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Abstract
We propose a method for learning linear mod-
els whose predictive performance is robust to
causal interventions on unobserved variables,
when noisy proxies of those variables are avail-
able. Our approach takes the form of a regulariza-
tion term that trades off between in-distribution
performance and robustness to interventions. Un-
der the assumption of a linear structural causal
model, we show that a single proxy can be used to
create estimators that are prediction optimal under
interventions of bounded strength. This strength
depends on the magnitude of the measurement
noise in the proxy, which is, in general, not iden-
tifiable. In the case of two proxy variables, we
propose a modified estimator that is prediction op-
timal under interventions up to a known strength.
We further show how to extend these estimators to
scenarios where additional information about the
“test time” intervention is available during train-
ing. We evaluate our theoretical findings in syn-
thetic experiments and using real data of hourly
pollution levels across several cities in China.

1. Introduction
Ideally, predictive models would generalize beyond the dis-
tribution on which they are trained, e.g., across geographic
regions, across time, or across individual users. However,
models often learn to rely on signals in the training distribu-
tion that are not stable across domains, causing a drop-off
in predictive performance. This problem is broadly known
as dataset shift (Quiñonero-Candela et al., 2009).

Tackling this problem requires a formalization of how
dataset shift arises, and how that shift impacts the condi-
tional distribution of our target Y given features X . One
way to formalize this shift is in terms of an underlying causal
graph (Pearl, 2009), where changes between distributions
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Figure 1. Conceptual Example: A represents an (unobserved) so-
cioeconomic variable, X represents current health status, and Y
represents a long-term health outcome. All relationships are as-
sumed to be linear, and coefficients are given. We consider a
broader class of graphs in this work, see Figure 2.

are seen as arising from causal interventions on variables.

Conceptual example: In the causal graph given in Figure 1,
the variable A serves as a confounder. In a medical setting,
A could represent smoking habits or socioeconomic status,
which have a causal effect on current health status (X) as
well as longer-term outcomes (Y ). Importantly, A may not
be recorded in our training data, and the distribution of A
could vary across geography and time.

In the context of this causal graph, interventions which
change the distribution of A will also alter the conditional
mean E(Y | X). Under the linear relationships in Figure 1,
the optimal least-squares predictor Ŷ = γ∗X under the test
distribution depends on the test-time variance in A, in that

γ∗ =

{
α, if after intervention A = 0

α+ βY
βX
, if after intervention Var(A)→∞.

The first predictor encodes the direct causal effect of X on
Y , but is only optimal in the setting where the correlations
induced by A are removed by fixing it to a constant value
of zero (the same holds when including intercepts and al-
lowing for non-zero means). The second predictor, on the
other hand, renders the distribution of the residual Y − Ŷ
independent of A, and is therefore robust to arbitrary in-
terventions upon A. However, this is only optimal under
arbitrarily strong interventions on A.

Balancing performance and invariance: Instead of seek-
ing an invariant predictor that is robust to arbitrary interven-
tions onA (like the second predictor above), we instead seek
to minimize a worst-case loss under bounded interventions
of a given strength. We contrast this with work that seeks to
discover causal relationships as a route to invariance (Rojas-
Carulla et al., 2018; Magliacane et al., 2018), optimize for
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invariance directly across environments (Arjovsky et al.,
2019), or use known causal structure to select predictors
with invariant performance (Subbaswamy et al., 2019).

Our proposed objective takes the form of a standard loss,
plus a regularization term that encourages invariance. This
builds upon Rothenhäusler et al. (2021), who introduce a
similar objective, and prove that their objective optimizes a
worst-case loss over bounded interventions on A, under a
large class of linear structural causal models.

In contrast to Rothenhäusler et al. (2021), we do not assume
that A is observed. Instead we assume that, during training,
we have access to noisy proxies of A. For most of the paper,
we assume that neither A nor proxies are available during
testing. With this in mind, our contributions are as follows

• Distributional robustness to bounded shifts: In Sec-
tion 3, we show that a single proxy can be used to con-
struct estimators with distributional robustness guar-
antees under bounded interventions on A. However,
these estimators are robust to a strictly smaller set of
interventions, compared to when A is used directly,
and the size of this set depends on the (unidentifiable)
noise in the proxy. When two proxies are available,
we propose a modified estimator that can be used to
recover the same guarantees as when A is observed.

• Targeted shifts: In Section 4, we show how to target
our loss to interventions on A contained in a specified
robustness set. We show that this formulation includes
Anchor Regression as a special case, but also allows
for sets that are not centered around the mean of A. In
this setting we give an estimator, using two proxies,
that identifies the target loss.

In Section 5, we evaluate our theoretical findings on syn-
thetic experiments, and in Section 6 we demonstrate our
method on a real-world dataset consisting of hourly pollu-
tion readings across five major cities in China.

2. Preliminaries
2.1. Notation

We use upper case letters X to denote (possibly vector-
valued) random variables, and lower-case letters x to denote
values in the range of those random variables. Vectors are
assumed to be column vectors, so that X ∈ RdX indicates
that X = (X1, . . . , XdX )

>, a column vector of dX random
variables. We use ΣX ∈ RdX×dX to denote the covariance
matrix of a variable X . We use bold upper-case letters
X to denote a data matrix in Rn×dX , consisting of n i.i.d.
observations of X , and 1 {·} as an indicator random vari-
able. When dealing with matrices C,D, we use C ≺ D
and C � D to indicate the positive definite and positive
semi-definite partial order, respectively. That is, C ≺ D

H
A

YXWZ

Figure 2. In contrast to Rothenhäusler et al. (2021), we assume
that anchor variables (denoted A) are unobserved, but that we have
access to either one or two proxies W,Z. Observed variables are
shown in dark grey and unobserved variables in light grey. We do
not assume knowledge of the causal structure betweenA,X,H, Y
(except that A has no causal parents). The relationship between
X,H, Y could be cyclic, but all relationships are linear.

if D − C is positive definite (PD), and C � D if D − C
is positive semi-definite (PSD). We use Id to denote the
identity matrix, whose dimension is given by context. All
proofs are provided in the supplementary material.

2.2. Linear structural causal model

We assume the general class of causal graphs represented in
Figure 2, where X ∈ RdX denotes observed covariates that
can be used in prediction, Y ∈ RdY is the target we seek to
predict, H ∈ RdH are unobserved variables, and A ∈ RdA
represents anchor variables, which are assumed to have no
causal parents in the graph. We assume the linear structural
causal model (SCM) given in Assumption 1.

Assumption 1 (Linear SCM). We assume the SCMXY
H

 := B

XY
H

+MAA+ ε, (1)

where A, ε have zero mean, bounded covariance, and are
independently distributed. We assume that E[AA>] and
Id−B are invertible, where Id is the identity matrix. See
Figure 2 for a graphical representation.

Note that we do not assume here (or anywhere in this paper)
that either A or ε is Gaussian. The invertibility of Id−B is
satisfied if the causal graph is a directed acyclic graph. The
matrices B,MA encode the linear causal relationships. For
instance, Figure 1 can be represented in this form by B =[

0 0
α 0

]
, M =

[
βX
βY

]
. In general, ε ∈ RD, B ∈ RD×D,

and M ∈ RD×dA , where D := dX + dY + dH . We assume
that dY = 1 for simplicity.

2.3. Distributional robustness of anchor regression

Our goal is to learn a predictor f∗(X) of Y that minimizes
a worst-case risk of the following form

f∗ = arg min
f∈F

sup
P∈P

EP[`(Y, f(X))], (2)
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whereF denotes a hypothesis class of possible predictors, P
denotes a set of possible distributions, and ` represents our
loss function. We take the class P to consist of distributions
that arise as the result of causal interventions on A, and seek
to learn a linear predictor to minimize mean-squared error.

We use P to refer to the observational distribution, and
Pdo(A:=ν) to refer to the distribution under interventions on
A, where the variable A is replaced by the random variable
ν, and ν is assumed to be independent of the noise vector ε.
We often write

R(γ) := Y − γ>X

as a random variable that represents the residual of a predic-
tor γ ∈ RdX . Importantly, Assumption 1 implies that for
any γ, E[R(γ) | A] can be written as a linear function in A.

In this setting, Rothenhäusler et al. (2021) propose the fol-
lowing objective, defined here with respect to the observa-
tional distribution P (rather than a finite sample)

Definition 1 (Anchor Regression).

`AR(A; γ, λ) := `LS(X,Y ; γ) + λ`PLS(X,Y,A; γ), (3)

where λ ≥ −1 is a hyperparameter and

`LS(X,Y ; γ) := E
[
R(γ)

2
]

(4)

`PLS(X,Y,A; γ) := E
[
(E [R(γ) | A])

2
]
. (5)

The first term `LS encodes the least-squares objective, while
the second term `PLS encodes the residual error which can
be predicted from A, which we refer to as the projected
least-squares error. For λ > 0, the second term adds an
additional penalty (beyond that of ordinary least squares)
when the bias varies across values ofA. The second term (5)
can also be written in the linear setting of Assumption 1 as

`PLS(A; γ) = E[R(γ)A>]E[AA>]
−1E[AR(γ)

>
], (6)

where we drop the dependence on X,Y for notational sim-
plicity. Under Assumption 1, Equation (3) corresponds to a
worst-case loss under distributional shift caused by bounded
intervention on A (Rothenhäusler et al., 2021, Theorem 1)

`AR(A; γ, λ) = sup
ν∈CA(λ)

Edo(A:=ν)[(Y − γ>X)
2
], (7)

where the robustness set is given by

CA(λ) := {ν : E[νν>] � (1 + λ)E[AA>]}. (8)

Since minimizing `AR is equivalent to ordinary least squares
(OLS) regression when λ = 0, this also provides a natural
robustness guarantee for the OLS estimator, whereCOLS :=

{ν : E[νν>] � E[AA>]}. In an identifiable instrumental
variable setting, the minimizer converges against the causal
parameter for λ → ∞ (e.g. Jakobsen & Peters, 2020, eq.
(71)); the `PLS term has therefore been referred to as ‘causal
regularization’ (e.g. Bühlmann & Ćevid, 2020), and has
also been denoted by `IV (Rothenhäusler et al., 2021), as
Cov(A,R(γ)) = 0 if and only if `PLS(γ) = 0.

3. Distributional robustness to bounded shifts
We first assume the existence of a noisy proxy W , condi-
tionally independent of (X,Y,H) given A (see Figure 2).

Assumption 2 (Single proxy with additive noise). In the
context of Assumption 1, W is generated as follows

W := β>WA+ εW ,

where εW has mean zero, bounded covariance, and is inde-
pendent of (A, ε). In addition, we assume that the second
moment matrix E[WW>] is invertible.

Under mild identifiability conditions (e.g., that βW is full
rank) one can show (see Section C.2) that

`PLS(A; γ) = 0 ⇐⇒ `PLS(W ; γ) = 0, (9)

Hence, a single proxy is enough (in the population case) to
identify whether the sharp constraint `PLS(γ) = 0 holds,
representing invariance to interventions of arbitrary strength.
This corresponds to the fact that if A is a valid instrumental
variable, then so is W (Hernán & Robins, 2006).

However, we consider interventions on A that are not of
arbitrarily large strength. With that in mind, in Section 3.1,
we demonstrate that (i) when a single proxy W is used in
place of A, a robustness guarantee holds, but the robustness
set is reduced relative to (8), (ii) the extent of this reduction
depends on the signal-to-variance relationship in W , and
(iii) this relationship is not generally identifiable from the
observational distribution over (X,Y,W ) alone. In Sec-
tion 3.2, we show that in the setting where two proxies are
available, the same guarantees as for an observed A can be
obtained. We do so constructively, giving a regularization
term whose population version is equal to `PLS(A; γ).

3.1. Robustness with a single proxy

First, we establish the robustness set of Anchor Regression
when a single proxy is used in place of A. We refer to
this as Proxy Anchor Regression, to distinguish it from
the case when A is observed, but the only difference from
Definition 1 is that W is used in place of A.

Definition 2 (Proxy Anchor Regression). Let `LS , `PLS be
defined as in Equations (4) and (6). We define

`PAR(W ; γ, λ) := `LS(γ) + λ`PLS(W ; γ), (10)
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OLS AR(A) = xPAR(W,Z) PARλ1(W ) PARλ2(W )
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Figure 3. Test performance under interventions do(A := (ν1, ν2)) which give rise to different test distributions over X and Y . Each dot
corresponds to a different intervention (i.e., test distribution on X,Y ), and the color gives the resulting mean squared prediction error
(MSPE). (Far Left) OLS performs well for interventions in the set COLS (solid circle), corresponding to the training covariance of A.
However, it performs poorly under interventions far from this region (e.g., top left). (Middle Left) Anchor Regression (AR) minimizes
the worst-case loss over interventions on A within the region CA(λ1) (cf., (8)), a re-scaling of COLS. There is a trade-off, with better
performance than OLS under large interventions, but worse performance under small interventions. Given two proxies W,Z, we introduce
Cross-Proxy Anchor Regression (xPAR, cf., (14)) and prove that it minimizes the same worst-case loss. (Middle Right) When only a
single proxy W is used in place of A, the result is a weaker guarantee, in the form of a smaller robustness set CW (λ1) (cf., (11)) for the
same value of λ1. The shape of this set depends on the noise in the proxy along different dimensions. (Far Right) As a result, there does
not generally exist a λ2 such that CW (λ2) = CA(λ1). If we choose some λ2 > λ1 such that CA(λ1) ⊂ CW (λ2), we enforce a stronger
constraint than intended, resulting in an unwanted trade-off between performance and robustness.

where λ ≥ −1 is a hyperparameter and we suppress the
dependence on X,Y in the notation.

Theorem 1. Under Assumptions 1 and 2, for all γ ∈ RdX
and for all λ ≥ −1

`PAR(W ; γ, λ) = sup
ν∈CW (λ)

Edo(A:=ν)[(Y − γ>X)
2
],

where the robustness set is given by

CW (λ) := {ν : E[νν>] � E[AA>] + λΩW } (11)

and where ΩW is defined as

ΩW := E[AW>]
(
E[WW>]

)−1E[WA>]. (12)

Intuitively, ΩW defines a signal-to-variance relationship in
W , and this determines the robustness guarantee. In the
case where both A,W ∈ R are one-dimensional, and A has
unit variance, the robustness sets simplify to

COLS = {ν : E[ν2] ≤ 1}
CW (λ) = {ν : E[ν2] ≤ 1 + λ · ρW }
CA(λ) = {ν : E[ν2] ≤ 1 + λ},

where ρW := β2
W /(β

2
W + Eε2W ) < 1 is the signal-to-

variance ratio of W , also referred to as the reliability ratio
in the measurement error literature (Fuller, 1987). Thus,
in the one-dimensional case, the robustness set using W
is strictly smaller than the one obtained by using A when
λ > 0, except in the case where εW = 0 a.s. This result
generalizes to higher dimensions.

Proposition 1. Assume Assumptions 1 and 2 and that
E[εW ε

>
W ] ∈ RdW×dW is positive definite. Then for λ > 0

COLS ⊆ CW (λ) ⊂ CA(λ),

and the set CW (λ) increases monotonically when E[εW ε
>
W ]

decreases w.r.t. the partial matrix ordering. If dW = dA,
βW is full rank, and εW = 0 a.s., then CW (λ) = CA(λ).

If ΩW were known, we could choose a larger λ∗ such that
CA(λ) ⊆ CW (λ∗). In contrast to the one-dimensional case,
where we could choose λ∗ = λ/ρW to obtain an equality
CA(λ) = CW (λ∗), we cannot generally achieve equality in
higher dimensions (see Figure 3).

However, ΩW is not generally identifiable from the ob-
served distribution over (X,Y,W ) alone. Moreover, SCMs
compatible with the observed distribution react differently
under interventions onA and yield different coefficients that
are optimal w.r.t. interventions in CA(λ). Consequently, in
this setting, it is not possible to recover the guarantees of
Anchor Regression without further assumptions (e.g., on
ΩW ). See Supplement B for an example.

Note that these results apply regardless of whether or not
βW is full rank. However, if βW is not full rank, then there
will be directions of variation in A that are not reflected in
W , and we will not be able to achieve additional robust-
ness (beyond that of OLS) against interventions along these
directions.
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3.2. Robustness with two proxies

We now show that if we have two (sufficiently different)
proxies for A, then it is possible to recover the original
robustness set using a different regularization term. We
denote these proxies by W,Z, as shown in Figure 2. In this
setting, the structural causal model over (X,Y,H,A) can
still be written in the form of Equation (1), where we make
the following additional assumptions.

Assumption 3 (Proxies with additive noise). In the context
of Assumption 1, Z,W are generated as follows

W := β>WA+ εW and Z := β>ZA+ εZ ,

where εW , εZ are mean-zero with bounded covariance, and
εW , εZ , ε, A are jointly independent.

Assumption 4. The dimensions ofA,W,Z are equal, dA =
dW = dZ , and βW , βZ are full-rank.

Note that Assumption 4 also implies that the second moment
matrix E[ZW>] is invertible.

To build intuition, note that this assumption is trivially sat-
isfied in the setting where W = A+ εW and Z = A+ εZ ,
i.e., where W and Z are two noisy observations of A. More
generally, Assumption 4 rules out directions of variation in
A that are undetectable in W or Z.

In this setting we introduce the following loss, and prove
that it is equal to the worst-case loss obtained when A is
observed (c.f., (7))

Definition 3 (Cross-Proxy Anchor Regression).

`×PAR(W,Z; γ, λ) := `LS(X,Y ; γ) + λ`×(W,Z; γ),

where we refer to

`×(W,Z; γ) := E[R(γ)W>]E[ZW>]
−1E[ZR(γ)

>
],
(13)

as the cross-proxy regularization term.

Theorem 2. Under Assumptions 1, 3 and 4, for any γ ∈
RdX and any λ ≥ −1

`×PAR(W,Z; γ, λ) = sup
ν∈CA(λ)

Edo(A:=ν)[(Y − γ>X)
2
],

(14)
where CA(λ) = {ν : E[νν>] � (1 + λ)E[AA>]}.

`×PAR is convex in γ and has a closed form solution for
its minimizer based only on the population moments of
X,Y,W and Z (see Proposition A4 in the supplement).

To build intuition for why Assumption 4 is required for this
result, consider an example where W,Z are both scalars
(dW = dZ = 1) and A has two independent dimensions
(A1, A2). In this example, if both proxies measure the same
dimension A1, then variation in A2 is not detectable in

either proxy, and we cannot optimize for robustness to in-
terventions on A2. On the other hand, if W only measures
A1 (e.g., W = A1 + εW ), and Z only measures A2 (e.g.,
Z = A2 + εZ ), then we cannot use Z to identify the signal-
to-variance ratio of W , and vice-versa. In this case, (W,Z)
is effectively a single two-dimensional proxy in the frame-
work of Section 3.1, where we showed that recovering the
guarantees of Anchor Regression is not generally possible.
Intuitively, we need all directions of variation in A to have
some influence on both proxies (i.e., βW , βZ full rank), and
hence require that W,Z have sufficiently large dimension.

4. Targeted anchor regression: Incorporating
additional shift information

We now generalize Anchor Regression to an estimator that
is targeted to be robust against particular shifts, and demon-
strate that we can similarly handle this setting when only
proxies of A are observed. In Section 2.3 we showed
that Anchor Regression minimizes the worst-case loss over
the set CA(λ) of all interventions do(A := ν) where
E[νν>] � (1 + λ)E[AA>]. For deterministic ν, CA(λ)
is an ellipsoid centered at 0, and its width in each direction
is proportional to the variation of A in that direction. How-
ever, we may desire a different robustness set: For instance,
if we anticipate a particular shift µν in the mean of A, or if
we want to add extra protection against particular directions
of variation in A. This can be formalized as a robustness set
defined by an ellipsoid that may not be centered at 0, nor
be proportional to E[AA>]. The estimator developed in this
section can incorporate such prior beliefs.

More formally, instead of considering robustness against
interventions do(A := ν) over the set ν ∈ CA(λ), we now
assume that we have additional information on the nature
of ν, which is specified in the form of a vector µν and a
symmetric PSD matrix Σν . We introduce a new method,
Targeted Anchor Regression, minimizing what we refer to
as the targeted loss. We prove in Propositions 2 and 3 that
minimizing this objective can be interpreted in two ways:
First, as minimizing an expected loss over interventions ν
with a known mean and covariance, or minimizing a worst-
case loss over deterministic interventions ν contained in
an ellipsoid robustness set (as discussed above). This is
visualized in Figure 4.

4.1. Targeting when A is observed

We first consider the case when A is observed during
training, and the mean and covariance of ν are known,
given by µν ,Σν . Importantly, for a given γ we have
E[R(γ) | A = a] = b>γ a, where, writing ΣA := E[AA>],

b>γ := E[R(γ)A>]Σ−1
A . (15)
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Figure 4. Targeted Anchor Regression allows for minimizing the
worst-case loss in regions (dashed ellipse) that may differ in loca-
tion, size, and shape from the regions in Figure 3 (OLS copied for
reference). Every point ν represents a test distribution do(A := ν),
the color indicating the mean squared prediction error in this dis-
tribution. Cross marks the origin. The TAR estimator achieves its
minimal test loss at the center of the targeted region.

Definition 4 (Targeted Anchor Regression). Let µν ∈ RdA ,
and Σν ∈ RdA×dA , where Σν is a symmetric PSD matrix.

`TAR(A;µν ,Σν , γ, α)

:= `LS(γ) + b>γ (Σν − ΣA) bγ + (b>γ µν − α)
2
, (16)

where bγ is defined in (15), and ΣA is the covariance of A.

Proposition 2. Under Assumption 1, and the assumption
that ν ⊥⊥ ε, we have, for all γ ∈ RdX , α ∈ R,

`TAR(A;µν ,Σν ; γ, α) = Edo(A:=ν)[(Y − γ>X − α)
2
],

where µν = E[ν] and Σν is the covariance matrix of ν.

Importantly, the objective in Equation (16) is convex in
(γ, α), and has a closed-form solution (see Proposition A5
in the supplement). If ν is a known constant, then this corre-
sponds to performing OLS using bothX andA as predictors
during training, and using the known value of ν for A for
prediction (see Supplement C.3.2). However, if for example
ν exhibits more variance than A along certain directions,
and less variance along others, then the targeted regression
parameter differs from standard solutions. Optimizing the
objective in Equation (16) can also be interpreted as opti-
mizing a worst-case loss over interventions do(A := ν) in a
certain set.
Proposition 3. Under Assumption 1, we have, for all µν ∈
RdA and Σν ∈ RdA×dA being a symmetric positive definite
matrix, that

arg min
γ,α

`TAR(A;µν ,Σν , γ, α)

= arg min
γ,α

sup
ν∈T (µµ,Σν)

Edo(A:=ν)[(Y − γ>X − α)
2
],

where the supremum is taken over (deterministic or random)
shifts ν of the form ν = µv + δ, where δ satisfies the con-
straint that E[δδ>] � Σν . If δ is random, we require that

it is independent of all other random variables. In other
words, we can write that ν lies in the set

T (µν ,Σν) := {ν : E[(ν − µν)(ν − µν)
>

] � Σν}.

Note that the expectation in the constraint T is with respect
to the random variable ν. This covers the case in which ν
(and hence δ) is deterministic, in which case it is equal to a
fixed value with probability one.

Proposition 3 shows that Targeted Anchor Regression gen-
eralizes Anchor Regression to a broader class of robustness
sets, that need not depend explicitly on E[AA>]. In partic-
ular, Anchor Regression can be viewed as a special case,
where Σν = (1 + λ)ΣA and E[ν] = 0, in which case the
objectives are equal for α = 0. In the following, we adopt
the interpretation of µν ,Σν as specifying a mean and co-
variance of ν (Proposition 2).

4.2. Targeting with proxies

In the single-proxy setting, we define Proxy Targeted An-
chor Regression as using W in place of A in Equation (16).
We assume a known mean and covariance of W under
Pdo(A:=ν), used in place of µν ,Σν . By similar arguments
to those in Section 3.1, this approach does not generally
yield the optimal predictor, in a way that depends on the
(unidentified) signal-to-variance relationship in W . Given
the similarity, we defer details to Supplement D.

When two proxies W,Z are available, we can recover the
statement from Proposition 2 using a modified estimator,
by similar arguments to those in Section 3.2. The core
observation is that we can construct a linear term

a>γ := E[R(γ)Z>](E[WZ>])
−1
, (17)

which, if βZ = βW = Id can be seen as a linear IV estimate
of b>γ in Equation (15), an estimator used in the measure-
ment error literature given repeated noisy measurements of
a single variable (Fuller, 1987). In our case, Equation (17)
identifies b>γ only up to the linear transformation βW , but
this is sufficient to identify the targeted loss.

Definition 5 (Cross-Proxy Targeted Anchor Regression).
Let µ̃ ∈ RdW , and Σ̃W ∈ RdW×dW , where Σ̃W is a sym-
metric positive semi-definite matrix. We define

`×TAR(W,Z; µ̃, Σ̃W , γ, α)

:= `LS(γ) + a>γ

(
Σ̃W − ΣW

)
aγ +

(
a>γ µ̃− α

)2
,

where aγ is defined in (17).

In Theorem 3 (Supplement D) we prove, analogous to The-
orem 2, that this population objective is equal to that of
Targeted Anchor Regression (16).
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Figure 5. Mean squared prediction error (MSPE) under interven-
tions do(A := ν) for estimators PAR and xPAR. We display
population losses for the population parameters as dashed lines,
and median empirical MSPE when fit from data as solid lines, with
shaded regions covering the 25% to 75% quantiles.

5. Synthetic experiments
In Section 5.1, we show that Cross-Proxy Anchor Regres-
sion (xPAR) outperforms Proxy Anchor Regression (PAR)
in settings with noisy proxies. As the noise increases, xPAR
continues to match Anchor Regression (AR) test perfor-
mance under intervention, while PAR approaches OLS. In
Section 5.2, we demonstrate the risks of attempting to cor-
rect for this noise by assuming a certain signal-to-variance
ratio. In Section 5.3 we demonstrate another benefit of
xPAR over PAR, giving an example where it places more
weight on causal predictors relative to PAR. Finally, in Sec-
tion 5.4, we highlight the trade-off between using Targeted
Anchor Regression (TAR) vs. OLS and AR, showing that
TAR improves performance under the targeted shift, at the
cost of incurring additional error on the training distribution.
Code for experiments is available at https://github.
com/clinicalml/proxy-anchor-regression.

5.1. Mean squared prediction error under intervention

We demonstrate on synthetic data that xPAR recovers simi-
lar test performance to AR, while the performance of PAR
degrades as the signal-to-variance ratio (SVR) of the proxies
decreases. We simulate training data (at different levels of
signal-to-variance) from an SCM with the structure given in
Figure 2, fix λ := 5 and fit PAR and xPAR. We then choose
a fixed intervention ν, and simulate test data under the inter-
vened distribution, evaluating our learned predictors.

In Figure 5, we see that the test errors for xPAR and AR
coincide (see Theorem 2) while PAR interpolates between
OLS and AR, depending on the signal-to-variance ratio (see
Proposition 1). Section E gives additional implementation
details on this and remaining experiments.

5.2. Misspecified signal-to-variance ratio

In Section 3.1, we noted that if the (unidentified) signal-to-
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Figure 6. Estimates of worst-case mean squared prediction error
(MSPE) over a robustness set C. PAR is applied assuming that the
signal-to-variance ratio is 0.4, which gives an estimate of the worst-
case MSPE over C (orange). Green line shows actual worst-case
MSPE over C at different underlying signal-to-variance ratios.

variance ratio (SVR) were known, we could correct for it
when using PAR with a single proxy. Here we demonstrate
the implications of incorrectly specifying this correction.
We simulate data from the same SCM as in Section 5.1,
with varying (true) signal-to-variance ratio.

In Figure 6, for the predictor chosen by PAR, we plot the
estimated worst-case MSPE (in orange), using a correc-
tion factor assuming that the signal-to-variance ratio is 0.4,
against the true worst-case MPSE (in green). We observe
that if the true signal-to-variance ratio is smaller than our
assumption of 0.4, then our estimate is too conservative, and
vice versa if the true signal-to-variance ratio is larger.

5.3. Causal and anti-causal predictors

We demonstrate the ability of xPAR to select causal predic-
tors, in a synthetic setting where predictors X may contain
both causal and anti-causal predictors. We simulate data
from an SCM (Figure 7 [top]), where one anchor, A1, is
a parent of the causal predictors, while the other, A2, is a
parent of the anti-causal predictors. We consider two identi-
cally distributed noisy proxies W,Z of A := (A1, A2). The
challenge is that A2 is measured with significantly more
noise than A1, across both proxies.

As seen in Figure 7 [bottom] PAR places more weight on
anti-causal features. In effect, the noise in the measurement
of A2 causes Xanti-causal to appear less sensitive to shifts in
A2. This is an ideal scenario for xPAR, as it is designed
to deal with additional noise by leveraging both proxies.
Consequently, when two proxies W,Z are available, xPAR
places more weight on the causal predictors, relative to PAR.

5.4. Targeted shift

We demonstrate the trade-off made by Targeted Anchor
Regression (TAR) versus Anchor Regression (AR), con-
sidering the case when A is observed for simplicity. We
simulate training data and fit estimators γOLS, γAR and γTAR,

https://github.com/clinicalml/proxy-anchor-regression
https://github.com/clinicalml/proxy-anchor-regression


Regularizing towards Causal Invariance: Linear Models with Proxies

A1

A2

Xcausal

Xanti-causal

W

Z

Y

X1
causal

X2
causal

X3
causal

X1
anti−causal

X2
anti−causal

X3
anti−causal

0.00 0.05 0.10 0.15
|Regression coefficients|

xPAR(W,Z)
PAR(W )

Figure 7. Top: SCM with A1, A2 (unobserved), target Y and pre-
dictor variables Xcausal, Xanti-causal ∈ R3. Dotted lines indicate
higher noise. Bottom: Absolute value of regression coefficients.
PAR places more weight on anti-causal predictors, while xPAR
places more weight on causal predictors.

where γTAR is targeted to a particular mean and covariance
of a random intervention ν, and we select λ for γAR such
that this intervention is contained within CA(λ).

We then simulate test data from two distributions: Pdo(A:=ν)

(i.e., the shift occurs), and P (where it does not), and evaluate
the mean squared prediction error (MSPE). The results are
shown in Figure 8, and demonstrated that TAR performs
better than AR and OLS in the first scenario, but this comes
at the cost of worse performance on the training distribution.

6. Real-data experiment: Pollution
We test our approach on a real-world heterogeneous dataset
of hourly pollution readings in five cities in China, taken
over several years (Liang et al., 2016), with most data avail-
able from 2013-15. Our prediction target is PM2.5 concen-
tration, a measure of pollution, and covariates are primarily
weather-related, including dew point, temperature, humidity,
pressure, wind direction / speed, and precipitation.

Real-World Proxy (Temperature): Pollution tends to be
seasonal in this dataset, and so we construct our training
and test environments using seasons: For each of the four
seasons, we train only on the other three seasons, and evalu-
ate on the held-out season. We do this for each city, treating
each city and held-out season as a separate evaluation. This
leads to 20 separate scenarios.

With this variation in mind, we use temperature as a real-
world proxy, and treat it as unavailable at test time. We
also construct two noisier copies of temperature, which
we refer to as W,Z, adding independent Gaussian noise
while controlling the signal-to-variance ratio (in the training
distribution) at Var(Temp)/Var(W ) = 0.9.

Anticipated shift not occuring

Anticipated shift occuring
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TAR(A)
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Figure 8. Empirical mean squared prediction error of TAR, OLS
and AR under the shifted distribution and the training distribution.

Estimators / Benchmarks: For Proxy and Cross-Proxy
AR (PAR, xPAR, see Section 3), we choose λ ∈ [0, 40] by
leave-one-group-out cross-validation on the three training
seasons, using the first year (2013) of data. For instance, if
“winter” is the test season, then we choose the value of λ
that performs best on average across combinations of the
other seasons e.g., training on the fall & summer data and
evaluating on the spring data.

When using temperature as a single proxy in PAR, we ob-
serve that in 9 out of 20 scenarios, λ = 40 is chosen, but
in the remaining 11, λ = 0 is chosen, which is equivalent
to OLS. For comparability, we use the same values of λ
for PAR(W ) and xPAR(W,Z). For Proxy Targeted AR and
Cross-Proxy Targeted AR (PTAR, xPTAR, see Section 4),
we use the mean and variance of the relevant variables (e.g.,
temperature, W , Z) in the held-out season to target our
predictors.

Our primary benchmark is OLS (without temperature). We
also compare to (a) OLS that uses temperature during train
and test [OLS (TempC)], and (b) OLS that includes the
temperature during training, and uses the mean test value
for temperature during prediction [OLS + Est. Bias]. We
present the results for the 9 scenarios where λ > 0 in Ta-
ble 1, since PAR with λ = 0 is equivalent to OLS (aggregate
results in Table 2 in the supplement).

Results: For both PAR and PTAR, we see improvement
over OLS on average across scenarios, with limited down-
side (e.g., in the worst scenario for PTAR relative to OLS,
the additional MSE incurred is 0.001). In Figure 12 (Supple-
ment), we observe that PAR and PTAR achieve gains in two
different ways: PAR increases the coefficients of humidity
and dew point relative to OLS, while PTAR reduces them
and incorporates a correction into the intercept.

7. Discussion and related work
Learning a predictive model that performs well under arbi-
trarily strong causal interventions is an ambitious goal. In
this work, we have argued that even if causal invariance is
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Table 1. Mean: Average MSE (lower is better) over 9 scenarios
where λ > 0. # Win: Number of scenarios where the estimator has
lower MSE than OLS. Best (Worst): Smallest (Largest) difference
to OLS across environments, where lower is better.

Estimator Mean # Win Best Worst

OLS 0.537
OLS (TempC) 0.536 5 -0.028 0.026
OLS + Est. Bias 0.569 4 -0.072 0.150

PAR (TempC) 0.531 6 -0.041 0.006
PAR (W) 0.531 6 -0.037 0.006
xPAR (W, Z) 0.531 6 -0.039 0.007

PTAR (TempC) 0.525 8 -0.061 0.001
PTAR (W) 0.529 8 -0.038 0.001
xPTAR (W, Z) 0.526 7 -0.059 0.001

achievable, it may not be desirable: A model whose perfor-
mance is invariant to arbitrarily strong interventions may
have poor performance when the test distribution does not
differ too much from the training distribution.

There is a large body of work that seeks to learn causal mod-
els as a route to achieving invariance (Rojas-Carulla et al.,
2018; Magliacane et al., 2018), or that uses knowledge of
the causal graph to select predictors with invariant perfor-
mance under a set of known interventions (Subbaswamy
et al., 2019). Similarly, invariant risk minimization (IRM)
seeks a predictor Φ such that E(Y | Φ(X)) is invariant
across a set of discrete environments (Arjovsky et al., 2019;
Xie et al., 2020; Krueger et al., 2020; Bellot & van der
Schaar, 2020). Recent work has pointed to the theoretical
and practical difficulty of learning such a predictor for IRM
(Rosenfeld & Risteski, 2020; Kamath et al., 2021; Guo et al.,
2021), in part due to the fact that recovering a truly invariant
model, even in linear settings, requires a large number of
environments. Generalization in non-linear settings requires
sufficient overlap between environments and strong restric-
tions on the model class (e.g., Christiansen et al., 2020).
In contrast to all of the above, we trade off between in-
distribution performance and invariance explicitly, instead
of seeking invariance as a primary goal. Moreover, since
we allow for A to influence Y directly and through hidden
variables, invariance may not even be achievable, but we can
still formulate a worst-case loss for bounded interventions.

We argue for incorporating prior knowledge about potential
shifts by (1) identifying proxies for relevant factors of varia-
tion (i.e., anchor variables), and (2) specifying plausible sets
of interventions on these factors of variation. We build upon
the causal framework of Anchor Regression (Rothenhäusler
et al., 2021), extending it in two important ways.

To start, we relax the assumption that the anchor variables
are directly observed. Instead, we only assume access to

proxies, and prove that identification of the worst-case loss
is feasible with two proxies. The challenge of identifying
the worst-case loss is related to the problem of identify-
ing causal effects with noisy proxies of unmeasured con-
founders (Tchetgen Tchetgen et al., 2020; Miao & Tchetgen,
2018; Shi et al., 2018; Kuroki & Pearl, 2014), and the chal-
lenge of learning under classical measurement error (Fuller,
1987; Hyslop & Imbens, 2001; Bound et al., 2001). Our
observation that a single proxy will underestimate the worst-
case loss is related to the well-known problem of regression
dilution bias (Frost & Thompson, 2000), where performing
linear regression under measurement error leads to bias in
parameter estimation. In contrast, we are not concerned
with causal / structural parameter estimation, which is gen-
erally not possible in the models we consider, but rather
estimating a worst-case loss under a class of interventions.
Srivastava et al. (2020) also consider distributional shift in
unmeasured variables for which proxies are available, and
apply techniques for handling worst-case sub-populations
from DRO (Duchi et al., 2020). In contrast, we consider
causal interventions on A that could lie outside the support
of the training data, which cannot be represented as a sub-
population. Moreover, they consider the single-proxy case,
and give a generalization bound that incorporates the impact
of noise, while under our assumptions we are able to recover
guarantees as if A were observed, using two proxies.

We then introduce Targeted Anchor Regression, a method
for incorporating additional prior knowledge on the strength
and direction of shifts in anchor variables. This method
can be interpreted as allowing for specification of a
broader class of robustness sets, beyond those considered in
Rothenhäusler et al. (2021), or as specifying the mean and
covariance of the anchors at test time. We prove analogous
results with proxies in this setting, and evaluate this strategy
empirically in Section 6, targeting our loss to a particular
mean and variance over temperature in the held-out season.

Our work contributes to a growing body of literature that
seeks to generalize Anchor Regression to new settings,
whether allowing for unobserved anchors and a broader
class of robustness sets (as in our work), or generalizing to
discrete and censored outcomes, as in Kook et al. (2021).
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