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Abstract
Deep neural networks have been shown to be
susceptible to adversarial attacks. This lack of
adversarial robustness is even more pronounced
when models are compressed in order to meet
hardware limitations. Hence, if adversarial robust-
ness is an issue, training of sparsely connected
networks necessitates considering adversarially
robust sparse learning. Motivated by the efficient
and stable computational function of the brain in
the presence of a highly dynamic synaptic connec-
tivity structure, we propose an intrinsically sparse
rewiring approach to train neural networks with
state-of-the-art robust learning objectives under
high sparsity. Importantly, in contrast to previ-
ously proposed pruning techniques, our approach
satisfies global connectivity constraints through-
out robust optimization, i.e., it does not require
dense pre-training followed by pruning. Based
on a Bayesian posterior sampling principle, a net-
work rewiring process simultaneously learns the
sparse connectivity structure and the robustness-
accuracy trade-off based on the adversarial learn-
ing objective. Although our networks are sparsely
connected throughout the whole training process,
our experimental benchmark evaluations show
that their performance is superior to recently pro-
posed robustness-aware network pruning methods
which start from densely connected networks.

1. Introduction
Despite their widely-acknowledged success and deployment
in various application fields, deep neural networks (DNNs)
are known to be highly susceptible to intentionally crafted
adversarial examples that cause incorrect decision making.
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Seminal work by (Szegedy et al., 2013) showed that such
adversarial examples can be created via perturbations that
are hardly perceptible to humans, which exposed important
weaknesses of standard deep learning algorithms. Numer-
ous studies explored adversarial defense methods to such
threats. Notably successful approaches rely on harnessing
adversarial examples during model training (Goodfellow
et al., 2015; Madry et al., 2018), and its immediate ex-
tensions with robust training losses using regularization
schemes to diminish the generalization gap based on an
inherent robustness-accuracy trade-off (Tsipras et al., 2019;
Zhang et al., 2019; Wang et al., 2020).

Recent work further suggests better robustness with increas-
ing network width and complexity (Madry et al., 2018;
Nakkiran, 2019; Wu et al., 2020). Deployment of such large
models, however, is challenging in resource-constrained
settings. Thus, under consideration of memory and compu-
tational demand concerns, this highlights a need to consider
achieving model compactness and sparsity simultaneously
with adversarial robustness in DNNs.

There has been a growing interest in tackling the problem of
achieving robustness against adversarial attacks with very
sparsely connected neural networks (cf. Section 2). Success
was so far demonstrated by robustness-aware pruning of
adversarially trained dense networks (Sehwag et al., 2019;
2020). Importantly these studies only considered naive “end-
to-end sparse learning” baseline comparisons with a random
and static sparse network initialization. Subsequently, these
intrinsically sparse models were found to yield inferior ro-
bustness than compressed models obtained with robustness-
aware pruning methods. However pruning an adversarially
trained DNN does not allow robust training under strict spar-
sity constraints. To date, no effective method existed for
robust end-to-end sparse training to meet such limitations,
where the challenge is to enable sparse network connections
to rearrange during training such that a well-performing
robust and sparse model can be configured.

In this paper we present a method for end-to-end sparse
training of neural networks with robust adversarial train-
ing objectives. Our approach is motivated by the dynamic
synaptic connectivity structure in the brain, which maintains
its stable computational function in the presence of an under-
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lying synaptic rewiring process. We consider robust neural
network training, in which we allow the network to self-
construct its sparse connectivity during training analogous
to such a process. We formulate the neural network training
problem as estimating a posterior distribution that combines
the robust training objective with a sparse connectivity prior
on the network parameters, in a Bayes optimal manner. Dur-
ing robust, sparse neural network training we sample the
network parameters simultaneously with the sparse con-
nectivity structure from this posterior, hence performing
Bayesian connectivity sampling during model training with
robust learning objectives.

Our work conceptually differs from existing studies at the
intersection of model sparsity and adversarial robustness
by combining two important concepts that were not yet
considered together: (1) enabling online robust training
of DNNs that are initialized with very sparse connectivity
constraints (i.e., robust end-to-end sparse learning), and (2)
its compatibility to state-of-the-art robust training objectives
beyond standard adversarial training heuristics.

Contributions of this work are summarized as follows:

• We demonstrate for the first time that a sparsely ini-
tialized neural network can be adversarially trained
end-to-end for improved robustness under strict con-
nectivity constraints throughout training.

• Our Bayesian connectivity sampling approach is ag-
nostic to the robust training objective, and it allows for
training the network connectivity structure simultane-
ously with the robustness-accuracy trade-off imposed
by the objective during training.

• We empirically show in benchmark evaluations that our
approach yields state-of-the-art performance against
robustness-aware pruning methods that are based on
robust pre-training of densely connected networks.

2. Preliminaries and Related Work
2.1. Adversarial Robustness

Over the past decade, a wide range of defense methods
against adversarial threats have been proposed. Important
insights by (Athalye et al., 2018), however, revealed emerg-
ing weaknesses in several recent defense proposals and
highlighted the need for thorough robustness evaluations
(Carlini et al., 2019). To date, defense methods that rely on
harnessing adversarial examples during training have found
to be the most effective (Athalye et al., 2018).

Notation: Given a dataset D = {(xi, yi)}ni=1, we con-
sider neural networks f with learnable parameters θ of
the form fθ(x) = arg maxy∈Y p(y|x,θ). Here the stan-
dard maximum likelihood learning rule corresponds to:

arg minθ E(x,y)∼D[Lnatural(θ, x, y)], with the loss function
Lnatural = − log p(y|x,θ).

Adversarial training (AT) relies on injecting adversarial ex-
amples to the training set at every step of the optimization
process in order to robustify the learned decision boundary
(Goodfellow et al., 2015; Madry et al., 2018). The learning
problem in robust training objectives is defined as:

arg min
θ

E(x,y)∼D

[
max

x̃∈Bpε (x)
Lrobust(θ, x̃, y)

]
, (1)

with the inner maximization obtaining adversarial examples
in Bpε (x) := {x̃ : ‖x̃ − x‖p ≤ ε}, defined as the lp-norm
ball around samples x with a perturbation strength of ε > 0.

Standard AT by (Madry et al., 2018) iteratively gener-
ates adversarial examples via projected gradient descent
(PGD)1 using cross-entropy loss, and replaces the train-
ing mini-batch with adversarial samples at each iteration,
i.e., LAT = − log p(y|x̃,θ). While yielding high robust-
ness, accuracies on clean test samples for such adversarially
trained models degrade. To achieve better test performance
(Goodfellow et al., 2015) and (Kurakin et al., 2017) pro-
posed mixed-batch AT by using a mixture of benign and
adversarial samples per iteration. Subsequently, several
robust training objectives were introduced to address this
robustness-accuracy trade-off (Tsipras et al., 2019).

State-of-the-art robust learning objectives mainly rely on
the TRADES loss proposed by (Zhang et al., 2019) with
Lrobust in Eq. (1) defined via the regularized loss:

LTRADES = Lnatural +β ·DKL(p(y|x,θ)||p(y|x̃,θ)), (2)

where β is the robustness-accuracy tradeoff parameter and
x̃ is obtained by PGD using DKL(p(y|x,θ)||p(y|x̃,θ)) as
the loss to be maximized in the inner optimization step.

Later (Wang et al., 2020) studied the TRADES loss within
a misclassification aware robust training (MART) scheme.
MART explicitly differentiates misclassified examples dur-
ing training, emphasizes learning with the misclassified
samples through the KL-regularizer, and uses a boosted
cross-entropy loss on the adversarial samples with an im-
proved decision margin. A widely acknowledged semi-
supervised learning method to improve robustness of DNNs
has recently been introduced by (Carmon et al., 2019). The
proposed robust self-training (RST) scheme allows training
with the heuristic TRADES loss using mini-batches that con-
tain pseudo-labeled additional data samples. Importantly,
RST revealed that robustness benefits come with additional
data information rather than precise labels.

1We focus on l∞-norm adversarial robustness in this paper. For
x̃ ∈ B∞

ε (x) this yields the well-known k-step l∞-PGD examples:
x̃k+1 = ΠB∞

ε (x)

(
x̃k + εk · sign(∇x̃kL(θ, x̃k, y))

)
with x̃0 = x

and ΠB∞
ε (x)(.) is the projection/clipping onto the ε-ball around x.
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Our work embraces these state-of-the-art robust learning
objectives within a sparse network training framework, and
incorporates the robustness-accuracy trade-offs imposed by
the adversarial training objective to the learning process.

2.2. Sparsity in Deep Neural Networks

Learning efficient, sparse neural networks have generally
been of significant interest under the consideration that
such models would be deployed to hardware with mem-
ory and/or computation capability limitations. Most of these
compression methods either operate on a dense DNN af-
ter it was trained without global connectivity constraints
(Han et al., 2015; Zhu & Gupta, 2017), or by dense training
with sparsity-inducing regularizers (Collins & Kohli, 2014;
Louizos et al., 2018). Such model compression methods
are mainly designed for natural DNN training (i.e., to mini-
mize cross-entropy loss on training samples), and explore
weight pruning methods to obtain what (Frankle & Carbin,
2019) proposed as “winning lottery tickets” (i.e., efficient
sub-networks within DNNs that can reach performances
similar to the original network when trained in isolation). A
long-standing standard to achieve sparsity has been the iter-
ative train-prune-retrain approach from (Han et al., 2015),
where the weights with least magnitude are pruned.

More closely related to our work, recently emerging meth-
ods to train compressed neural networks with a sparse con-
nectivity initialization provide on-hardware learning capa-
bilities for DNNs. Along this line, (Mocanu et al., 2018)
proposed sparse evolutionary training to train a sparsely
initialized DNN by dynamically changing the connectivity
with a magnitude-based pruning and random growth strategy.
A similar approach proposed by (Bellec et al., 2018) is deep
rewiring, which trains sparse neural networks with stochas-
tic parameter updates, by sampling the sparse connectivity
pattern based on a posterior which is theoretically shown to
converge to a stationary distribution. Subsequently (Mostafa
& Wang, 2019) proposed dynamic sparse reparameteriza-
tion to train sparse neural networks via adaptive threshold
based pruning, and (Dettmers & Zettlemoyer, 2019) intro-
duced a sparse learning method based on re-growing pruned
weights according to their momentum. These works did not
consider robust training objectives.

2.3. Adversarial Robustness and Sparsity

Recent work grew interest in exploring adversarial robust-
ness in the context of sparse neural networks. In an earlier
study (Guo et al., 2018) theoretically demonstrated that ad-
versarial robustness can be improved with an appropriately
higher sparsity within a neural network, whereas this robust-
ness tend to be negatively impacted with very large sparsity
in a DNN. (Wang et al., 2018) similarly concluded that
adversarial robustness decreases with high model sparsity.

Subsequently, several studies aimed to tackle the question on
learning compressed neural networks while preserving their
robustness. Following the pioneering defense view on har-
nessing adversarial samples during training by (Madry et al.,
2018), (Ye et al., 2019) proposed a concurrent adversarial
training and weight pruning scheme by approximately solv-
ing a constrained optimization problem with alternating di-
rection method of multipliers (ADMM). Their Adv-ADMM
optimization approach is in some ways similar to the work
by (Gui et al., 2019), where adversarial training and pruning
is also combined with factorization and quantization. (Rakin
et al., 2019) proposed l1-regularized adversarial training and
subsequent weight pruning. However their approach does
not generalize to very sparse models or target sparsity con-
straints. From an adversarial defense perspective (Madaan
et al., 2020) proposed to suppress the latent feature level
vulnerability in DNNs by gradually pruning the network
during training based on a regularized loss function. While
improving robustness, their structured pruning approach
does not yield very sparse models. Recently (Kundu et al.,
2020) introduced a dynamic pruning method within adver-
sarial training by exploiting the momentum based weight
re-growing approach from (Dettmers & Zettlemoyer, 2019).
Similarly their approach did not impose global connectivity
constraints but gradually shrink the network size, and was
also not compatible with recent robust training objectives
besides standard adversarial training.

On another line of work, (Sehwag et al., 2019) proposed
to prune and fine-tune pre-robustly-trained networks us-
ing the heuristic least weight magnitude criterion. Later
outperforming this approach (Sehwag et al., 2020) intro-
duced HYDRA, where a robustness-aware importance score
determines which weights to be pruned from a robustly pre-
trained network. HYDRA exploits the importance score
learning approach by (Ramanujan et al., 2020) to discover
efficient sub-networks, with a robustness criterion. Impor-
tantly their approach demonstrates compatibility to vari-
ous robust training objectives, which constitutes the cur-
rent state-of-the-art method in robustness-aware pruning of
neural networks towards model compression. While their
approach is currently the only very high model compres-
sion method that offers such a compatibility, necessitating
a pre-trained dense robust network and the fine-tuning step
introduces an additional computational overload.

Recently successful methods in this context (Ye et al., 2019;
Sehwag et al., 2019; 2020) evaluated robust pruning in com-
parison to a naive “end-to-end sparse learning” baseline
using a random, static and sparse initialization. Our work
proposes a new state-of-the-art in that sense, and differs
from existing studies on training adversarially robust sparse
networks by (1) enabling online robust training of DNNs
that are initialized with very sparse connectivity constraints
(i.e., robust end-to-end sparse learning), and (2) its compat-
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ibility to state-of-the-art robust training objectives beyond
standard adversarial training heuristics.

3. Training Adversarially Robust Networks
with Sparse Connectivity

3.1. Design Motivation

The brain has a highly dynamic synaptic connectivity struc-
ture whilst maintaining a stable and efficient computational
function (Holtmaat et al., 2005; Stettler et al., 2006). This
underlying synaptic rewiring process is also shown to serve
an important role in learning (Peters et al., 2014). We con-
sider sparse neural network training analogous to such bio-
logical learning processes and combine it with state-of-the-
art robust training objectives. Unlike traditional DNNs with
a pre-defined static connectivity, i.e., a temporal snapshot of
the rewiring process, we train robust sparse neural networks
by sampling its connectivity from a learned posterior. Our
approach allows the network to self-construct its connectiv-
ity in a Bayes optimal manner, such that a well-performing
sparse network can be configured while the network gains
its robustness via the adversarial training objective.

3.2. Bayesian Connectivity Sampling

The standard supervised learning goal in neural networks is
generally defined by finding the parameters that maximize
the likelihood p(y|x,θ), via a negative log-likelihood loss.
For robust end-to-end sparse network training under a strict
connectivity constraint we can state the problem as:

min
θ

E
[

max
x̃∈Bpε (x)

Lrobust(θ, x̃, y)

]
s.t. ‖θ‖0 = κ, (3)

where κ defines the sparsity constraint on the network pa-
rameters2, and E[.] is stochastically estimated over training
batches. We approach this problem from a Bayesian per-
spective by incorporating parameter sparsity as a prior belief
p(θ) for network parameters θ, and explore the robust train-
ing objective via the posterior: p(θ |x, y) ∝ p(θ) ·p(y|x,θ).
More formally, we optimize the neural networks with a nega-
tive log-posterior loss which combines: (1) a robust training
loss function Lrobust that is dependent on the learned likeli-
hood distribution p(y|x,θ), and (2) a prior distribution p(θ)
for parameters that imposes a sparse connectivity constraint.
At each iteration of robust training, parameter values as
well as its connectivity with regards to the constraint is up-
dated within a stochastic optimization scheme. This scheme
ensures that during training we are sampling from the pos-
terior p(θ |x, y) which assigns high probability to robust
and sparse connectivity patterns, hence the name Bayesian
connectivity sampling.

2We define sparsity in terms of the number of zero weights in
learned weight kernels of dense and convolutional layers.

Similar Bayesian posterior sampling approaches were pre-
viously explored in the context of standard neural network
training (Welling & Teh, 2011; Kappel et al., 2015; Chen
et al., 2016; Bellec et al., 2018). It was shown by (Welling
& Teh, 2011) and (Sato & Nakagawa, 2014) that inject-
ing noise into model parameters with an annealed step size
during stochastic mini-batch optimization allows the tra-
jectory of sampled parameters converge to sampling from
their posterior distribution, known as the stochastic gradient
Langevin sampling dynamics. Accordingly we combine gra-
dient descent with stochastic parameter updates that enables
sampling sparse connectivity patterns with a lower Lrobust
from the posterior p(θ |x, y) ∝ p(θ) · p(y|x,θ), by mov-
ing from low to high probability regions on the posterior
loss landscape throughout optimization. We perform the
parameter updates in Eq. (4) while ‖θ‖0 = κ is satisfied:

∆θk = ηt

(
∇Ω(θk) +∇E

[
Lrobust(θk, x̃, y)

])
+ ζt, (4)

where ηt is the learning step size at iteration t, ζt ∼
N (0, σηt) is Gaussian noise, and σ is a constant scaling
factor. In the context of the Bayesian perspective discussed
above,∇Ω(.) is the gradient of the log-prior log p(θ) (e.g.,
an additional l2-regularization constraint on the parame-
ter values) and ∇Lrobust is the gradient of the data log-
likelihood log p(y|x,θ). Note that independently one can
incorporate robust regularization terms within Lrobust (e.g.,
the DKL term in Eq. (2) for TRADES loss).

Incorporating the Sparse Connectivity Prior: We im-
pose sparsity as a prior belief for the network parameters
by using a reparametrization trick. We perform a simple
mapping between each learnable network parameter θk and
weight matrices/kernels of dense and convolutional layers
that are subject to the constraint. During forward and back-
ward passes our network uses the weights:

wk = γk ·max{0,θk} s.t. γk ∈ {−1, 1} (5)

to optimize parameters θk, where each sign γk is uniformly
sampled once the corresponding connection is introduced.
If a parameter θk obtains a negative value at any iteration,
since this connectivity will fade, we uniformly sample an-
other connection θj and activate it with a value of 10−12.
This naturally yields a number of parameters to be dynami-
cally rewired at each training step, and results in a different
sparse connectivity structure during each iteration. Since
we initialize the parameters with a random sparse connec-
tivity that satisfies the constraint, this reparametrization and
rewiring scheme ensures ‖θ‖0 = κ throughout training.

Relation to Synaptic Sampling: How the posterior dis-
tribution of weights can be learned was also addressed in
spiking neural networks to understand brain plasticity (Kap-
pel et al., 2015; 2018). The presented synaptic sampling
framework defines stochastic plasticity rules for network
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parameters to achieve a Bayesian posterior learning goal
from observations x via the parameter dynamics:

dθk = η

[
∂

∂ θk
log p(θ |x)

]
dt+

√
2ηT dWk, (6)

where this continuous time differential equation considers
an additive stochastic Wiener process termWk with a learn-
ing rate scale η. For T = 1 one recovers a unique stationary
distribution for the posterior (Kappel et al., 2015). Discrete
time approximation replacesWk by Gaussian noise, resem-
bling to posterior sampling through Langevin dynamics.
This framework was later extended to supervised learning
with hard posterior constraints by (Bellec et al., 2018).

Our training procedure is outlined in Algorithm 1. One
important cornerstone is also the use of the regularization
scheme to push weights towards zero in order to promote
sampling of novel connectivity patterns, especially at early
stages of training. We realize this via decoupled weight
decay regularization (Loshchilov & Hutter, 2019) since it
offers (1) stronger regularization of variables than l2-penalty
alone which yields better generalization (also differently
than a standard sparsity-promoting l1-regularization (Bel-
lec et al., 2018; Rakin et al., 2019), see Appendix B.2 for
comparisons), and (2) compatibility for our algorithm to
have a similar training pipeline that one uses for its fully
connected counterpart with robust training objectives, since
the state-of-the-art in image classification considers DNNs
trained with momentum SGD and weight decay. We scale
the decoupled weight decay in sync with the learning rate
and additive noise, hence guiding the sampling process with
standard optimization hyper-parameter schedulers. After
training, the learned network structure is fixed and used for
testing without stochasticity. Hence these models do not
relate to possible gradient obfuscation related robustness
fallbacks (Athalye et al., 2018).

4. Experiments
We compare our approach with sparse learning baselines in
Section 4.1, and state-of-the-art robustness-aware pruning
methods in Section 4.2. Dataset and model specifications, as
well as training and evaluation details are described below.

Datasets & Model Architectures: We perform exper-
iments with three benchmark datasets: CIFAR-10 and
CIFAR-100 (Krizhevsky, 2009), and SVHN (Netzer et al.,
2011) (see Appendix A.1 for further details). In our main
evaluations we used VGG-16 (Simonyan & Zisserman,
2015), ResNet-18 (He et al., 2016), and Wide-ResNet-28-4
(Zagoruyko & Komodakis, 2016) architectures. In what
follows, we also report additional evaluations with variants
of ResNet and Wide-ResNet models.

Robust Training Settings: We demonstrate the compat-
ibility of our method with the following state-of-the-art

Algorithm 1 Robust end-to-end sparse training
1: Input: Dataset D, neural network f , parameters θ, iter-

ations T , batch size τ , Lrobust and LPGD, PGD iterations
K, perturbation strength ε and step size α, sparsity con-
straint κ, noise scaling factor σ, learning rate λl, weight
decay factor λw, hyper-parameter scheduler φ(.)

2: Initialize: θ with θk ≥ 0 such that ‖θ‖0 = κ
3: Initialize: Sample γk ∈ {−1, 1} uniformly ∀θk > 0
4: for t = 1 to T do
5: Sample a mini-batch {(xi, yi)}τi=1 ⊂ D
6: λlt , λwt ← φ(λl, t), φ(λw, t)
7: Compute weights wk = γk θk, ∀θk 6= 0
8: for i = 1 to τ do
9: for k = 1 to K do

10: Compute LPGD via fw(x̃ki ) and yi
11: x̃k+1

i ← Πε

(
x̃ki + α · sign(∇x̃ki LPGD)

)
12: end for
13: end for
14: Compute E[Lrobust] via {fw(x̃i)}τi=1 and {yi}τi=1

15: for all θk 6= 0 do
16: Sample noise ζt ← N (0, σλlt)
17: θk ← θk −λlt

(
∇θk E[Lrobust]

)
− λwt θk + ζt

18: θk ← max{0,θk}
19: end for
20: while ‖θ‖0 < κ do
21: Uniformly sample a parameter index j
22: if θj = 0 then
23: θj ← 10−12

24: Sample γj ∈ {−1, 1} unless assigned before
25: end if
26: end while
27: end for

robust training objectives: Standard AT, Mixed-batch AT,
TRADES, MART, RST. We chose the trade-off parame-
ter as β = 6 for TRADES loss, and 4 for MART. We
used half-benign half-adversarial batches for mixed-batch
AT. We implemented RST using the same pseudo-labeled
500K TinyImages dataset shared by the authors3. To craft
adversarial examples at each mini-batch during training
(i.e., inner maximization step of the objective) we used
10 PGD steps with random starts, a maximum perturba-
tion budget of ε = 8/255, and a perturbation step size of
2/255 as suggested by (Madry et al., 2018). For TRADES
and RST, the inner maximization PGD was performed on
LPGD = DKL(p(y|x,θ)||p(y|x̃,θ)), whereas other methods
perform PGD during training on a cross-entropy loss.

White box Threat Methods: We follow the conventional
settings for l∞-norm bounded white box robustness evalu-
ations. Perturbation budget for all datasets and adversarial
attacks is ε = 8/255. For the baseline comparisons in

3https://github.com/yaircarmon/semisup-adv

https://github.com/yaircarmon/semisup-adv
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Table 1. Evaluations of sparse networks learned with various robust training objectives on CIFAR-10 with VGG-16. Standard VGG-16
indicates the models that are trained with full connectivity (0% sparsity). All other networks are trained with a sparse connectivity from
scratch. Evaluations are presented as clean/robust accuracy (%). Robust accuracy is evaluated via PGD50 with 10 restarts (ε = 8/255).

Standard
VGG-16

90% Sparsity 99% Sparsity

Random Fixed Ours Random Fixed Ours

Natural Training 93.2/0.0 90.4/0.0 90.6/0.0 91.8/0.0 56.9/0.0 86.2/0.0 87.7/0.0

Standard AT (Madry et al., 2018) 78.4/44.9 73.9/43.3 75.8/42.6 78.3/44.5 42.0/27.0 64.6/39.3 69.8/42.1
Mixed-batch AT (Kurakin et al., 2017) 84.0/41.1 78.8/33.8 81.3/39.2 83.0/40.2 67.3/29.7 72.7/33.9 77.8/37.6
TRADES (Zhang et al., 2019) 80.0/46.1 75.5/43.1 76.0/44.3 78.2/45.7 49.1/30.8 68.6/38.2 72.4/41.7
MART (Wang et al., 2020) 75.3/46.8 72.8/42.2 73.4/44.3 76.0/45.2 48.0/34.7 63.9/42.4 68.2/45.4
RST (Carmon et al., 2019) 83.1/52.1 77.0/46.0 78.1/46.8 80.9/49.6 54.4/32.2 69.9/38.5 74.0/42.3

Section 4.1 we evaluate the models against PGD attacks
with random starts (Madry et al., 2018) using 50 itera-
tions (PGD50) which is stronger than the PGD that was
used to craft adversarial examples during training (see Ap-
pendix B.3 for further comparisons). PGD attacks were
performed with 10 restarts, i.e., we run full PGD with 50
steps initialized from 10 different random starts and con-
sider an attack unsuccessful if the model was not fooled by
any of these 10 attacks. For PGD attacks we determined the
step size by the 2.5 ∗ ε/#steps rule of thumb (Madry et al.,
2018). In Section 4.2 we evaluate the models with a wider
range of attacks: fast gradient sign method (FGSM, a sin-
gle gradient step attack), PGD50, PGD with 100 iterations
and 20 restarts (PGD100), and the Brendel & Bethge attack
(B&B∞) (Brendel et al., 2019) with 100 steps for VGG-16
and 500 steps for WideResNet-28-4 models. All adversar-
ial attacks were evaluated using the implementations from
the Foolbox Native benchmark (Rauber et al., 2020). We
also present robust accuracies under an ensemble of four
l∞-norm bounded perturbation attacks via the AutoAttack
benchmark (AA∞) (Croce & Hein, 2020).

Black box Threat Methods: White box adversarial threats
constitute a strong robustness evaluation method, but are
generally unrealistic when the model parameters are un-
known to the attacker. Hence we also consider black box
threats where the attacker has no knowledge of the archi-
tecture or parameters, but only has access to send a limited
number of queries to the model. We use Square Attack for
these evaluations which was recently shown as a powerful
query-based black box threat (Andriushchenko et al., 2020).

Implementations: Optimization for all models was per-
formed using SGD with momentum and decoupled weight
decay (Loshchilov & Hutter, 2019). All models were
trained for 200 epochs with a batch size of 128. Only for
models trained with RST the batch size was set to 256,
while keeping the total number of iterations the same. We
used piecewise constant decay learning rate and weight de-
cay schedulers. Initial learning rates were set to 0.1 and
were divided by 10 at 100th and 150th epochs. Network

Table 2. Clean/robust accuracy (%) evaluations with ResNet-18 on
CIFAR-100 and WideResNet-28-4 on SVHN. Standard methods
indicate models trained with full connectivity. Robust accuracy is
evaluated via PGD50 with 10 restarts (ε = 8/255).

Sparsity & Method Natural
Training

Mixed-batch
AT

TRADES
C

IF
A

R
-1

00

0% Standard 74.2/0.0 60.5/22.1 56.0/27.1

90% Fixed 70.2/0.0 59.4/22.1 53.9/26.3
Ours 71.1/0.0 61.8/23.4 55.2/27.2

99% Fixed 58.9/0.0 45.1/17.6 43.5/19.3
Ours 61.5/0.0 53.1/20.2 47.7/22.2

SV
H

N

0% Standard 96.5/0.0 97.1/47.7 92.5/56.6

90% Fixed 96.2/0.0 97.0/51.2 89.2/55.8
Ours 96.4/0.0 97.0/51.5 92.8/55.6

99% Fixed 95.2/0.0 91.9/44.5 87.4/48.3
Ours 95.7/0.0 95.7/43.1 89.5/52.7

weights were initialized via Kaiming initialization (He et al.,
2015). Details on optimization hyper-parameter specifi-
cations and sparse connectivity initialization schemes are
provided in Appendix A.2 and A.3. Our code is available at:
https://github.com/IGITUGraz/SparseAdversarialTraining.

4.1. Bayesian Connectivity Sampling Enables Sparse
Learning with Robust Training Objectives

We initially evaluate our method with baseline comparisons
in the light of recent work in this domain. To date, sparse
and robust training from scratch was (yet) only represented
and evaluated via DNNs trained with a static sparse connec-
tivity initialization. Accordingly we compare our approach
with the following baselines to train a sparse model with
different robust training objectives:

Random: We train a sparse network from scratch with a
randomly initialized connectivity that is kept static during
optimization. In this case, an equal fraction of connections

https://github.com/IGITUGraz/SparseAdversarialTraining


Training Adversarially Robust Sparse Networks via Bayesian Connectivity Sampling

Table 3. Comparisons with the current state-of-the-art robustness-aware pruning method HYDRA. CIFAR-10 evaluations are performed
based on RST, and SVHN evaluations are based on TRADES adversarial training for consistency with the original evaluation checkpoints
by (Sehwag et al., 2020). All attacks are evaluated via Foolbox and AutoAttack (AA) for l∞-perturbations with ε = 8/255.

VGG-16 WideResNet-28-4

90% Sparsity 99% Sparsity 90% Sparsity 99% Sparsity

HYDRA Ours ∆ HYDRA Ours ∆ HYDRA Ours ∆ HYDRA Ours ∆

C
IF

A
R

-1
0

Clean 80.5 80.9 +0.4 73.2 74.0 +0.8 83.7 84.8 +1.1 75.6 76.9 +1.3
FGSM 55.6 55.3 -0.3 46.5 46.5 0.0 61.1 60.0 -1.1 51.0 49.5 -1.5
PGD50 50.0 49.6 -0.4 41.9 42.3 +0.4 55.6 54.0 -1.6 47.4 45.1 -2.3
PGD100 49.9 49.5 -0.4 41.8 42.1 +0.3 55.5 53.9 -1.6 47.3 44.9 -2.4
B&B∞ 48.1 47.7 -0.4 39.1 40.0 +0.9 53.8 52.2 -1.6 45.2 42.9 -2.3
AA∞ 45.46 44.98 -0.48 37.18 37.45 +0.27 51.74 49.78 -1.96 42.80 40.18 -2.62

SV
H

N

Clean 89.2 89.4 +0.2 84.4 86.4 +2.0 94.4 92.8 -1.6 88.9 89.5 +0.6
FGSM 63.1 64.5 +1.4 57.1 58.4 +1.3 88.8 70.0 -18.8 74.3 63.1 -11.2
PGD50 52.8 53.7 +0.9 47.8 48.7 +0.9 43.9 55.6 +11.7 39.1 52.7 +13.6
PGD100 52.4 53.3 +0.9 47.5 48.3 +0.8 38.3 55.1 +16.8 36.5 52.4 +15.9
B&B∞ 48.9 49.8 +0.9 43.7 45.0 +1.3 36.5 52.1 +15.6 32.3 49.9 +17.6
AA∞ 45.51 44.88 -0.63 38.80 40.78 +1.98 30.60 47.00 +16.40 26.66 45.78 +19.12

was randomly discarded at each layer during initialization,
i.e., global sparsity was equal to layer-wise sparsities, simi-
lar to the baselines in (Sehwag et al., 2019; 2020).

Fixed: We train a sparse network from scratch with a fixed
connectivity where the number of connections at each layer
were chosen equal to the number of connections that our
method was found to converge at. In this case, this initialized
fixed connectivity is also kept static during optimization.

Table 1 and Table 2 depicts our evaluations for different
models with 90% and 99% sparsity constraints. Results
highlight that Bayesian connectivity sampling enables learn-
ing with robust training objectives under sparse connectivity
from scratch. Furthermore, our method scales to various
datasets (see Appendix B.4 for additional experiments), net-
work architectures, robust training objectives and regular-
ization schemes in a similar manner. Our approach with
90% sparse models yields clean and robust accuracies sim-
ilar to their fully-connected counterparts, simultaneously.
Particularly at a very high 99% sparsity the naive Random
approach fails to benefit from adversarial training, which
is consistent with the recent evaluations (Sehwag et al.,
2019; 2020). This points to the importance of the dynamic
rewiring aspect of our approach, to let the network sam-
ple its own robust connectivity within the learning process.
Accordingly with Fixed, learning can be performed to an
even larger extent than naively considered. Note that since
the Fixed method which uses learned per-layer connectiv-
ity distributions was found to perform better than Random,
we did not include experiments with Random connectivity
in Table 2. Overall these results highlight the functional
importance of Bayesian connectivity sampling for sparse
networks during robust training.
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Figure 1. Standard AT on CIFAR-10 with varying VGG-16 model
compression. Above dotted lines show clean, and below solid lines
show robust accuracies. Orange marker shows the robust accuracy
at 1% with a Random static sparse initialization. Accuracies at
100x model compression are indicated in the first row of Table 4.

4.2. Comparisons with Robustness-Aware Pruning

We mainly compare our approach with the current state-of-
the-art robustness-aware neural network pruning method
HYDRA. In order to present fair and identical comparisons
relying on the same methods used by the authors, we partic-
ularly report comparisons for the VGG-16 and WideResNet-
28-4 models, on CIFAR-10 with RST and on SVHN with
TRADES as indicated in (Sehwag et al., 2020). We evaluate
all models in comparison to our approach using the exact
model specifications and provided model checkpoints4. Ac-
cordingly with (Sehwag et al., 2020) we also report the
best test robustness and benign accuracy that was achieved

4https://github.com/inspire-group/hydra

https://github.com/inspire-group/hydra
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(b) VGG-16 (99%)
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(c) WideResNet-28-4 (90%)

50 100 250 500 1K
#queries

40

50

60

70

80

90

R
ob
u
st

ac
cu
ra
cy

(%
)

HYDRA

Ours

(d) WideResNet-28-4 (99%)

Figure 2. Black box Square Attack (Andriushchenko et al., 2020) evaluations with limited queries. Maximum l∞-norm perturbation
strength is ε = 8/255. Sub-labels indicate the architecture (sparsity) for each evaluation. VGG-16 models are trained with RST on
CIFAR-10, and WideResNet-28-4 models trained with TRADES loss on SVHN, which are also the models from Table 3.

across checkpoints. In Table 3 we validate their clean test
set accuracies that was reported, and evaluate robustness
of all models under several white box attacks, as well as
the AutoAttack ensemble benchmark. Overall, our method
achieves comparable benign and robust test accuracies even
though HYDRA needs robust pre-trained dense networks
in comparison to our robust end-to-end sparse training ap-
proach. While for the WideResNet-28-4 on CIFAR-10,
HYDRA performs somewhat better, robust Bayesian con-
nectivity sampling performs comparable or slightly better
with VGG-16 on both datasets, and considerably better for
WideResNet-28-4 models on SVHN.

Earlier work by (Ye et al., 2019; Gui et al., 2019) on combin-
ing model compression with adversarial robustness focused
on standard AT by (Madry et al., 2018). Since these meth-
ods are not compatible with more recent robust learning
approaches (Zhang et al., 2019; Wang et al., 2020), so far
we only considered HYDRA as the robustness-aware prun-
ing approach that is most related to our work. However for
completeness we also performed evaluations with standard
AT, presented in Figure 1 in comparison to the results that
were previously obtained with Adv-ADMM (Ye et al., 2019)
and HYDRA for varying compression levels on VGG-16
with CIFAR-10. To train and evaluate our models we use
the same AT configuration, as well as the same robustness
evaluations reported in their work. Figure 1 depicts clean
and robust accuracy differences in favor of our approach,
extending towards 200x compression (99.5% sparsity; note
that here we rely on the accuracies reported in (Sehwag
et al., 2020) which did not include 99.5% sparsity for stan-
dard AT). Going further, Table 4 presents similar results at
99% sparsity for different residual network architectures.
Results show compatibility of our method with standard
AT to better explore sparse and robust network configura-
tions, yielding superior results simultaneously across all
architectures under high compression.

Table 4. CIFAR-10 evaluations at 99% sparsity for standard AT.
Clean/robust accuracies (%) for Adv-ADMM and HYDRA are
retrieved from (Sehwag et al., 2020), and we used the same training
and robustness evaluations with their reported configurations.

Adv-ADMM HYDRA Ours

VGG-16 55.2/34.1 59.9/37.9 69.8/42.1
ResNet-18 58.7/36.1 69.0/41.6 72.1/44.8
ResNet-34 68.8/41.5 71.8/44.4 73.3/44.7
ResNet-50 69.1/42.2 73.9/45.3 75.0/46.9

WideResNet-28-2 48.3/30.9 54.2/34.1 60.2/38.6

4.3. Evaluating Black Box Robustness

Figure 2 represents our black box evaluations for the trained
sparse networks in comparison to adversarially pruned net-
works with HYDRA. We show robust accuracies under at-
tacks with different query access limits ranging from 50 to
5000, for VGG-16 networks trained on CIFAR-10 with RST
and a larger network WideResNet-28-4 trained on SVHN
with TRADES loss. We observe in Figures 2(b) and 2(d) that
black box robustness gap between these methods increased
particularly at 99% sparsity, especially for the WideResNet-
28-4 model. One fundamental difference between these
two methodologies is also that our approach enables train-
ing these neural networks on-hardware under strict sparsity
constraints, whereas HYDRA requires robust pre-training
of a densely connected neural network to be pruned and
fine-tuned (cf. Appendix B.4 for time cost discussions).

5. Conclusion
We propose a Bayesian connectivity sampling approach for
robust end-to-end sparse training of neural networks. Our
method simultaneously explores robust connectivity pat-
terns and network weights via rewiring during training with
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state-of-the-art robust training objectives. While the net-
work gains robustness via the adversarial training objective,
its combination with our brain-inspired rewiring approach
enables for the first time sparsity and robustness to be simul-
taneously achieved by end-to-end training.

Our approach provides an efficient end-to-end robust and
sparse training procedure. In practical deployment scenarios,
models may need to be fine-tuned on customized datasets
or require online updating, e.g., on specialized low-power
hardware. In this context the pre-trained sparse network
becomes an initialization that rewiring can proceed from
under a robust training objective, where non-active connec-
tions also do not add computational burden (i.e., gradient
computation is not needed for those parameters).

Robust adversarial training methods demonstrated large em-
pirical success so far, yet it was shown that provable robust-
ness guarantees can be gained by restricting the global Lips-
chitz constant of neural networks (Hein & Andriushchenko,
2017; Cisse et al., 2017). Our approach remains open to
such methods, since one can impose local Lipschitzness
to network layers through regularization while learning a
posterior by rewiring parameters. In this study we demon-
strate that translating neuroscientific evidences can help us
construct tools for emerging problems in machine learning,
and we argue that brain-inspired computing has a funda-
mental prospect towards developing powerful methods for
contemporary artificial intelligence.

Acknowledgements
We thank all reviewers for their careful evaluations that help
to improve the manuscript. This work has been supported
by the “University SAL Labs” initiative of Silicon Austria
Labs (SAL) and its Austrian partner universities for applied
fundamental research for electronic based systems. This
work is also partially supported by the Austrian Science
Fund (FWF) within the ERA-NET CHIST-ERA programme
(project SMALL, project number I 4670-N).

References
Andriushchenko, M., Croce, F., Flammarion, N., and Hein,

M. Square attack: a query-efficient black-box adversarial
attack via random search. In European Conference on
Computer Vision, pp. 484–501, 2020.

Athalye, A., Carlini, N., and Wagner, D. Obfuscated gra-
dients give a false sense of security: Circumventing de-
fenses to adversarial examples. In International Confer-
ence on Machine Learning, pp. 274–283, 2018.

Bellec, G., Kappel, D., Maass, W., and Legenstein, R. Deep
rewiring: Training very sparse deep networks. In Interna-

tional Conference on Learning Representations (ICLR),
2018.
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