)

,

we consider the optimal Q
(

WL+1|{Wℓ}
L
ℓ=1

)

for any

given Q
(

{Wℓ}
L
ℓ=1

)

, i.e. the optimal top-layer posterior

conditioned on the lower layers. We begin by simplifying

the ELBO by incorporating terms that do not depend on

WL+1 into c({Wℓ}
L
ℓ=1),

L = E
Q({Wℓ}

L+1

ℓ=1 )
[

log P
(

Y,WL+1|X, {Wℓ}
L
ℓ=1

)

− logQ
(

WL+1| {Wℓ}
L
ℓ=1

)

+ c({Wℓ}
L
ℓ=1)

]

. (4)

Rearranging these terms (App. A), we find that all WL+1

dependence can be written in terms of the KL divergence

between the approximate posterior of interest and the true

posterior,

L = E
Q({Wℓ}L

ℓ=1)
[

−DKL

(

Q(WL+1|{Wℓ}
L
ℓ=1)||P(WL+1|Y,X,{Wℓ}

L
ℓ=1)

)

+ c({W}Lℓ=1)
]

. (5)

Thus, the optimal approximate posterior is the true last-layer

posterior conditioned on the previous layers’ weights,

Q
(

WL+1|{Wℓ}
L
ℓ=1

)

= P
(

WL+1|Y,X, {Wℓ}
L
ℓ=1

)

∝ P (Y|WL+1,FL) P (WL+1) , (6)

where the final proportionality comes by applying Bayes the-

orem and exploiting the model’s conditional independencies.

For regression, the likelihood is Gaussian,

P (Y|WL+1,FL) =
∏NL+1

λ=1 N
(

yλ

∣

∣φ (FL)w
L+1
λ ,Λ−1

L+1

)

, (7)

where yλ is the value of a single output channel for all

training inputs, and ΛL+1 is a precision matrix. Thus, the

posterior is given in closed form by Bayesian linear regres-

sion (Rasmussen & Williams, 2006):

Q
(

WL+1|{Wℓ}
L
ℓ=1

)

=
∏NL+1

λ=1 N
(

wL+1
λ

∣

∣

∣
Σφ (FL)

T
ΛL+1yλ,Σ

)

, (8)

where

Σ = (NLS
−1
L+1 + φ (FL)

T
ΛL+1φ(FL))

−1. (9)

While this result may be neither particularly surprising nor

novel, it neatly highlights our motivation for the rest of the

paper. In particular, it shows that for regression, we can
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always obtain the optimal conditional top-layer posterior for

regression, which to the best of our knowledge has not been

used before in BNN inference. Moreover, doing top-layer

Bayesian linear regression based on the propagated features

from the previous layers naturally introduces correlations

between layers.

2.1. Defining the full approximate posterior with global

inducing points and pseudo-outputs

We adapt the optimal top-layer approximate posterior above

to give a scalable approximate posterior over the weights at

all layers. To avoid propagating all training inputs through

the network, which is intractable for large datasets, we

instead propagate M global inducing locations, U0 ∈
R

M×N0 ,

U1 = U0W1,

Uℓ = φ (Uℓ−1)Wℓ for ℓ = 2, . . . , L+ 1. (10)

Next, the optimal posterior requires outputs, Y. However,

no outputs are available at inducing locations for the out-

put layer, let alone for intermediate layers. We thus in-

troduce learned variational parameters to mimic the form

of the optimal posterior. In particular, we use the prod-

uct of the prior over weights and an “inducing-likelihood”,

N
(

vℓ
λ;u

ℓ
λ,Λ

−1
ℓ

)

, representing noisy “pseudo-outputs” of

the outputs of the linear layer at the inducing locations,

uℓ
λ = φ (Uℓ−1)w

ℓ
λ. Substituting uℓ

λ into the inducing-

likelihood the approximate posterior becomes,

Q
(

Wℓ| {Wℓ′}
ℓ−1

ℓ′=1

)

∝
∏Nℓ

λ=1N
(

vℓ
λ;φ (Uℓ−1)w

ℓ
λ,Λ

−1
ℓ

)

P
(

wℓ
λ

)

,

Q
(

Wℓ| {Wℓ′}
ℓ−1

ℓ′=1

)

=
∏Nℓ

λ=1N
(

wℓ
λ

∣

∣

∣
Σw

ℓ φ (Uℓ−1)
T
Λℓv

ℓ
λ,Σ

w

ℓ

)

,

Σw

ℓ =
(

Nℓ−1S
−1
ℓ + φ (Uℓ−1)

T
Λℓφ (Uℓ−1)

)−1

.

(11)

where vℓ
λ and Λℓ are variational parameters. For clarity, we

have: uℓ
λ,v

ℓ
λ ∈ R

M , so that Uℓ−1 ∈ R
M×Nℓ−1 and Vℓ ∈

R
M×Nℓ are formed by stacking these vectors, and wℓ

λ ∈
R

Nℓ−1 , with Sℓ,Σ
w

ℓ ∈ R
Nℓ−1×Nℓ−1 and Λℓ ∈ R

M×M .

Therefore, our full approximate posterior factorises as

Q
(

{Wℓ}
L+1
ℓ=1

)

=

L+1
∏

ℓ=1

Q
(

Wℓ

∣

∣

∣
{Wℓ′}

ℓ−1

ℓ′=1

)

. (12)

Algorithm 1 Global inducing points for neural networks

Parameters: U0, {Vℓ,Λℓ}
L
ℓ=1.

Neural network inputs: F0

Neural network outputs: FL+1

L ← 0
for ℓ in {1, . . . , L+ 1} do

Compute the mean and cov. for weights at this layer

Σw

ℓ =
(

Nℓ−1S
−1
ℓ + φ (Uℓ−1)

T
Λℓφ (Uℓ−1)

)−1

Mℓ = Σw

ℓ φ (Uℓ−1)
T
ΛℓVℓ

Sample the weights and compute the ELBO

Wℓ ∼ N (Mℓ,Σ
w

ℓ ) = Q
(

Wℓ

∣

∣

∣
{Wℓ′}

ℓ−1

ℓ′=1

)

L ← L+ log P (Wℓ)− logN (Wℓ|Mℓ,Σ
w

ℓ )
Propagate the inputs and inducing points using sampled

weights,

Uℓ = φ (Uℓ−1)Wℓ

Fℓ = φ (Fℓ−1)Wℓ

end for

L ← L+ log P (Y|FL+1)

Substituting this approximate posterior and the factorised

prior into the ELBO (Eq. 3), the full ELBO can be written,

L = E
Q({W}L+1

ℓ=1 )

[

log P
(

Y, |X, {W}L+1
ℓ=1

)

+

L+1
∑

ℓ=1

log
P (Wℓ)

Q
(

Wℓ| {Wℓ}
ℓ−1

ℓ=1

)

]

. (13)

where P (Wℓ) is given by Eq. (2) and Q
(

Wℓ| {Wℓ}
ℓ−1

ℓ=1

)

is given by Eq. (11). The forms of the ELBO and approx-

imate posterior suggest a sequential procedure to evaluate

and subsequently optimise it: we alternate between sam-

pling the weights using Eq. (11) and propagating the data

and inducing points (Eq. 1 and Eq. 10; see Alg. 1). In

summary, the parameters of the approximate posterior are

the global inducing inputs, U0, and the pseudo-outputs

and precisions at all layers, {Vℓ,Λℓ}
L+1
ℓ=1 . As each factor

Q
(

Wℓ

∣

∣

∣
{Wℓ′}

ℓ−1

ℓ′=1

)

is Gaussian, these parameters can be

optimised using standard reparameterised variational infer-

ence (Kingma & Welling, 2013; Rezende et al., 2014) in

combination with the Adam optimiser (Kingma & Ba, 2014)

(Appendix B). Importantly, by placing inducing inputs on

the training data (i.e. U0 = X), and setting vℓ
λ = yλ this

approximate posterior matches the optimal top-layer pos-

terior (Eq. 6). Finally, we note that while this posterior is

conditionally Gaussian, the full posterior over all {Wℓ}
L+1
ℓ=1

is non-Gaussian, and is thus potentially more flexible than a

full-covariance Gaussian defined jointly over all weights at

all layers.



Global inducing point variational posteriors

2.2. Efficient convolutional Bayesian linear regression

The previous sections were valid for a fully connected

network. The extension to convolutional networks is

straightforward in principle: we transform the convolu-

tion into a matrix multiplication by treating each patch

as a separate input feature-vector, flattening the spatial

and channel dimensions together into a single vector.

Thus, the feature-vectors have length in_channels

× kernel_width × kernel_height, and the ma-

trix Uℓ contains patches_per_image × minibatch

patches. Likewise, we now have inducing outputs, vℓ
λ, at

each location in all the inducing images, so this again has

length patches_per_image × minibatch. After ex-

plicitly extracting the patches, we can straightforwardly

apply standard Bayesian linear regression.

However, explicitly extracting image patches is very mem-

ory intensive in a DNN. If we consider a standard convolu-

tion with a 3× 3 convolutional kernel, then there is a 3× 3
patch centred at each pixel in the input image, meaning a

factor of 9 increase in memory consumption. Instead, we

note that computing the matrices required for linear regres-

sion, φ (Uℓ−1)
T
Λℓφ (Uℓ−1) and φ (Uℓ)

T
ΛℓVℓ, does not

require explicit extraction of image-patches. Instead, these

matrices can be computed by taking the autocorrelation of

the image/feature map, i.e. a convolution operation where

we treat the image/feature map, as both the inputs and the

weights (Appendix C for details).

2.3. Priors

We consider four priors in this work, which we refer to using

the class names in the bayesfunc library published alongside

this paper. We are careful to ensure that all parameters in

the model have a prior and approximate posterior, which

is necessary to ensure that ELBOs are comparable across

models.

First, we consider a Gaussian prior with fixed scale, Neal-

Prior, so named because it is necessary to obtain meaningful

results when considering infinite networks (Neal, 1996),

Sℓ = I, (14)

though it bears strong similarities to the “He” initialisa-

tion (He et al., 2015). NealPrior is defined so as to ensure

that the activations retain a sensible scale as they propa-

gate through the network. We compare this to the standard

N (0, 1) (StandardPrior), which causes the activations to

increase exponentially as they propagate through network

layers (see Eq. 2):

Sℓ = Nℓ−1I. (15)

Next, we consider ScalePrior, which defines a prior and

approximate posterior over the scale,

Sℓ =
1
sℓ
I (16)

P (sℓ) = Gamma (sℓ; 2, 2) (17)

Q (sℓ) = Gamma (sℓ; 2 + αℓ, 2 + βℓ) (18)

where here we parameterise the Gamma distribution with the

shape and rate parameters, and αℓ and βℓ are non-negative

learned parameters of the approximate posterior over sℓ. Fi-

nally, we consider SpatialIWPrior, which allows for spatial

correlations in the weights (e.g. see Fortuin et al., 2021, for

a more restrictive spatial prior over weights). In particular,

we take the covariance to be the Kronecker product of an

identity matrix over channel dimensions, and a Wishart-

distributed matrix, L−1
ℓ , over the spatial dimensions,

Sℓ = I⊗ L−1
ℓ

P (Lℓ) =W
−1 (Lℓ; (Nℓ−1+1) I , Nℓ−1+1)

Q (Lℓ) =W
−1 (Lℓ; (Nℓ−1+1) I+Ψ, Nℓ−1+1+ν)

(19)

whereW−1 is the inverse-Wishart distribution, and the non-

negative real number, ν, and the positive definite matrix,

Ψ, are learned parameters of the approximate posterior (see

Appendix D).

2.4. Extension to DGPs

It is a remarkable but underappreciated fact that BNNs are

special cases of DGPs, with a particular choice of kernel

(Louizos & Welling, 2016; Aitchison, 2019). Combining

Eqs. (1) and (2),

P (Fℓ|Fℓ−1) =
∏Nℓ

λ=1N
(

f ℓλ
∣

∣0,K (Fℓ−1)
)

K (Fℓ−1) =
1

Nℓ−1

φ (Fℓ−1)Sℓφ (Fℓ−1)
T
. (20)

Here, we generalise our approximate posterior to the DGP

case and link to the DGP literature. In a DGP there are no

weights; instead we work directly with inducing outputs

{Uℓ}
L+1
ℓ=1 ,

P (Uℓ|Uℓ−1) =
∏Nℓ

λ=1N
(

uℓ
λ

∣

∣0,K (Uℓ−1)
)

, (21)

Note that here, we take the “global” inducing approach of

using the inducing outputs from the previous layer, Uℓ−1

as the inducing inputs for the next layer. In this case, we

need only learn the original inducing inputs, U0. This

contrasts with the standard “local” inducing formulation,

(as in Salimbeni & Deisenroth, 2017), which learns separate

inducing inputs at every layer, Zℓ−1, giving P (Uℓ|Zℓ−1) =
∏Nℓ

λ=1N
(

uℓ
λ

∣

∣0,K (Zℓ−1)
)

.

As usual in DGPs (Salimbeni & Deisenroth, 2017), the

approximate posterior over Uℓ induces an approximate pos-

terior on Fℓ through the prior correlations. However, it is
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Figure 1. Predictive distributions on the toy dataset. Shaded regions represent one standard deviation.

important to remember that underneath the tractable distribu-

tions in Eqs. (20) and (21), there is an infinite dimensional

GP-distributed function, Fℓ, such that Fℓ = Fℓ(Fℓ−1).
Standard local inducing point methods specify a factorised

approximate posterior over Fℓ by specifying the function’s

inducing outputs, Uℓ = Fℓ (Zℓ−1), at a finite number of in-

ducing input locations, Zℓ−1. Importantly, the approximate

posterior over a function,Fℓ, depends only on Zℓ−1, and Uℓ.

Thus, standard, local inducing, DGP approaches (e.g. Sal-

imbeni & Deisenroth, 2017), give a layerwise-independent

approximate posterior over {Fℓ}
L+1
ℓ=1 , as they treat the in-

ducing inputs, {Zℓ−1}
L+1
ℓ=1 , as fixed, learned parameters

and use a layerwise-independent approximate posterior over

{Uℓ}
L+1
ℓ=1 (Appendix G).

Next, we need to choose the approximate posterior on

{Uℓ}
L+1
ℓ=1 . However, if our goal is to introduce depen-

dence across layers, it seems inappropriate to use the

standard layerwise-independent approximate posterior over

{Uℓ}
L+1
ℓ=1 . Indeed, in Appendix G, we show that such a

posterior implies functions in non-adjacent layers (e.g. Fℓ

and Fℓ+2) are marginally independent, even with global

inducing points.

To obtain more appropriate approximate posteriors, we de-

rive the optimal top-layer posterior for DGPs, which in-

volves GP regression from activations propagated from

lower layers onto the output data (Appendix F). Inspired

by the form of the optimal posterior we again define an

approximate posterior by taking the product of the prior and

a “inducing-likelihood”,

Q (Uℓ|Uℓ−1) ∝
∏Nℓ

λ=1 Q
(

uℓ
λ

)

N
(

vℓ
λ

∣

∣uℓ
λ,Λ

−1
ℓ

)

Q (Uℓ|Uℓ−1) =
∏Nℓ

λ=1N
(

uℓ
λ

∣

∣Σu

ℓ Λℓv
ℓ
λ,Σ

u

ℓ

)

,

Σu

ℓ =
(

K−1 (Uℓ−1) +Λℓ

)−1
, (22)

where vℓ
λ and Λ−1

ℓ are learned parameters, and in our global

inducing method, the inducing inputs, Uℓ−1, are propagated

from lower layers (Eq. 21). Importantly, setting the inducing

inputs to the training data and vL+1
λ = yλ, the approximate

posterior captures the optimal top-layer posterior for re-

gression (Appendix F). Under this approximate posterior,

dependencies in Uℓ naturally arise across all layers, and

hence there are dependencies between functions Fℓ at all

layers (Appendix G).

In summary, we propose an approximate posterior over

inducing outputs that takes the form

Q
(

{Uℓ}
L+1
ℓ=1

)

=

L+1
∏

l=1

Q (Uℓ|Uℓ−1) . (23)

As before, the parameters of this approximate posterior are

the global inducing inputs, U0, and the pseudo-outputs and

precisions at all layers, {Vℓ,Λℓ}
L+1
ℓ=1 . The full ELBO, (see

App.E for further details), takes the form

L = E
Q({Fℓ,Uℓ}

L+1

ℓ=1 |X,U0)

[

log P (Y|FL+1)

+

L+1
∑

ℓ=1

log
P (Uℓ|Uℓ−1)

Q (Uℓ|Uℓ−1)

]

. (24)

where P (Uℓ|Uℓ−1) is given by Eq. (21) and Q (Uℓ|Uℓ−1)
is given by Eq. (22).

We provide a full description of our method as applied to

DGPs in App. E.

2.5. Asymptotic complexity

In the deep GP case, the complexity for global inducing is

exactly that of standard inducing point Gaussian processes,

i.e. O(M3 + PM2) where M is the number of inducing

points, and P can be taken to be the number of training

inputs, or the size of a minibatch, as appropriate. The first

term, M3, comes from computing and sampling the poste-

rior over Uℓ based on the inducing points (e.g. inverting

the covariance). The second term, and PM2 comes from

computing the implied distribution over Fℓ.

In the fully-connected BNN case, we have three terms,

O(N3 + MN2 + PN2). The first term, N3, where N
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Figure 2. ELBO for different approximate posteriors as we change network depth/width on a dataset generated using a linear Gaussian

model. The rand → gi line lies behind the global inducing line in width = 50 and width = 250.

corresponds to the width of the network, arises from taking

the inverse of the covariance matrix in Eq. (11), but is also

the complexity e.g. for propagating the inducing points from

layer to the next (Eq. 10). The second term, MN2, comes

from computing that covariance in Eq. (11), by taking the

product of input features with themselves. The third term

PN2 comes from multiplying the training inputs/minibatch

by the sampled inputs (Eq. 1).

3. Results

We describe our experiments and results to assess the perfor-

mance of global inducing points (‘gi’) against local inducing

points (‘li’) and the fully factorised (‘fac’) approximation

family. We additionally consider models where we use one

method up to the last layer and another for the last layer,

which may have computational advantages; we denote such

models ‘method1→ method2’.

3.1. Uncertainty in 1D regression

We demonstrate the use of local and global inducing point

methods in a toy 1-D regression problem, comparing it with

fully factorised VI and Hamiltonian Monte Carlo (HMC;

(Neal et al., 2011)). Following Hernández-Lobato & Adams

(2015), we generate 40 input-output pairs (x, y) with the

inputs x sampled i.i.d. from U([−4,−2] ∪ [2, 4]) and the

outputs generated by y = x3 + ǫ, where ǫ ∼ N (0, 32).
We then normalised the inputs and outputs. Note that we

have introduced a ‘gap’ in the inputs, following recent work

(Foong et al., 2019b; Yao et al., 2019; Foong et al., 2019a)

that identifies the ability to express ‘in-between’ uncertainty

as an important quality of approximate inference algorithms.

We evaluated the inference algorithms using fully-connected

BNNs with 2 hidden layers of 50 ReLU hidden units, using

the NealPrior. For the inducing point methods, we used 100

inducing points per layer.

The predictive distributions for the toy experiment can be

seen in Fig. 1. We observe that of the variational methods,

the global inducing method produces predictive distribu-

tions closest to HMC, with good uncertainty in the gap.

Meanwhile, factorised and local inducing fit the training

data, but do not produce reasonable error bars, demonstrat-

ing an important limitation of methods lacking correlation

structure between layers.

We provide additional experiments looking at the effect of

the number of inducing points in Appendix I, and experi-

ments looking at compositional uncertainty (Ustyuzhaninov

et al., 2020) in both BNNs and DGPs for 1D regression in

Appendix J.

3.2. Depth-dependence in deep linear networks

The lack of correlations between layers might be expected

to become more problematic in deeper networks. To isolate

the effect of depth on different approximate posteriors, we

considered deep linear networks trained on data generated

from a toy linear model: 5 input features were mapped to 1

output feature, where the 1000 training and 100 test inputs

are drawn IID from a standard Gaussian, and the true outputs

are drawn using a weight-vector drawn IID from a Gaussian

with variance 1/5, and with noise variance of 0.1. We could

evaluate the model evidence under the true data generating

process which forms an upper bound (in expectation) on the

model evidence and ELBO for all models.

We found that the ELBO for methods that factorise across

layers — factorised and local inducing — drops rapidly as

networks get deeper and wider (Fig. 2). This is undesirable

behaviour, as we know that wide, deep networks are nec-

essary for good performance on difficult machine learning

tasks. In contrast, we found that methods with global induc-

ing points at the last layer decay much more slowly with

depth, and perform better as networks get wider. Remark-

ably, global-inducing points gave good performance even

with lower-layer weights drawn at random from the prior,

which is not possible for any method that factorises across

layers. We believe that fac→ gi performed poorly at width

= 250 due to optimisation issues as rand → gi performs

better yet is a special case of fac→ gi.
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Figure 3. Average test log likelihoods for BNNs on the UCI datasets (in nats). Error bars represent one standard error. Shading represents

different priors. We connect the factorised models with the fac → gi models with a thin grey line as an aid for easier comparison. Further

to the right is better.

3.3. Regression benchmark: UCI

We benchmark our methods on the UCI datasets in

Hernández-Lobato & Adams (2015), popular benchmark

regression datasets for BNNs and DGPs. Following the

standard approach (Gal & Ghahramani, 2015), each dataset

uses 20 train-test ‘splits’ (except for protein with 5 splits)

and the inputs and outputs are normalised to have zero mean

and unit standard deviation. We focus on the five small-

est datasets, as we expect Bayesian methods to be most

relevant in small-data settings (see App. K andM for all

datasets). We consider two-layer fully-connected ReLU

networks, using fully factorised and global inducing approx-

imating families, as well as two- and five-layer DGPs with

doubly-stochastic variational inference (DSVI) (Salimbeni

& Deisenroth, 2017) and global inducing. For the BNNs,

we consider the standard N (0, 1) prior and ScalePrior.

We display ELBOs and average test log likelihoods for the

un-normalised data in Fig. 3, where the dots and error bars

represent the means and standard errors over the test splits,

respectively. We observe that global inducing obtains better

ELBOs than factorised and DSVI in almost every case,

indicating that it does indeed approximate the true posterior

better (since the ELBO is the marginal likelihood minus the

KL to the posterior). While this is the case for the ELBOs,

this does not always translate to a better test log likelihood

due to model misspecification, as we see that occasionally

DSVI outperforms global inducing by a very small margin.

The very poor results for factorised on ScalePrior indicate

that it has difficulty learning useful prior hyperparameters

for prediction, which is due to the looseness of its bound to

the marginal likelihood. We provide experimental details,

as well as additional results with additional architectures,

priors, datasets, and RMSEs, in Appendices K and M, for

BNNs and DGPs, respectively.

3.4. Convolutional benchmark: CIFAR-10

For CIFAR-10, we considered a ResNet-inspired model

consisting of conv2d-relu-block-avgpool2-block-avgpool2-

block-avgpool-linear, where the ResNet blocks consisted of

a shortcut connection in parallel with conv2d-relu-conv2d-

relu, using 32 channels in all layers. In all our experiments,

we used no data augmentation and 500 inducing points. Our

training scheme (see App. O) ensured that our results did not

reflect a ‘cold posterior’ (Wenzel et al., 2020). Our results

are shown in Table 1. We achieved remarkable performance

of 86.7% predictive accuracy, with global inducing points

used for all layers, and with a spatial inverse Wishart prior

on the weights. These results compare very favourably

with comparable Bayesian approaches, i.e. those without

data augmentation or posterior sharpening: past work with

deep GPs obtained 80.3% (Shi et al., 2019), and work us-

ing infinite-width neural networks to define a GP obtained

81.4% accuracy (Li et al., 2019). Remarkably, with only

500 inducing points we are approaching the accuracy of

sampling-based methods (Wenzel et al., 2020), which are in

principle able to more closely approximate the true posterior.

Furthermore, we see that global inducing performs the best
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Table 1. CIFAR-10 classification accuracy. The first block shows our main results without data augmentation or tempering with

SpatialIWPrior, (with ScalePrior in brackets). The next block shows our results with data augmentation and tempering on with a larger

ResNet18 with SpatialIWPrior. The next block shows comparable past results, from GPs and BNNs. The final block show non-comparable

(sampling-based) methods. Dashes indicate that the figures were either not reported, are not applicable. The time is reported per epoch

with ScalePrior and for MNIST, rather than CIFAR-10 because of a known performance bug in the convolutions required in Sec. 2.2 with

32× 32 (and above) images https://github.com/pytorch/pytorch/issues/35603.

test log like. accuracy (%) ELBO time

factorised -0.58 (-0.66) 80.27 (77.65) -1.06 (-1.12) 19 s

no tempering or local inducing -0.62 (-0.60) 78.96 (79.46) -0.84 (-0.88) 33 s

data augmentation fac→ gi -0.49 (-0.56) 83.33 (81.72) -0.91 (-0.96) 25 s

global inducing -0.40 (-0.43) 86.70 (85.73) -0.68 (-0.75) 65 s

with tempering and factorised -0.39 87.52 — —

data augmentation fac→ gi -0.24 92.41 — —

Shi et al. (2019) — 80.30% —

VI prior work Li et al. (2019) — 81.40% —

Shridhar et al. (2019) — 73% —

sampling prior work Wenzel et al. (2020) −0.35 88.50% —

in terms of ELBO (per datapoint) by a wide margin, demon-

strating that it gets far closer to the true posterior than the

other methods. We provide additional results on uncertainty

calibration and out-of-distribution detection in Appendix L.

Finally, while we have focused this work on achieving good

results with a fully principled, Bayesian approach, we briefly

consider training a full ResNet-18 (He et al., 2016) using

more popular techniques such as data augmentation and

tempering. While data augmentation and tempering are

typically viewed as clouding the Bayesian perspective, there

is work attempting to formalise both within the context of

modified probabilistic generative models (Aitchison, 2020;

Nabarro et al., 2021). Using a cold posterior with a factor of

20 reduction on the KL term, with horizontal flipping and

random cropping, we obtained a test accuracy of 87.52%
and a test log likelihood of −0.39 nats with a standard fully

factorised Gaussian posterior using SpatialIWPrior. Using

fac→ gi, we obtain a significant improvement of 92.41%
test accuracy and a test log likelihood of −0.24 nats. We

attempted to train a full global inducing model; however, we

encountered difficulties in scaling the method to the large

widths of ResNet-18 layers. We believe this presents an

avenue for fruitful future work in scaling global inducing

point posteriors.

4. Related work

Louizos & Welling (2016) attempted to use pseudo-data

along with matrix variate Gaussians to form an approximate

posterior for BNNs; however, they restricted their analy-

sis to BNNs, and it is not clear how their method can be

applied to DGPs. Their approach factorises across layers,

thus missing the important layerwise correlations that we

obtain. Moreover, they encountered an important limita-

tion: the BNN prior implies that Uℓ is low-rank and it is

difficult to design an approximate posterior capturing this

constraint. As such, they were forced to use M < Nℓ

inducing points, which is particularly problematic in the

convolutional, global-inducing case where there are many

patches (points) in each inducing image input.

Note that some work on BNNs reports better performance

on datasets such as CIFAR-10. However, to the best of our

knowledge, no variational Bayesian method outperforms

ours without modifying the BNN model or some form of

posterior tempering (Wenzel et al., 2020), where the KL

term in the ELBO is down-weighted relative to the likeli-

hood (Zhang et al., 2017; Bae et al., 2018; Osawa et al.,

2019; Ashukha et al., 2020), which often increases the test

accuracy. However, tempering clouds the Bayesian per-

spective, as the KL to the posterior is no longer minimised

and the resulting objective is no longer a lower bound on

the marginal likelihood. By contrast, we use the untem-

pered ELBO, thereby retaining the full Bayesian perspec-

tive. Dusenberry et al. (2020) report better performance

on CIFAR-10 without tempering, but only perform varia-

tional inference over a rank-1 perturbation to the weights,

and maximise over all the other parameters, which may

risk overfitting (Ober et al., 2021). Our approach retains a

full-rank parameterisation of the weight matrices.

Ustyuzhaninov et al. (2020) attempted to introduce depen-

dence across layers in a deep GP by coupling inducing

inputs to pseudo-outputs, which they term “inducing points

as inducing locations”. However, as described above, the

choice of approximate posterior over Uℓ is also critical.

https://github.com/pytorch/pytorch/issues/35603
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They used the standard approximate posterior that is in-

dependent across layers, meaning that while functions in

adjacent layers were marginally dependent, the functions

for non-adjacent layers were independent (Appendix G).

By contrast, our approximate posteriors have marginal de-

pendencies across Uℓ and functions at all layers, and are

capable of capturing the optimal top-layer posterior.

Contemporaneous work has a similar motivation but is ul-

timately very different (Lindinger et al., 2020). They use

a joint multivariate Gaussian (with structured covariance)

for the approximate posterior for all inducing outputs at all

layers (with local inducing inputs). In contrast, our approxi-

mate posterior is only Gaussian at a single layer (conditioned

on the input to that layer). The approximate posterior over

all layers is not Gaussian (see Eq. 22, where the covariance

at layer ℓ depends on Uℓ−1), which allows us to capture the

optimal top-layer posterior. Indeed, we have linear computa-

tional complexity in depth, whereas their approach is cubic

(their Sec 3.2).

Karaletsos & Bui (2020) propose a very different hybrid GP-

BNN which uses an RBF-GP prior over weights, whereas we

use standard DGP models (which do not have any weights)

and BNN models with IID weight priors. Our BNN and

DGP map from global-inducing inputs defined only at the

input layer onto activations, while their GPs map from in-

ducing inputs in a “neuron-embedding” space onto weights.

Unlike Karaletsos & Bui (2020), our approach scales di-

rectly to large ResNets, and allows us to capture the optimal

top-layer posterior. Note they use “global” vs. “local” for

different priors, while we use it for different approximate

posteriors. While their models allow for the possibility of

correlations between layers, these arise from modifying the

prior structure, which are then reflected in the approximate

posterior. In contrast, we use standard Gaussian priors over

weights that are uncorrelated across layers, and our across-

layer dependencies arise only in the approximate posterior.

Alternative approaches to introducing more flexibility and

dependence in approximate posteriors are to use hierarchical

variational inference (HVI), i.e. to introduce auxiliary ran-

dom variables which can be integrated out to give a richer

variational posterior (Ranganath et al., 2016; Louizos &

Welling, 2017; Sobolev & Vetrov, 2019). This has been

used in a number of prior works to introduce correlations

between parameters (Dusenberry et al., 2020; Louizos &

Welling, 2017; Ghosh & Doshi-Velez, 2017). As we do not

introduce auxiliary variables, our approach is not HVI. How-

ever, our approximate posterior does include dependencies

across latent variables and is thus an instance of structured

stochastic variational inference (Hoffman & Blei, 2015).

The general idea of marginalising over the Gaussian process

latent function in order to compute the marginal likelihood

is common in the Gaussian process literature (e.g. Heinonen

et al., 2016), and is related to, but very different from our

approach of using the top-layer optimal posterior to inspire

an approximate posterior for the weights of a Bayesian

neural network, or the Gaussian process function.

Finally, very recent work has suggested an alternative ap-

proach to unifying inference in deep NN and DGP models,

by noting that these models can be equivalently written

in terms of distributions over positive-definite Gram matri-

ces, rather than working with features or weights like here

(Aitchison et al., 2020). Their motivation was explicitly to

account for rotation/permutation symmetries in the poste-

rior over neural network weights and over DGP features.

Interestingly, our global inducing approximations partially

account for these symmetries: the posteriors over features

at the next layer: assuming isotropic kernels that depend

only on distance, Uℓ are invariant to rotations in the input,

Uℓ−1, and this carries over to rotations of the inputs for

BNNs. However, they are as of yet unable to scale to large

convolutional architectures.

5. Conclusions

We derived optimal top-layer variational approximate pos-

teriors for BNNs and deep GPs, and used them to develop

generic, scalable approximate posteriors. These posteri-

ors make use of global inducing points, which are learned

only at the bottom layer and are propagated through the

network. This leads to extremely flexible posteriors, which

even allow the lower-layer weights to be drawn from the

prior. We showed that these global inducing variational pos-

teriors lead to improved performance with better ELBOs,

and state-of-the-art performance for variational BNNs on

CIFAR-10.
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