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Abstract

Autoencoders represent an effective approach for
computing the underlying factors characterizing
datasets of different types. The latent represen-
tation of autoencoders have been studied in the
context of enabling interpolation between data
points by decoding convex combinations of latent
vectors. This interpolation, however, often leads
to artifacts or produces unrealistic results during
reconstruction. We argue that these incongruities
are due to the structure of the latent space and
because such naively interpolated latent vectors
deviate from the data manifold. In this paper, we
propose a regularization technique that shapes the
latent representation to follow a manifold that is
consistent with the training images and that drives
the manifold to be smooth and locally convex.
This regularization not only enables faithful inter-
polation between data points, as we show herein,
but can also be used as a general regularization
technique to avoid overfitting or to produce new
samples for data augmentation.

1. Introduction
Given a set of data points, data interpolation or extrapolation
aims at predicting novel data points between given samples
(interpolation) or predicting novel data outside the sample
range (extrapolation). Faithful data interpolation between
sampled data can be seen as a measure of the generalization
capacity of a learning system (Berthelot et al., 2018). In
the context of computer vision and computer graphics, data
interpolation may refer to generating novel views of an
object between two given views or predicting in-between
animated frames from key frames.

Interpolation that produces novel views of a scene requires
input such as the geometric and photometric parameters of

1School of Computer Science, The Interdisciplinary Center,
Herzliya, Israel . Correspondence to: Y.H. <toky@idc.ac.il>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

existing objects, camera parameters and additional scene
components, such as lighting and the reflective characteris-
tics of nearby objects. Unfortunately, these characteristics
are not always available or are difficult to extract in real-
world scenarios. Thus, in such cases, we can apply data-
driven interpolation that is deduced based on a sampled
dataset drawn from the scene taken under various acquisi-
tion parameters.

The task of data interpolation is to extract new samples (pos-
sibly continuous) between known data samples. Clearly,
linear interpolation between two images in the input (im-
age) domain does not work as it produces a cross-dissolve
effect between the intensities of the two images. Adopting
the manifold view of data (Goodfellow et al., 2016; Verma
et al., 2018; Bengio et al., 2013), this task can be seen as
sampling new data points along the geodesic path between
the given points. The problem is that this manifold is un-
known in advance and one has to approximate it from the
given data. Alternatively, adopting the probabilistic perspec-
tive, interpolation can be viewed as drawing samples from
highly probable areas in the data space.

One fascinating property of unsupervised learning is the
network’s ability to reveal the underlying factors controlling
a given dataset. Autoencoders (Doersch, 2016; Kingma
& Welling, 2013; Goodfellow et al., 2016; Kramer, 1991;
Vincent et al., 2010) represent an effective approach for
exposing these factors. Researchers have demonstrated the
ability to interpolate between data points by decoding a
convex sum of latent vectors (Shu et al., 2018; Mathieu
et al., 2016); however, this interpolation often incorporates

Figure 1. Left: A vertical pole casting a shadow. Yellow blocks-top
row: Cross-dissolve phenomena as a result of linear interpolation in
the input space. Yellow blocks-bottom row: Image reconstruction
obtained by a linear latent space interpolation of an autoencoder.
Unrealistic artifacts are introduced.
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visible artifacts during reconstruction.

To illustrate the problem, consider the following example:
A scene is composed of a vertical pole at the center of a
flat plane (Figure 1-left). A single light source illuminates
the scene and accordingly, the pole projects a shadow onto
the plane. The position of the light source can vary along
the upper hemisphere. Hence, the underlying parameters
controlling the generated scene are (θ, φ), the elevation and
azimuth, respectively. The interaction between the light and
the pole produces a cast shadow whose direction and length
are determined by the light direction. A set of images of
this scene is acquired from a fixed viewing position (from
above) with various lighting directions. Our goal in this
example is to train a model that is capable of interpolating
between two given images. Figure 1, top row, depicts a
set of interpolated images, between the source image (left
image) and the target image (right image), where the inter-
polation is performed in the input domain. As illustrated,
the interpolation is not natural as it produces cross-dissolve
effects in image intensities. Training a standard autoencoder
and applying linear interpolation in its latent space generates
images that are much more realistic (Figure 1, bottom row).
Nevertheless, this interpolation is not perfect as visible arti-
facts occur in the interpolated images. The source of these
artifacts can be investigated by closely inspecting the 2D
manifold embedded in the latent space.

Figure 2 shows two manifolds embedded in latent spaces,
one with data embedded in 2D latent space (upper left plot)
and one with data embedded in 3D latent space (upper right
plot). In both cases, the manifolds are 2D and are generated
using vanilla autoencoders. The grid lines represent the
(θ, φ) parameterization. It can be seen that the encoders pro-
duce non-smooth and non-convex surfaces in 2D as well as
in 3D. Thus, linear interpolation between two data points in-
evitably produces in-between points outside of the manifold.
In practice, the decoded images of such points are unpre-
dictable and may produce non-realistic artifacts. This issue
is demonstrated in the two right images in Figure 2. When
the interpolated point is on the manifold (an empty circle
denoted ‘A’), a faithful image is generated by the decoder
(lower left image). When the interpolated point departs from
the manifold (the circle denoted ‘B’), the resulting image is
unpredictable (lower right image).

In this paper, we argue that the common statistical view
of autoencoders is not appropriate when dealing with data
that have been generated from continuous factors. Alterna-
tively, the manifold structure of continuous data must be
considered, taking into account the geometry and shape of
the manifold. Accordingly, we propose a new interpolation
regularization mechanism consisting of an adversarial loss,
a cycle-consistency loss, and a smoothness loss. The adver-
sarial loss drives the interpolated points to look realistic as it

Figure 2. The latent manifold of the data embedded in 2D latent
space (upper left plot) and 3D latent space (upper right plot) learned
by vanilla autoencoders. Gridlines represent the (θ, φ) parameteri-
zation. The lower left image was generated from the latent point
denoted ‘A’. The lower right image was generated from the latent
point denoted ‘B’.

is optimized against a discriminator that learns to tell apart
real from interpolated data points. The cycle-consistency
and the smoothness losses encourage smooth interpolations
between data points. We show empirically that these com-
bined losses prompt the autoencoder to produce realistic
and smooth interpolations while providing a convex latent
manifold with a bijective mapping between the input and the
latent manifolds. This regularization mechanism not only
enables faithful interpolation between data points, but can
also be used as a general regularization technique to avoid
overfitting or to produce new samples for data augmentation,
as suggested, among others, by (Zhang et al., 2018).

To conclude, the contributions of the papers are: I. We de-
fine what constitutes an admissible interpolation between
two data points on a continuous manifold. In particular
we added the cycle-consistency and the smoothness terms
and show their importance in generating admissible inter-
polations. II. We empirically demonstrate how the combi-
nation of the four losses; the reconstruction, adversarial,
cycle-consistency and the smoothness losses, contribute to
admissible interpolations and produce state of the art results.

2. Manifold Data Interpolation
Before presenting the proposed approach we would like to
define what constitutes a proper interpolation between two
data points. There are many possible paths between two
points on the manifold. Even if we require the interpolations
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to be on a geodesic path, there might be infinitely many such
paths between two points. Therefore, we relax the geodesic
requirement and define less restrictive conditions. Formally,
assume we are given a dataset sampled from a target domain
X . We are interested in interpolating between two data
points xi and xj from X . Let the interpolated points be
x̂i→j(α) for α ∈ [0, 1] and let P (x) be the probability that
a data point x belongs to X . We define an interpolation
to be an admissible interpolation if x̂i→j(α) satisfies the
following conditions:

1. Boundary conditions:

x̂i→j(0) = xi and x̂i→j(1) = xj

2. Monotonicity: We require that under some defined dis-
tance on the manifold d(x,x′), the interpolated points
will depart from xi and approach xj , as the parameter-
ization α goes from 0 to 1. Namely, ∀α′ ≥ α,

d(x̂i→j(α),xi) ≤ d(x̂i→j(α′),xi)

and similarly:

d(x̂i→j(α
′),xj) ≤ d(x̂i→j(α),xj)

3. Smoothness: The interpolation function x̂i→j(α) is
Lipschitz continuous with a constant K:

‖x̂i→j(α), x̂i→j(α+ t)‖ ≤ K|t|

4. Credibility: ∀α ∈ [0, 1] We require that it is highly
probable that interpolated images, x̂i→j(α) belong to
X . Namely,

P (x̂i→j(α)) ≥ 1− β, for some constant β ≥ 0

2.1. Proposed Approach

Following the above definitions for an admissible interpo-
lation, we propose a new approach, called Autoencoder
Adversarial Interpolation (AEAI), which shapes the la-
tent space according to the above requirements. The general
architecture comprises a standard autoencoder with an en-
coder, z = f(x), and a decoder x̂ = g(z). We also train
a discriminator D(x) to differentiate between real and in-
terpolated data points. For pairs of input data points xi,xj ,
we linearly interpolate between them in the latent space:
zi→j(α) = (1 − α)zi + αzj , where α ∈ [0, 1]. The first
requirement is that we would like x̂i→j(α) = g(zi→j(α))
to look real and fool the discriminator D. Additionally,
we add a cycle-consistency loss that encourages the latent
representation of x̂i→j(α) to be mapped back into zi→j(α)
again; namely, ẑi→j(α) = f(g(zi→j(α))) should be sim-
ilar to zi→j(α). Finally, we add a smoothness loss that

drives the linear parameterization to form a smooth interpo-
lation. Putting everything together we define the loss Li→j
between pairs xi and xj as follows:

Li→j = Li→jR + λALi→jA + λCLi→jC + λSLi→jS (1)

where LR,LA,LC ,LS are the reconstruction, adversarial,
cycle, and smoothness losses, respectively. The first term
LR is a standard reconstruction loss and is calculated for
the two endpoints xi and xj :

Li→jR = L(xi, x̂i) + L(xj , x̂j)

where L(·, ·) is some loss function between the two images
(we used the L2 distance or the perceptual loss (Johnson
et al., 2016)) and x̂k = g(f(xk)). LA is the adversarial
loss that encourages the network to fool the discriminator
so that interpolated images are indistinguishable from the
data in the target domain X :

Li→jA =

M∑
n=0

− logD(x̂i→j(n/M))

where D(x) ∈ [0, 1] is a discriminator trying to distinguish
between images in the training set and the interpolated im-
ages. The cycle-consistency lossLC encourages the encoder
and the decoder to produce a bijective mapping:

Li→jC =

M∑
n=0

‖zi→j(n/M)− ẑi→j(n/M)‖2

where ẑi→j(α) = f(g(zi→j(α))). The last term LS is the
smoothness loss encouraging x̂(α) to produce smoothly
varying interpolated points between xi and xj :

Li→jS =

M∑
n=0

∥∥∥∥∂x̂i→j(α)∂α

∥∥∥∥2
α=n/M

where ‖∂x̂i→j(α)/∂α‖2α=α0
means that the derivative it

taken at α = α0. The three losses LA, LC and LS are
accumulated over M + 1 sampled points, from α = 0/M
up to α =M/M . Finally, we sum the Li→j loss over many
sampled pairs.

In the next section, we explain the motivation for each of
the four losses comprising Li→j in Equation 1 and describe
how these losses promote the four conditions defined in
Section 2.

2.2. Justification for the proposed approach

Figure 3 illustrates the justification for introducing the four
losses. As seen in Plot A in Figure 3, the images xi,xj ,
which lie on the data manifold in the image space (solid
black curve), are mapped back to the original images thanks
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Figure 3. Data interpolation using autoencoders. Two points xi,xj are located on the input data manifold (solid black line). The encoder
f(x) maps input points into the latent space zi, zj (red arrows). Linear interpolation in the latent space is represented by the blue dashed
line. The interpolated latent codes are mapped back into the input space by the decoder g(z) (blue arrows). See Section 2.2 for the
contribution of each loss component for an admissible interpolation.

to the reconstruction loss Li→jR . This loss promotes the
boundary conditions defined above. The reconstruction
loss, however, is not enough as it neither directly affects
in-between points in the image space nor the interpolated
points in the latent space. Introducing the adversarial loss
Li→jA prompts the decoder g(zi→j(α)) to map interpolated
latent vectors back into the image manifold (Plot B). Con-
sidering the output of the discriminator D(x) as the proba-
bility of image x to be in the target domain X (namely, to
be on the image manifold), the adversarial loss promotes
the credibility condition defined above. As indicated in
Plot B, the encoder f(x) (red arrows) might, nevertheless,
still map in-between images to latent vectors that are dis-
tant from the linear line in the latent space. Adding the
cycle-consistency loss Li→jC forces the reconstruction of
interpolated latent vectors to be mapped back into the origi-
nal vectors in the latent space (Plot C). The adversarial and
cycle-consistency losses encourage bijective mapping (one-
to-one and onto) between the input and the latent manifolds,
while providing a realistic reconstruction of interpolated la-
tent vectors. Lastly, the parameterization of the interpolated
points, namely, α ∈ [0, 1], does not necessarily provide
smooth interpolation in the image space (Plot C); constant
velocity interpolation in the parameter α may not generate
smooth transitions in the image space. The smoothness loss
Li→jS resolves this issue as it requires the distance between
xi and xj to be evenly distributed along α ∈ [0, 1] (due to
the L2 norm). This loss fulfills the smoothness condition
defined above (Plot D). If we consider the latent representa-
tion as a normed space representing the manifold distance
d(xi,xj) = ‖zi − zj‖, the linear interpolation in the la-
tent space also satisfies the monotonicity condition defined
above.

2.3. Implementation

The proposed architecture is visualized in Figure 4. At
each iteration, we sample two images from our dataset.
The two images (xi,xj) are encoded by the encoder f
into (zi, zj), respectively. We sample α uniformly be-

tween [0, 1] and pass (α,zi, zj) to h, a non-learned layer,
which calculates the linear interpolation in the latent space,
namely, zi→j(α) = (1 − α)zi + αzj . We then decode
zi, zj and calculate the reconstruction loss Li→jR . Subse-
quently, we decode zi→j(α) and alternately provide the
discriminator D with samples either from the training set
or from x̂i→j(α) = g(zi→j(α)). The discriminator is op-
timized using the standard GAN loss and is updated after
every iteration. We then calculate the smoothness loss Li→jS

by taking the derivative of x̂i→j(α) with respect to α. Fi-
nally, we pass x̂i→j(α) through the encoder f to obtain
ẑi→j(α) = f(x̂i→j(α)) for the cycle-consistency loss and
add the loss Li→jC (zi→j(α), ẑi→j(α)).

The chosen encoder architecture was VGG-inspired (Si-
monyan & Zisserman, 2014). We extract the features using
convolutional blocks starting from 16 feature maps, gradu-
ally increasing the number of feature maps to reach 128 by
the last convolutional block. We then flatten the extracted
features and pass them through fully connected layers until
we reach our desired latent dimensionality. The decoder
architecture is symmetrical to that of the encoder. We use
max-pooling after each convolutional block and batch nor-
malization with ReLU activations after each learned layer.
A random 80%-20% training-testing split was chosen for
all experiments, using the same batch size and total number
of examples in the dataset. During log grid-search hyperpa-
rameter optimization, we found that λA = λC = 10−2 and
λS = 10−1 produce the best results. All experiments were
performed using a single NVIDIA V100 GPU.

3. Related Work
In its simplest version, the autoencoder (Goodfellow et al.,
2016; Kramer, 1991) is trained to obtain a reduced repre-
sentation of the input, removing data redundancies while
revealing the underlying factors of the data set. The re-
duced space, namely, the latent space, can be viewed as
a ‘useful’ representation space in which data interpolation
can be attempted. Many autoencoder improvements have
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Figure 4. Our proposed architecture. Dotted lines represent the
loss functions. h is a non-learned layer that performs latent linear
interpolation.

been proposed in recent years, including new techniques
designed for improved convergence and accuracy. Among
these are the introduction of new regularization terms, new
loss objectives (such as adversarial loss) and new network
designs (Doersch, 2016; Kingma & Welling, 2013; Larsen
et al., 2015; Makhzani et al., 2015; Vincent et al., 2010;
Goodfellow et al., 2016; Vincent et al., 2010). Other new
autoencoder techniques provide frameworks that attempt to
shape the latent space to be efficient with respect to factor
disentanglement or to make it conducive to latent space in-
terpolation (Kingma & Welling, 2013; Bouchacourt et al.,
2017; Vincent et al., 2008; Yeh et al., 2016; Higgins et al.,
2016).

Within this second category, the variational autoencoder
(VAE) and its derivatives were shown to be very successful
in applying interpolation in the latent space, in particular
for multimodal distributions, such as MNIST. The KL term
in the VAE loss tends to cluster the modes in the latent
space close to each other (Dieng et al., 2019). Consequently,
linearly interpolating between different modes in the latent
space may provide pleasing results that smoothly transition
between the modes. Unfortunately, this cannot be applied
to data points whose generating factors are continuous (in
contrast to multimodal distributions) given that the KL loss
term tends to fold the manifold tightly into a compact space
making it highly non-convex.

(Berthelot et al., 2018) propose using a critic network to
predict the interpolation parameter α ∈ [0, 1] while an au-
toencoder is trained to fool the critic. The motivation be-
hind this approach is that the interpolation parameter α can
be estimated for badly-interpolated images, while it is un-
predictable for faithful interpolation. While this approach
might work for multimodal data, it does not seem to work
for data sampled from a continuous manifold. In such cases,
the artifacts and the unrealistic-generated data do not pro-
vide any hint about the interpolating factor.

The GAIA method of (Sainburg et al., 2018) uses BEGAN

architecture composed of a generator and a discriminator,
both based on autoencoders. The discriminator is trained
to minimize the pixel-wise loss of real data and to maxi-
mize the pixel-wise loss of generated data (including in-
terpolations). On the other hand, the generator is trained
to minimize the loss of the discriminator for the interpo-
lated data. The GAIA method is devoted to synthesizing
realistic-looking images while ignoring the objective of im-
age diversity and the need for smooth transitions between
data points.

Perhaps the method most similar to our approach is the
adversarial mixup resynthesis (AMR) of (Beckham et al.,
2019). With the AMR method, a decoded mixup of latent
codes Mix(zi, zj) are encouraged to be indistinguishable
from real samples by fooling a trained discriminator. This is
similar to the adversarial loss introduced in our framework.
Nevertheless, as elaborated in Section 2.2 and illustrated in
Figure 3 (Plot B), the adversarial loss alone only amounts to
generating realistic-looking interpolations, where the latent
space is prone to mode collapse and sharp transitions along
the interpolation paths.

In contrast to these methods, our additional smoothness and
cycle-consistency requirements not only generate smooth
transitions between data points but also ensure a diverse
generation of realistic-looking images while avoiding mode
collapse and abrupt transitions along the interpolating paths.
This characteristic will be demonstrated in Sections 4 and
5.

Another approach is to separately learn the data manifold
followed by performing interpolation on the manifold it-
self. This interpolation approach enforces points on the path
to remain on the manifold, while using the least amount
of change necessary (Shao et al., 2018). Common man-
ifold learning techniques suggest regularizing the metric
tensor (Chen et al., 2020) or preserving the local geometry
of data points (Mishne et al., 2019). Although the latent in-
terpolation scheme can assist autoencoders based manifold
learning, those techniques do not take realistic interpolation
as an explicit goal.

4. Results
Evaluating the realisticality of interpolation is often elu-
sive. In the unsupervised scenario, where the ground-truth
parameterization is unavailable, defining a path between
two points pi,pj in the parameter space depends on the
parameterization of the underlying factors governing the
data, which is unknown. For example, in our synthetic pole
dataset, the parameter space is (θ, φ) and there are infinitely
many possible paths between any two points in that space,
each of which can yield an admissible interpolation. Nev-
ertheless, we evaluate the interpolation faithfulness both
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Figure 5. Each of the six rows presents linear interpolation of im-
ages from COIL-100 and our synthetic dataset for each of the
methods tested.

qualitatively and quantitatively on various datasets based on
the conditions we defined in Section 2.

4.1. Dataset

We tested our method against two different datasets: the
synthetic pole dataset, which was rendered using the Unity
game engine, where all images were taken from a fixed
viewing position (from above) and the COIL-100 dataset.
For the first dataset, a single illumination source was rotated
at intervals of 5 degrees along the azimuth at different al-
titudes, ranging from 45 to 80 degrees with respect to the
plane in 5-degree intervals. This dataset contains a total
of 576 images. In the second dataset, to test our method
against real images with complex geometric and photomet-
ric parameterization, we used the COIL-100 dataset (Nene
et al., 1996) containing color images of 100 objects. The
objects were placed on a motorized turntable against a black
background. The images were taken at intervals of 5 de-
grees resulting in a total of 72 images for each class. All
architectures were trained using a dataset that contained a
single class from COIL-100 or the synthetic pole dataset.

Figure 6. We use the parameterization of the dataset to evaluate the
reconstruction accuracy of the AAE, ACAI, β-VAE, AMR, GAIA
and our proposed method. Upper left graph: Averaged MSE vs.
α values. Upper right graph: STD of MSE vs. α values. Lower
graph: Averaged MSE of the interpolated images vs. the interval
length.

4.2. Qualitative Assessments

Each one of the six rows in Figure 5 presents a linear in-
terpolation of a single object from the COIL-100 dataset
(upper part) and our pole dataset (lower part) sampled from
the validation dataset. We compared the results of the β-
Variational Autoencoder (β-VAE) (Higgins et al., 2016), the
Adversarial Autoencoder (AAE) (Makhzani et al., 2015),
the Adversarially Constrained Autoencoder Interpolation
(ACAI) (Berthelot et al., 2018), the Generative Adversar-
ial Interpolative Autoencoding method (GAIA) (Sainburg
et al., 2018), the Adversarial Mixup Resynthesis (AMR)
(Beckham et al., 2019) and our approach–Autoencoder Ad-
versarial Interpolation (AEAI). In the experiments with both
datasets, we used a latent dimensionality of 256. From
Figure 5 it can be seen that our proposed method provides
realistic-looking reconstructions and an admissible interpo-
lation between modes. The AAE and β-VAE interpolations
change abruptly between modes and introduce small arti-
facts during reconstruction. The ACAI produces unrealistic
transitions and artifacts during reconstruction, especially
in the mid-range of the α-values. The GAIA method pro-
duces realistic transitions with small artifacts during recon-
struction while the AMR produces significant artifacts and
gradual transitions between modes. Additional qualitative
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results are presented in the supplementary material.

4.3. Quantitative Assessments

For a quantitative comparison we used the COIL-100 dataset.
We fixed an interval length, which is a multiplicative of
5 degrees, and calculated the reconstruction error (MSE)
against the available ground-truth images. We used an in-
terval length of 80 degrees that resulted in 14 in-between
images of a single object. The reconstruction error of the
interpolated images is presented in Figure 6. Clearly, our
method reduces the mean MSE and the standard deviation
of the MSE for different alpha values. We then inspected
the average reconstruction error on multiple intervals rang-
ing from 15 to 80 degrees as presented in the right part of
Figure 6. Note that our proposed method is able to reduce
the reconstruction error of interpolated images consistently
even when the interval length increases.

Figure 7. Predicting the interpolated alpha value based on the L2

distance of the interpolated image to the closest image in the
dataset. The dots represent the median and the colored area corre-
sponds to the interquartile range.

To assess the transition smoothness from one sample to the
other, we compared each interpolated image x̂i→j(α) to
the closest image in the dataset in terms of the L2 distance
and assigned the alpha value for the interpolated image ac-
cording to the retrieved image. We repeated this process
for all the intervals of length 70. Figure 7 presents the
scatter diagrams for each method. It is demonstrated that
our framework consistently retrieves the best value of alpha
with a smaller interquartile range (IQR). The next experi-
ment was applied to the synthesized pole dataset. As above,
we retrieved the closest image in terms of MSE in the im-
age space, and measured the L2 distance in the parameter

Figure 8. We sampled two images xi, xj and linearly interpolated
between them in latent space. For each interpolated image, we
retrieved the closest image in terms of MSE from the dataset. The
blue and orange lines present the averaged L2 distance, in the
parameter space (θ, φ), between the retrieved image and xi, xj ,
respectively. The red lines represent perfect interpolation smooth-
ness.

space between the interpolated image and the source im-
age (α = 0) and between the interpolated image and the
target image (α = 1). We repeated this process on multiple
intervals of different lengths on both θ and φ, and present
the average distance from the source and target images as
a function of the interpolation variable, α. Figure 8 shows
the results for each tested method. It is demonstrated that
all methods exhibit monotonicity characteristics; however
our approach outperforms the other methods with respect
to the smoothness of the parameterization. Our approach
tightly follows the linear parameterization due to the explicit
smoothness term we incorporated into the training scheme.

5. Ablation Study
We present an ablation study of our unsupervised interpola-
tion framework presented in Figure 4 above. As seen in the
lower left part of Figure 9, without a significant contribution
from the discriminator, the reconstructed images resulting
from interpolating latent vectors are unrealistic and exhibit
severe artifacts and non-smooth transition between modes.
Without the cycle-consistency loss, interpolated images are
relatively realistic; however, they change modes abruptly,
exhibiting artifacts when transitioning from one mode to
another. Adding both cycle consistency and the discrimina-
tor results in realistic transitions from mode to mode as can
be seen in the bottom right part of Figure 9. Nevertheless,
there are instances of consecutive interpolated images that
show little to no change as can be seen in the two leftmost
columns of the bottom right part of Figure 9. When intro-
ducing the smoothness loss, as can be seen in the upper left
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part of Figure 9, we get both smooth transitions and realistic
reconstructions of interpolated latent vectors.

Figure 9. Each of the four blocks presents bilinear interpolation of
four ground truth images that reside in each corner of the block.
Upper left: Bilinear interpolation results of our approach with all
loss components. Upper right: Removing the cycle-consistency
contribution from the loss function. Lower left: Removing the
discriminator contribution. Lower right: Removing the smoothing
contribution.

We present a quantitative analysis of our ablation study
in Figure 10. For each case, we demonstrate the average
MSE error between the interpolated image and ground truth
images retrieved from our dataset. In the upper part of Fig-
ure 10, we fix an interval length of 80 degrees and iterate
over all such intervals in our dataset. We split the interval
into 16 images separated by 5 degrees and obtain 14 in-
between images. For every interpolated image we retrieve
the corresponding ground truth image in our dataset and
present the average MSE and standard deviation on all such
intervals. In the lower part of Figure 10 we repeat this pro-
cess on multiple interval sizes ranging from 15 degrees to
80 degrees. We show that each element in our loss func-
tion 1 contributes to reducing the mean and variance of the
reconstruction error. We further support our justification pre-
sented in Figure 3 by showing that the largest contribution
to the reduction of the MSE stems from the introduction of
the discriminator, which keeps the reconstruction of interpo-
lated images consistent with the dataset. The addition of the
cycle-consistency and smoothness losses further improves
the results by encouraging a smooth bijective mapping. Ad-
ditional results are available in the supplementary material.

Figure 10. Ablation study of the reconstruction accuracy. Upper
left graph: Average MSE vs. α values. Upper right graph: STD of
MSE vs. α values. Lower graph: Averaged MSE of the interpo-
lated images vs. the interval length.

6. Conclusion & Discussion
The problem of realistic and faithful interpolation in the
latent spaces of generative models has been tackled success-
fully in the last few years. Nevertheless, it is our opinion that
generative approaches that deal with manifold data are not
as common as multimodal data, and this misinterpretation of
manifold data harms the competence of generative models
to deal with them successfully. In this work, we argue that
the manifold structures of data generated from continuous
factors should be taken into account. Our main contribu-
tion is applying convexity regularization using adversarial
and cycle-consistency losses. Applying this technique on
small datasets of images, taken from various viewing condi-
tions, we managed to greatly improve the fidelity of interpo-
lated images. We also implemented a smoothness loss and
improved the non-uniform parameterization of the latent
manifold. In future work, we intend to further investigate
properties of latent manifolds, in particular, capable of gen-
erating admissible interpolation between both categorized
and continues data, and use the proposed approach as a
general regularizer method for generative models with few
training examples.
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