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1. Particle flow for Bayesian inference in a
state-space model

1.1. Background

Particle flow is an alternative to particle filters for Bayesian
filtering in a state-space model. Recall the first order Markov
model specified in eqs. (4), (5), and (6) in Section 5.1. of
the main paper.

x1 ∼ p1(·, z1, ρ) , (1)
xt = gG,ψ(xt−1,yt−1, zt,vt), for t > 1 , (2)
yt = hG,φ(xt, zt,wt), for t > 1 . (3)

Here yt is the observation from the state-space model at
time t. xt and zt denote the unobserved state variable and
observed covariates at time t respectively. The filtering task
is to compute the posterior distribution of the state trajectory
pΘ(xt|y1:t, z1:t) recursively. Suppose we have a set of
Np samples (particles) {xt−1}

Np
j=1 which approximates the

posterior distribution of xt−1.

pΘ(xt−1|y1:t−1, z1:t−1) ≈ 1

Np

Np∑
j=1

δ(xt−1 − xjt−1) . (4)

In the ‘predict’ step, we approximate the predictive posterior
distribution at time t as follows:

pΘ(xt|y1:t−1, z1:t) =

∫
pψ,σ(xt|xt−1,yt−1, zt)

pΘ(xt−1|y1:t−1, z1:t−1)dxt−1 ,

≈ 1

Np

Np∑
j=1

δ(xt − x̃jt ) , (5)

where, the particles {x̃jt}
Np
j=1 from the predictive posterior

distribution pΘ(xt|y1:t−1, z1:t) are obtained by propagat-
ing {xjt−1}

Np
j=1 through the state-transition model specified
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by eq. (2). Subsequently, the ‘update’ step applies Bayes’
theorem to compute the posterior distribution at time t as
follows:

pΘ(xt|y1:t, z1:t) ∝ pΘ(xt|y1:t−1, z1:t)pφ,γ(yt|xt, zt) .
(6)

For non-linear state space models, particle filters (Gordon
et al., 1993; Doucet & Johansen, 2009) employ importance
sampling to approximate the ‘update’ step in eq. (6). How-
ever, constructing well-matched proposal distributions to
the posterior distribution in high-dimensional state-spaces
is extremely challenging. A mismatch between the proposal
and the posterior leads to weight degeneracy after resam-
pling, which results in poor performance of particle filters
in high-dimensional problems (Bengtsson et al., 2008; Sny-
der et al., 2008; Beskos et al., 2014). Instead of sampling,
particle flow filters offer a significantly better solution in
complex problems by transporting particles continuously
from the prior to the posterior (Daum & Huang, 2007; Ding
& Coates, 2012; Daum & Huang, 2014; Daum et al., 2017).

1.2. Particle flow

In a given time step t, particle flow algorithms (Daum &
Huang, 2007; Daum et al., 2010) solve differential equations
to gradually migrate particles from the predictive distribu-
tion such that they represent the posterior distribution for
the same time step after the flow. A particle flow can be
modelled by a background stochastic process ηλ in a pseudo-
time interval λ ∈ [0, 1], such that the distribution of η0 is
the predictive distribution pΘ(xt|y1:t−1, z1:t) and the dis-
tribution of η1 is the posterior distribution pΘ(xt|y1:t, z1:t).
Since particle flow only considers migration of particles
within a single time step, we omit the time index t in ηλ, y,
and z to simplify notation.

In (Daum et al., 2010), an ordinary differential equation
(ODE) with zero diffusion governs the flow of ηλ:

dηλ
dλ

= ϕ(ηλ, λ) . (7)

If the predictive distribution and the additive measurement
noise is Gaussian and the measurement function h is linear,
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Figure 1. Migration of particles from a 2-d Gaussian prior to a 2-d Gaussian posterior distribution. a) The samples (asterisk) from the
prior distribution, b) The contours of the posterior distribution and the direction of flow for the particles at an intermediate step, c) The
particles after the flow, approximately distributed according to the posterior distribution.

the Exact Daum-Huang (EDH) flow is given as:

ϕ(ηλ, λ) = A(λ)ηλ + b(λ) , (8)

where,

A(λ) = −1

2
P̄HT (λHP̄HT +R)−1H , (9)

b(λ) = (I + 2λA(λ))[(I + λA(λ))P̄HTR−1y +A(λ)η̄0] ,
(10)

Here η̄0 and P̄ are the mean vector and the covariance ma-
trix of the predictive distribution respectively. For a general
nonlinear state-space model, we usually a Gaussian approx-
imation of the predictive distribution based on sample esti-
mates of η̄0 and P̄ or via the Extended Kalman Filter (EKF).
y denotes the new observation at time t. The linear mea-
surement model in x is specified by the measurement matrix
H =

hG,φ(x,z,0)
∂x , andR denotes the covariance matrix of the

zero mean additive Gaussian measurement noise. For a non-
linear measurement model, we use a first order Taylor series
approximation at the mean of the particles η̄λ and replaceH

by H(λ) =
∂hG,φ(η,z,0)

∂η

∣∣∣∣∣
η=η̄λ

and y by
(
y − e(λ)

)
, where

the linearization error e(λ) = hG,φ(η̄λ, z,0)−H(λ)η̄λ in
eq. (9) and (10). Similarly, for a zero mean non-Gaussian
measurement noise, we use a Gaussian approximation to
replace R in eq. (9) and (10) by R(λ) = Cov [y|η̄λ, z].
A detailed description of the implementation of the exact
Daum-Huang (EDH) filter is provided in (Choi et al., 2011).

Numerical integration is usually used to solve the ODE
in Equation (8). The integral between λm−1 and λm for
1 6 m 6 Nλ, where λ0 = 0 and λNλ = 1, is approximated

Algorithm 1 Particle flow

1: Input: {ηj0 = x̃jt}
Np
j=1, yt, zt, {εm}Nλm=1, and Θ

2: Output: {xjt = ηj1}
Np
j=1

3: Compute η̄0 = 1
Np

∑Np
j=1 η

j
0

4: Compute P̄ = 1
Np

∑Np
j=1

[
(ηj0 − η̄0)(ηj0 − η̄0)T

]
5: Set λ0 = 0
6: for m = 1, 2, ..., Nλ do
7: λm = λm−1 + εm
8: Linearize the measurement model at

η̄λm−1
= 1

Np

∑Np
j=1 η

j
λm−1

to compute H(λm−1)

and e(λm−1).
9: Compute R(λm−1) = Cov

[
yt|η̄λm−1

, zt
]
.

10: Compute A(λm−1) and b(λm−1) using eq. (9)
and (10).

11: Apply particle flow to all particles: ηjm = ηjm−1 +

εm
(
A(λm−1)ηjm−1 + b(λm−1)

)
12: end for
13: Set xjt = ηj1 for 1 6 j 6 Np

via the Euler update rule. For the j-th particle, the EDH
flow in the m-th pseudo-time interval becomes:

ηjλm = ηjλm−1
+ εm

(
A(λm−1)ηjλm−1

+ b(λm−1)
)
, (11)

where the step size εm = λm − λm−1 and
Nλ∑
m=1

εm = 1.

We start the particle flow from ηj0 = x̃jt and after the flow
is complete, we set xjt = ηj1 to approximate the posterior
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distribution of xt as:

pΘ(xt|y1:t, z1:t) ≈
1

Np

Np∑
j=1

δ(xt − xjt ) . (12)

The overall EDH particle flow algorithm is summarized
in Algorithm 1. Figure 1 demonstrates the migration of
the particles from the prior to the posterior distribution for
a Gaussian predictive distribution and a linear-Gaussian
measurement model.

2. Model training
Algorithm 2 summarizes the learning of the model parame-
ters Θ, described in Section 5.2.2 of the main paper.

Algorithm 2 Model training and testing

1: Input: Training and test data: {y(m)
1:P+Q,

z
(m)
1:P+Q}m∈Dtrn , {y(n)

1:P , z
(n)
1:P+Q}n∈Dtest

2: Output: {p̂Θ̂(y
(n)
P+1:P+Q|y

(n)
1:P , z

(n)
1:P+Q)}n∈Dtest

3: Hyperparameters: Number of iterations Niter, step-
size {ζk}Niterk=1

4: Initialization: random initialization for the system pa-
rameters Θ0

5: Model training:
6: Set k = 1
7: while k 6 Niter do
8: Sample a minibatch D ⊂ Dtrn.
9: Compute the approximate poste-

rior distribution of the forecasts
{p̂Θk−1

(y
(m)
P+1:P+Q|y

(m)
1:P , z

(m)
1:P+Q)}m∈D using

Algorithm 1 in the main paper with the current
parameters Θk−1.

10: Compute the gradient of the chosen loss function
L(Θ,D) w.r.t. model parameters Θ at Θk−1

11: Update the system parameters using SGD algorithm:
Θk = Θk−1 − ζk∇ΘL(Θ,D)

∣∣
Θ=Θk−1

12: k = k + 1
13: end while
14: Save the estimated model Θ̂ = ΘNiter

15: Testing:
16: Compute the test set forecast posterior distribu-

tions {p̂Θ̂(y
(n)
P+1:P+Q|y

(n)
1:P , z

(n)
1:P+Q)}n∈Dtest using Al-

gorithm 1 in the main paper with the estimated model
parameters Θ̂.

3. Description and statistics of datasets
The statistics of the PeMS datasets and the non-graph
datasets used in our experiments are summarized in Tables 1
and 2 respectively. The description of the PeMS datasets are

Table 1. Summary statistics of the PeMS road traffic datasets
Dataset PeMSD3 PeMSD4 PeMSD7 PeMSD8

No. nodes 358 307 228 170
No. time steps 26208 16992 12672 17856

Interval 5 min 5 min 5 min 5 min

provided in Section 6.1. of the main paper. The Electricity1

dataset contains electricity consumption for 370 clients. The
Traffic2 dataset is composed of 963 time-series of lane oc-
cupancy rates. The Taxi3 dataset contains counts of taxis on
different roads and the Wikipedia4 dataset specifies clicks
to web links.

Table 2. Summary statistics of the multivariate non-graph datasets

Dataset

No.
time
series
(N)

Domain Freq.
No.
time
steps

Prediction
length

(Q)

Electricity 370 R+ Hourly 5833 24
Traffic 963 (0, 1) Hourly 4001 24
Taxi 1214 N 30 Minutes 1488 24

Wikipedia 2000 N Daily 792 30

4. Definitions of evaluation metrics
The point forecasts are evaluated by computing mean abso-
lute error (MAE), mean absolute percentage error (MAPE),
and root mean squared error (RMSE). For the test-set in-
dexed by Dtest, let y(m)

t ∈ RN and ŷ
(m)
t ∈ RN denote

the ground truth and the prediction at horizon t for m-th
test example respectively. The average MAE, MAPE, and
RMSE at horizon t are defined as follows:

MAE(Dtest, t) =
1

N |Dtest|
∑

m∈Dtest

||y(m)
t − ŷ

(m)
t ||1 ,

(13)

MAPE(Dtest, t) =
1

N |Dtest|
∑

m∈Dtest

N∑
i=1

|y(m)
t,i − ŷ

(m)
t,i |

|y(m)
t,i |

,

(14)

RMSE(Dtest, t) =

√
1

N |Dtest|
∑

m∈Dtest

||y(m)
t − ŷ

(m)
t ||22 ,

(15)

For comparison among the probabilistic forecasting mod-

1https://archive.ics.uci.edu/ml/datasets/
ElectricityLoadDiagrams20112014

2https://archive.ics.uci.edu/ml/datasets/
PEMS-SF

3https://www1.nyc.gov/site/tlc/about/
tlc-trip-record-data.page

4https://github.com/mbohlkeschneider/
gluon-ts/tree/mv_release/datasets

https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
https://archive.ics.uci.edu/ml/datasets/PEMS-SF
https://archive.ics.uci.edu/ml/datasets/PEMS-SF
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://github.com/mbohlkeschneider/gluon-ts/tree/mv_release/datasets
https://github.com/mbohlkeschneider/gluon-ts/tree/mv_release/datasets
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els, we compute the Continuous Ranked Probability Score
(CRPS) (Gneiting & Raftery, 2007), and the P10 and P90
Quantile Losses (QL) (Salinas et al., 2020; Wang et al.,
2019). Let F (·) be the Cumulative Distribution Function
(CDF) of the forecast of the true value x ∈ R. We denote
by 1{x 6 z} the indicator function that attains the value 1
if x 6 z and the value 0 otherwise. The continuous ranked
probability score (CRPS) is defined as:

CRPS(F, x) =

∫ ∞
−∞

(
F (z)− 1{x 6 z}

)2

dz . (16)

CRPS is a proper scoring function, i.e., it attains its mini-
mum value of zero when the forecast CDF F is a step func-
tion at the ground truth x. The average CRPS at horizon t
is defined as the average marginal CRPS across different
time-series.

CRPSavg(Dtest, t) =

1

N |Dtest|
∑

m∈Dtest

N∑
i=1

CRPS(F
(m)
t,i ,y

(m)
t,i ) , (17)

where F (m)
t,i (·) is the marginal CDF of the forecast at hori-

zon t for i-th time-series in m-th test example.

Let F (m)
t,sum(·) is the CDF of the sum of the forecasts of all

time-series at horizon t in m-th test example. The (normal-
ized) CRPSsum is defined as:

CRPSsum(Dtest) =∑
t

∑
m∈Dtest CRPS(F

(m)
t,sum,

∑N
i=1 y

(m)
t,i )∑

t

∑
m∈Dtest |

∑N
i=1 y

(m)
t,i |

. (18)

For a given quantile α ∈ (0, 1), a true value x, and an α-
quantile prediction x̂(α) = F−1(α), the α-quantile loss is
defined as:

QL
(
x, x̂(α)

)
= 2

(
α
(
x− x̂(α)

)
1{x > x̂(α)}+

(1− α)
(
x̂(α)− x

)
1{x 6 x̂(α)}

)
. (19)

The average (normalized) quantile loss (QL) is defined as
follows:

QLavg(Dtest, t, α) =

∑
m∈Dtest

∑N
i=1 QL

(
y

(m)
t,i , ŷ

(m)
t,i (α)

)∑
m∈Dtest

∑N
i=1|y

(m)
t,i |

.

(20)

The P10QL metric is obtained by setting α = 0.1 in eq. (20);
the P90QL metric corresponds to α = 0.9 and the ND
(P50QL) metric is obtained using α = 0.5.

5. Detailed experimental results on the PeMS
datasets

5.1. Baseline algorithms

For the experiments on the PeMS road traffic datasets, we
compare the proposed AGCGRU+flow algorithm with four
different classes of forecasting techniques, listed as follows:

Graph agnostic statistical and machine learning based point
forecasting models:

• HA (Historical Average): uses the seasonality of the his-
torical data.

• ARIMA (Makridakis & Hibon, 1997): implemented using
a Kalman filter.

• Vector Auto-Regressive model (VAR) (Hamilton, 1994):
generalization of AR model to multivariate setting.

• Support Vector Regression (SVR) (Chun-Hsin et al.,
2004)

• FNN (Feedforward Neural Network).

• FC-LSTM (Sutskever et al., 2014): encoder-decoder ar-
chitecture for sequence to sequence prediction using fully
connected LSTM layers.

Spatio-temporal point forecast models:

• DCRNN (Li et al., 2018): Diffusion Convolutional Re-
current Neural Network, combines diffusion convolution
with GRU to form an encoder-decoder architecture for
sequence to sequence prediction.

• STGCN (Yu et al., 2018): Spatio-Temporal Graph Convo-
lutional Network, uses gated temporal convolution with
graph convolution.

• ASTGCN (Guo et al., 2019): Attention Spatial-Temporal
Graph Convolutional Network, spatial and temporal atten-
tions to learn recent and seasonal patterns.

• GWN (Wu et al., 2019): Graph WaveNet, built using
graph convolution and dilated causal convolution, provi-
sion for learnable graph.

• GMAN (Zheng et al., 2020): Graph Multi-Attention Net-
work, multiple spatio-temporal attention blocks to form
an encoder-decoder architecture, transform attention be-
tween encoder and decoder.

• AGCRN (Bai et al., 2020): Adaptive Graph Convolutional
Recurrent Network, node adaptive parameter learning for
graph convolution using adaptive adjacency, combined
with GRU.
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Table 3. Average MAE, MAPE and RMSE for PeMSD3 dataset for 15/30/45/60 minutes horizons. The best and the second best results in
each column are shown in bold and marked with underline respectively. Lower numbers are better.

Algorithm PeMSD3 (15/ 30/ 45/ 60 min)
MAE MAPE(%) RMSE

HA 31.58 33.78 52.39
ARIMA 17.31/22.12/27.35/32.47 16.53/20.78/25.66/30.84 26.80/34.60/42.37/49.98

VAR 18.59/20.80/23.06/24.86 19.59/21.81/24.24/26.44 31.05/33.92/36.93/39.32
SVR 16.66/20.33/24.33/28.34 16.07/19.45/23.31/27.57 25.97/32.19/38.30/44.57
FNN 16.87/20.30/23.91/27.74 19.59/23.67/30.09/35.44 25.46/30.97/36.27/41.86

FC-LSTM 19.01/19.46/19.92/20.29 19.77/20.23/20.82/21.30 32.96/33.59/34.24/34.83
DCRNN 14.42/15.87/17.10/18.29 14.57/15.78/16.87/17.95 24.33/27.05/28.99/30.76
STGCN 15.22/17.54/19.74/21.59 16.22/18.44/20.13/21.88 26.20/29.10/32.19/34.83

ASTGCN 17.03/18.50/19.58/20.95 18.02/19.28/20.18/21.61 29.04/31.81/33.98/36.37
GWN 14.63/16.56/18.34/20.08 13.74/15.24/16.82/18.75 25.06/28.48/31.11/33.58

GMAN 14.73/15.44/16.15/16.96 15.63/16.25/16.99/17.91 24.48/25.68/26.80/27.99
AGCRN 14.20/15.34/16.28/17.38 13.79/14.47/15.14/16.25 24.75/26.61/28.06/29.61
LSGCN 14.28/16.08/17.77/19.23 14.80/16.01/17.15/18.21 25.88/28.11/30.31/32.37

DeepGLO 14.79/18.89/19.11/23.53 14.12/16.92/17.75/21.68 22.97/29.17/30.48/35.64
N-BEATS 15.57/18.12/20.50/23.03 15.56/18.05/20.50/23.19 24.44/28.69/32.62/36.72
FC-GAGA 14.68/15.85/16.40/17.04 15.57/15.88/16.32/17.16 24.65/26.85/27.90/28.97
DeepAR 15.84/18.15/20.30/22.64 16.26/18.42/20.19/22.56 26.33/29.96/33.12/36.65

DeepFactors 17.53/20.17/22.78/24.87 19.22/24.42/29.58/34.43 27.62/31.83/35.36/37.91
MQRNN 14.60/16.55/18.34/20.12 15.17/17.34/18.94/20.66 25.35/28.77/31.50/34.40

AGCGRU+flow 13.79/14.84/15.58/16.06 14.01/14.75/15.34/15.80 22.08/24.26/25.55/26.43

Table 4. Average MAE, MAPE and RMSE for PeMSD4 dataset for 15/30/45/60 minutes horizons. The best and the second best results in
each column are shown in bold and marked with underline respectively. Lower numbers are better.

Algorithm PeMSD4 (15/ 30/ 45/ 60 min)
MAE MAPE(%) RMSE

HA 3.16 7.00 6.13
ARIMA 1.53/2.01/2.37/2.68 2.92/4.06/4.96/5.73 3.11/4.36/5.25/5.95

VAR 1.66/2.12/2.39/2.57 3.27/4.33/4.95/5.36 3.09/4.02/4.51/4.83
SVR 1.48/1.91/2.23/2.49 2.88/3.97/4.86/5.61 3.11/4.29/5.08/5.66
FNN 1.48/1.90/2.23/2.51 3.04/4.09/4.98/5.80 3.08/4.27/5.08/5.68

FC-LSTM 2.20/2.22/2.23/2.26 4.95/4.97/4.99/5.05 4.89/4.92/4.95/5.01
DCRNN 1.38/1.78/2.06/2.29 2.69/3.72/4.51/5.16 2.95/4.09/4.81/5.34
STGCN 1.42/1.85/2.14/2.39 2.82/3.92/4.71/5.34 2.94/4.03/4.70/5.21

ASTGCN 1.69/2.15/2.40/2.55 3.70/4.85/5.46/5.79 3.54/4.71/5.35/5.62
GWN 1.37/1.76/2.03/2.24 2.67/3.73/4.52/5.15 2.94/4.07/4.77/5.28

GMAN 1.38/1.61/1.76/1.88 2.80/3.42/3.84/4.18 2.98/3.70/4.11/4.41
AGCRN 1.41/1.67/1.84/2.01 2.88/3.55/3.99/4.40 3.04/3.83/4.33/4.73
LSGCN 1.40/1.78/2.03/2.20 2.80/3.71/4.27/4.68 2.87/3.90/4.50/4.89

DeepGLO 1.61/1.89/2.25/2.51 3.13/4.06/5.03/5.77 3.06/4.14/4.92/5.55
N-BEATS 1.49/1.90/2.20/2.44 2.93/4.00/4.84/5.48 3.13/4.29/5.05/5.58
FC-GAGA 1.43/1.78/1.95/2.06 2.87/3.80/4.32/4.67 3.06/4.09/4.55/4.82
DeepAR 1.51/2.01/2.38/2.68 3.06/4.41/5.45/6.25 3.11/4.27/5.04/5.60

DeepFactors 1.54/2.01/2.34/2.61 3.07/4.26/5.17/5.90 3.11/4.21/4.90/5.40
MQRNN 1.37/1.76/2.03/2.25 2.68/3.72/4.51/5.17 2.94/4.05/4.73/5.20

AGCGRU+flow 1.35/1.63/1.78/1.88 2.67/3.44/3.87/4.16 2.88/3.77/4.20/4.46
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Table 5. Average MAE, MAPE and RMSE for PeMSD7 dataset for 15/30/45/60 minutes horizons. The best and the second best results in
each column are shown in bold and marked with underline respectively. Lower numbers are better.

Algorithm PeMSD7 (15/ 30/ 45/ 60 min)
MAE MAPE(%) RMSE

HA 3.98 10.92 7.20
ARIMA 2.49/3.52/4.32/5.03 5.66/8.30/10.46/12.35 4.53/6.64/8.17/9.42

VAR 2.70/3.71/4.37/4.87 6.23/8.75/10.37/11.56 4.38/5.95/6.89/7.56
SVR 2.43/3.40/4.15/4.78 5.62/8.23/10.38/12.31 4.52/6.53/7.93/9.02
FNN 2.36/3.32/4.06/4.71 5.56/8.20/10.41/12.44 4.45/6.46/7.84/8.90

FC-LSTM 3.55/3.59/3.64/3.70 9.12/9.17/9.25/9.37 6.83/6.91/6.99/7.11
DCRNN 2.23/3.06/3.67/4.18 5.19/7.50/9.31/10.90 4.26/6.05/7.28/8.24
STGCN 2.21/2.96/3.47/3.90 5.20/7.32/8.82/10.09 4.09/5.72/6.76/7.55

ASTGCN 2.71/3.72/4.28/4.60 6.68/9.51/11.06/11.86 4.64/6.53/7.60/8.13
GWN 2.23/3.03/3.56/3.98 5.26/7.63/9.25/10.56 4.27/5.99/7.03/7.76

GMAN 2.40/2.76/2.98/3.16 5.93/6.96/7.66/8.16 4.74/5.57/6.06/6.37
AGCRN 2.19/2.81/3.15/3.42 5.22/7.09/8.19/9.01 4.12/5.49/6.27/6.79
LSGCN 2.23/2.99/3.50/3.95 5.22/7.18/8.40/9.37 4.03/5.59/6.54/7.30

DeepGLO 2.55/3.32/4.16/4.85 6.10/8.31/11.16/13.19 4.53/6.30/7.68/8.84
N-BEATS 2.44/3.34/4.02/4.57 5.75/8.30/10.31/11.94 4.55/6.51/7.84/8.80
FC-GAGA 2.22/2.85/3.18/3.36 5.32/7.09/8.00/8.51 4.29/5.77/6.46/6.82
DeepAR 2.53/3.61/4.48/5.20 6.15/9.30/12.17/14.49 4.55/6.50/7.84/8.87

DeepFactors 2.51/3.47/4.17/4.71 6.14/9.04/11.21/12.93 4.47/6.21/7.30/8.08
MQRNN 2.22/3.03/3.58/4.00 5.26/7.70/9.53/10.97 4.23/5.91/6.98/7.73

AGCGRU+flow 2.15/2.70/2.99/3.19 5.13/6.75/7.61/8.18 4.11/5.46/6.12/6.54

Table 6. Average MAE, MAPE and RMSE for PeMSD8 dataset for 15/30/45/60 minutes horizons. The best and the second best results in
each column are shown in bold and marked with underline respectively. Lower numbers are better.

Algorithm PeMSD8 (15/ 30/ 45/ 60 min)
MAE MAPE(%) RMSE

HA 2.47 5.66 5.19
ARIMA 1.24/1.61/1.89/2.12 2.33/3.15/3.77/4.31 2.63/3.62/4.28/4.81

VAR 1.37/1.79/2.04/2.23 2.66/3.62/4.23/4.69 2.67/3.53/4.01/4.36
SVR 1.21/1.56/1.80/2.01 2.32/3.12/3.72/4.24 2.64/3.57/4.18/4.63
FNN 1.19/1.54/1.79/2.01 2.27/3.12/3.75/4.30 2.59/3.55/4.17/4.63

FC-LSTM 1.91/1.93/1.94/1.95 4.63/4.66/4.69/4.72 4.71/4.75/4.78/4.81
DCRNN 1.16/1.49/1.70/1.87 2.25/3.16/3.85/4.37 2.54/3.49/4.08/4.49
STGCN 1.22/1.56/1.79/1.98 2.49/3.43/4.06/4.48 2.67/3.65/4.22/4.59

ASTGCN 1.36/1.64/1.81/1.92 3.04/3.79/4.23/4.51 2.98/3.77/4.20/4.47
GWN 1.11/1.40/1.59/1.73 2.14/2.94/3.49/3.90 2.52/3.45/4.00/4.38

GMAN 1.23/1.36/1.46/1.55 2.73/3.09/3.38/3.63 3.05/3.50/3.82/4.06
AGCRN 1.16/1.39/1.53/1.67 2.49/3.10/3.50/3.84 2.67/3.44/3.91/4.25
LSGCN 1.21/1.54/1.75/1.89 2.56/3.44/3.95/4.30 2.71/3.64/4.14/4.46

DeepGLO 1.30/1.75/2.04/2.21 2.48/3.42/4.06/4.50 2.67/3.63/4.24/4.69
N-BEATS 1.33/1.69/1.92/2.12 2.74/3.85/4.45/4.90 2.81/3.94/4.52/4.92
FC-GAGA 1.18/1.47/1.62/1.72 2.37/3.21/3.76/4.11 2.65/3.61/4.10/4.39
DeepAR 1.25/1.61/1.87/2.10 2.53/3.40/4.08/4.67 2.67/3.59/4.17/4.61

DeepFactors 1.26/1.63/1.88/2.07 2.51/3.42/4.08/4.61 2.63/3.54/4.11/4.52
MQRNN 1.13/1.43/1.62/1.77 2.19/2.99/3.56/4.00 2.54/3.48/4.02/4.40

AGCGRU+flow 1.13/1.37/1.49/1.57 2.30/3.01/3.40/3.65 2.59/3.45/3.85/4.09
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• LSGCN (Huang et al., 2020): Long Shortterm Graph
Convolutional Network, a novel attention mechanism and
graph convolution, integrated into a spatial gated block.

Deep-learning based point forecasting methods:

• DeepGLO (Sen et al., 2019): global matrix factorization,
regularization using temporal convolution.

• N-BEATS (Oreshkin et al., 2020): Neural Basis Expan-
sion Analysis for Interpretable Time-Series, an univariate
model, built using backward and forward residual connec-
tions and deep stack of fully-connected layers.

• FC-GAGA (Oreshkin et al., 2021): Fully Connected
GAted Graph Architecture, fully connected hard graph
gating combined with N-BEATS.

Deep-learning based probabilistic forecasting methods:

• DeepAR (Salinas et al., 2020): RNN based probabilistic
method using parametric likelihood for forecasts.

• DeepFactors (Wang et al., 2019): global deep learning
component along with a local classical model to account
for uncertainty.

• MQRNN (Wen et al., 2017): RNN based multiple quantile
regression.

5.1.1. DETAILED COMPARISONS WITH BASELINES FOR
THE PEMS DATASETS

In Table 1 of the main paper, we report the average MAE of
the top 10 algorithms. The detailed comparisons in terms
of MAE, MAPE, and RMSE with all the baseline algo-
rithms on the four PeMS datasets are provided in Tables 3,
4, 5, and 6. We observe that statistical models such as HA,
ARIMA, and VAR and basic machine learning models such
as SVR, FNN, and FC-LSTM show poor predictive perfor-
mance as they cannot model the complex spatio-temporal
patterns present in the real world traffic data well. Graph
agnostic deep learning models such as DeepGLO and N-
BEATS perform better than the statistical models, but they
cannot incorporate the graph structure when learning. FC-
GAGA has lower forecasting errors as it is equipped with
a graph learning module. The spatio-temporal graph-based
models (especially AGCRN, GMAN, GWN, and LSGCN)
display better performance. These models either use the
observed graph or learn the graph structure from the data.
In general, the deep learning based probabilistic forecasting
algorithms such as DeepAR, DeepFactors, and MQRNN do
not account for the spatial relationships in the data as well
as the graph-based models, although MQRNN is among
the best performing algorithms. DeepAR and DeepFactors

aim to model the forecasting distributions and thus do not
perform as well in the point forecasting task. The training
loss function (negative log likelihood of the forecasts) does
not match the evaluation metric. However, MQRNN shows
better performance, possibly because it does target learn-
ing the median of the forecasting distribution along with
other quantiles. The proposed AGCGRU+flow algorithm
demonstrates comparable prediction accuracy to the best-
performing spatio-temporal models and achieves the best
average ranking across the four datasets. Figure 2 demon-
strates that the proposed AGCGRU+flow has lower average
MAE in most of the nodes compared to the second best
performing AGCRN algorithm, for all four PeMS datasets.
Some qualitative visualization of the confidence intervals
for 15-minute ahead predictions for the PeMSD3, PeMSD4,
PeMSD7, and PeMSD8 datasets are shown in Figures 3, 4, 5,
and 6 respectively. We observe that the confidence intervals
from the proposed algorithm are considerably tighter com-
pared to its competitors in most cases, whereas the coverage
of the ground truth is still ensured.

5.2. Detailed results for comparison with particle filter

In Table 4 of the main paper, we compare the average MAE
and average CRPS of the proposed AGCGRU+flow with a
Bootstrap Particle Filter (BPF) (Gordon et al., 1993) based
approach. Tables 7 and 8 provide the detailed comparison
both in terms of point forecasting and probabilistic forecast-
ing metrics. We observe that the proposed AGCGRU+flow
algorithm outperforms the particle filter based approach in
most cases.

5.3. Effect of number of particles

For this experiment, we consider three different settings
with varying number of particles Np = 1/10/50 for testing.
The model is trained using 1 particle in each case. From
Table 9, we observe that increasing the number of particles
cannot improve the point forecasting accuracy significantly,
whereas the results in Table 10 show that characterization
of the prediction uncertainty is improved as more particles
are used to form the approximate posterior distribution of
the forecasts.

5.4. Effect of different learnable noise variance at each
node

In this experiment, we compare the proposed state-space
model with different learnable noise variance at each node
(parameterized by the softplus function in eq. (9) in the
main paper with fixed and uniform noise standard deviation
γ = 0.01/0.05/0.10 at all nodes. Other hyper-parameters
and the training setup remain unchanged. The results in
Table 11 demonstrate that the learnable noise variance ap-
proach is not particularly beneficial in comparison to a uni-
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(a) PeMSD3 (b) PeMSD4

(c) PeMSD7 (d) PeMSD8

Figure 2. Scatter-plots of average MAE at each node for AGCGRU+flow v.s. that of AGCRN on PeMS datasets. The AGCGRU+flow has
lower average MAE compared to AGCRN at most of the nodes for all four datasets.
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Figure 3. 15 minutes ahead predictions from the probabilistic forecasting algorithms with confidence intervals at nodes 37, 54, 100, and
187 of PeMSD3 dataset for the first day in the test set. The proposed AGCGRU+flow algorithm provides tighter confidence interval than
its competitors in most cases, which leads to lower quantile error.
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Figure 4. 15 minutes ahead predictions from the probabilistic forecasting algorithms with confidence intervals at nodes 2, 44, 57, and 213
of PeMSD4 dataset for the first day in the test set. The proposed AGCGRU+flow algorithm provides tighter confidence interval than its
competitors in most cases, which leads to lower quantile error.
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Figure 5. 15 minutes ahead predictions from the probabilistic forecasting algorithms with confidence intervals at nodes 43, 108, 163, and
201 of PeMSD7 dataset for the first day in the test set. The proposed AGCGRU+flow algorithm provides tighter confidence interval than
its competitors in most cases, which leads to lower quantile error.
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Figure 6. 15 minutes ahead predictions from the probabilistic forecasting algorithms with confidence intervals at nodes 1, 17, 95, and 164
of PeMSD8 dataset for the first day in the test set. The proposed AGCGRU+flow algorithm provides tighter confidence interval than its
competitors in most cases, which leads to lower quantile error.
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Table 7. Average MAE, MAPE, and RMSE for PeMSD3, PeMSD4, PeMSD7, and PeMSD8 for 15/30/45/60 minutes horizons for
AGCGRU+flow and AGCGRU+BPF. Lower numbers are better.

Algorithm PeMSD3 (15/ 30/ 45/ 60 min)
MAE MAPE(%) RMSE

AGCGRU+flow 13.79/14.84/15.58/16.06 14.01/14.75/15.34/15.80 22.08/24.26/25.55/26.43
AGCGRU+BPF 14.19/15.13/15.85/16.35 14.21/14.86/15.40/15.82 25.69/27.38/28.51/29.26

Algorithm PeMSD4 (15/ 30/ 45/ 60 min)
MAE MAPE(%) RMSE

AGCGRU+flow 1.35/1.63/1.78/1.88 2.67/3.44/3.87/4.16 2.88/3.77/4.20/4.46
AGCGRU+BPF 1.36/1.65/1.80/1.90 2.71/3.46/3.90/4.18 2.91/3.81/4.25/4.52

Algorithm PeMSD7 (15/ 30/ 45/ 60 min)
MAE MAPE(%) RMSE

AGCGRU+flow 2.15/2.70/2.99/3.19 5.13/6.75/7.61/8.18 4.11/5.46/6.12/6.54
AGCGRU+BPF 2.19/2.73/2.99/3.17 5.27/6.86/7.69/8.21 4.18/5.52/6.16/6.53

Algorithm PeMSD8 (15/ 30/ 45/ 60 min)
MAE MAPE(%) RMSE

AGCGRU+flow 1.13/1.37/1.49/1.57 2.30/3.01/3.40/3.65 2.59/3.45/3.85/4.09
AGCGRU+BPF 1.18/1.41/1.52/1.59 2.47/3.13/3.50/3.74 2.69/3.53/3.92/4.15

Table 8. Average CRPS, P10QL, and P90QL for PeMSD3, PeMSD4, PeMSD7, and PeMSD8 for 15/30/45/60 minutes horizons for
AGCGRU+flow and AGCGRU+BPF. Lower numbers are better.

Algorithm PeMSD3 (15/ 30/ 45/ 60 min)
CRPS P10QL(%) P90QL(%)

AGCGRU+flow 10.53/11.39/12.03/12.47 4.01/4.44/4.76/4.97 4.06/4.38/4.63/4.82
AGCGRU+BPF 11.32/11.94/12.55/12.92 4.36/4.66/4.98/5.13 4.39/4.65/4.88/5.07

Algorithm PeMSD4 (15/ 30/ 45/ 60 min)
CRPS P10QL(%) P90QL(%)

AGCGRU+flow 1.08/1.32/1.46/1.56 1.28/1.62/1.82/1.97 1.05/1.26/1.37/1.45
AGCGRU+BPF 1.10/1.32/1.45/1.54 1.29/1.60/1.79/1.92 1.06/1.26/1.37/1.45

Algorithm PeMSD7 (15/ 30/ 45/ 60 min)
CRPS P10QL(%) P90QL(%)

AGCGRU+flow 1.73/2.18/2.43/2.58 2.27/2.97/3.36/3.60 1.83/2.25/2.48/2.62
AGCGRU+BPF 1.79/2.24/2.49/2.66 2.35/3.02/3.40/3.67 1.86/2.29/2.53/2.69

Algorithm PeMSD8 (15/ 30/ 45/ 60 min)
CRPS P10QL(%) P90QL(%)

AGCGRU+flow 0.90/1.10/1.20/1.28 1.10/1.43/1.61/1.73 0.87/1.01/1.09/1.14
AGCGRU+BPF 0.96/1.13/1.22/1.28 1.19/1.47/1.63/1.74 0.91/1.03/1.09/1.13
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Table 9. Average MAE, MAPE, and RMSE for PeMSD3, PeMSD4, PeMSD7, and PeMSD8 for 15/30/45/60 minutes horizons for
AGCGRU+flow with different number of particles. Lower numbers are better.

Algorithm PeMSD3 (15/ 30/ 45/ 60 min)
MAE MAPE(%) RMSE

AGCGRU+flow (Np = 1) 13.82/14.87/15.60/16.08 14.04/14.78/15.36/15.82 22.33/24.41/25.70/26.54
AGCGRU+flow (Np = 10) 13.79/14.84/15.58/16.06 14.01/14.75/15.34/15.80 22.08/24.26/25.55/26.43
AGCGRU+flow (Np = 50) 13.79/14.84/15.58/16.06 14.01/14.74/15.33/15.79 22.02/24.20/25.55/26.42

Algorithm PeMSD4 (15/ 30/ 45/ 60 min)
MAE MAPE(%) RMSE

AGCGRU+flow (Np = 1) 1.35/1.63/1.78/1.88 2.68/3.45/3.89/4.18 2.89/3.78/4.22/4.47
AGCGRU+flow (Np = 10) 1.35/1.63/1.78/1.88 2.67/3.44/3.87/4.16 2.88/3.77/4.20/4.46
AGCGRU+flow (Np = 50) 1.35/1.63/1.78/1.88 2.67/3.44/3.87/4.16 2.88/3.77/4.20/4.45

Algorithm PeMSD7 (15/ 30/ 45/ 60 min)
MAE MAPE(%) RMSE

AGCGRU+flow (Np = 1) 2.16/2.71/3.00/3.20 5.14/6.77/7.63/8.20 4.12/5.47/6.14/6.56
AGCGRU+flow (Np = 10) 2.15/2.70/2.99/3.19 5.13/6.75/7.61/8.18 4.11/5.46/6.12/6.54
AGCGRU+flow (Np = 50) 2.15/2.70/2.99/3.19 5.12/6.75/7.61/8.18 4.11/5.46/6.12/6.54

Algorithm PeMSD8 (15/ 30/ 45/ 60 min)
MAE MAPE(%) RMSE

AGCGRU+flow (Np = 1) 1.14/1.38/1.50/1.57 2.31/3.02/3.41/3.67 2.60/3.46/3.87/4.11
AGCGRU+flow (Np = 10) 1.13/1.37/1.49/1.57 2.30/3.01/3.40/3.65 2.59/3.45/3.85/4.09
AGCGRU+flow (Np = 50) 1.13/1.37/1.49/1.57 2.30/3.01/3.40/3.65 2.59/3.44/3.85/4.09

Table 10. Average CRPS, P10QL, and P90QL for PeMSD3, PeMSD4, PeMSD7, and PeMSD8 for 15/30/45/60 minutes horizons for
AGCGRU+flow with different number of particles. Lower numbers are better.

Algorithm PeMSD3 (15/ 30/ 45/ 60 min)
CRPS P10QL(%) P90QL(%)

AGCGRU+flow (Np = 1) 19.34/20.44/21.24/21.80 11.79/12.80/13.46/13.91 10.46/10.72/10.98/11.18
AGCGRU+flow (Np = 10) 10.53/11.39/12.03/12.47 4.01/4.44/4.76/4.97 4.06/4.38/4.63/4.82
AGCGRU+flow (Np = 50) 10.02/10.86/11.49/11.92 3.67/4.05/4.33/4.53 3.83/4.15/4.41/4.59

Algorithm PeMSD4 (15/ 30/ 45/ 60 min)
CRPS P10QL(%) P90QL(%)

AGCGRU+flow (Np = 1) 1.95/2.34/2.58/2.73 3.11/3.75/4.16/4.47 3.00/3.59/3.92/4.10
AGCGRU+flow (Np = 10) 1.08/1.32/1.46/1.56 1.28/1.62/1.82/1.97 1.05/1.26/1.37/1.45
AGCGRU+flow (Np = 50) 1.03/1.26/1.40/1.49 1.21/1.54/1.73/1.87 0.98/1.17/1.27/1.35

Algorithm PeMSD7 (15/ 30/ 45/ 60 min)
CRPS P10QL(%) P90QL(%)

AGCGRU+flow (Np = 1) 3.18/3.95/4.35/4.61 5.57/6.96/7.67/8.15 5.38/6.63/7.29/7.69
AGCGRU+flow (Np = 10) 1.73/2.18/2.43/2.58 2.27/2.97/3.36/3.60 1.83/2.25/2.48/2.62
AGCGRU+flow (Np = 50) 1.64/2.09/2.32/2.47 2.16/2.83/3.20/3.44 1.71/2.10/2.31/2.45

Algorithm PeMSD8 (15/ 30/ 45/ 60 min)
CRPS P10QL(%) P90QL(%)

AGCGRU+flow (Np = 1) 1.63/1.90/2.07/2.18 2.73/3.28/3.63/3.87 2.38/2.68/2.86/2.98
AGCGRU+flow (Np = 10) 0.90/1.10/1.20/1.28 1.10/1.43/1.61/1.73 0.87/1.01/1.09/1.14
AGCGRU+flow (Np = 50) 0.86/1.05/1.16/1.22 1.04/1.35/1.52/1.63 0.83/0.95/1.03/1.08
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form, fixed variance approach in most cases. However, we
note that the probabilistic metrics reported in Table 12 are
the lowest for the learnable noise variance model in all cases.
This suggests that different time-series in these road traffic
datasets have different degrees of uncertainty which cannot
be effectively modelled by the uniform, fixed noise variance
approach.

5.5. Detailed comparison with deterministic
encoder-decoder models

In Table 2 of the main paper, we compare the average MAE
of the proposed flow based approaches with those of the
deterministic encoder-decoder based sequence to sequence
prediction models for three different RNN architectures. In
Table 13, we report the MAPE and RMSE, in addition to the
MAE. We see that the particle flow based RNN models out-
perform the corresponding deterministic encoder-decoder
models in most cases.

5.6. Detailed results for comparison to ensembles

In Table 5 of the main paper, we compare the average CRPS
of the proposed AGCGRU+flow algorithm with ensembles
of AGCRN and GAMN. From Table 14, we observe that
our approach is comparable or slightly worse compared to
the ensembles in terms of the MAE, MAPE and RMSE of
the point forecasts. However, the proposed AGCGRU+flow
shows better characterization of the prediction uncertainty
compared to the ensemble methods in almost all cases, as
shown in Table 15.

5.7. Comparison with a Variational Inference (VI)
based approach

Although there is no directly applicable baseline forecast-
ing method in the literature that incorporates VI, RNNs,
and GNNs, we can derive a variational approach us-
ing equivalent GNN-RNN architectures and compare it
to the particle flow approach. We wish to approximate
pΘ(yP+1:P+Q|y1:P , z1:P+Q). So, the ELBO is defined as
follows:

L(Θ,Ω) = EqΩ

[
log pΘ(yP+1:P+Q,x1:P |y1:P , z1:P+Q)

− log qΩ(x1:P |y1:P+Q, z1:P+Q)

]
. (21)

Now, we approximate
pΘ(yP+1:P+Q,x1:P |y1:P , z1:P+Q)

=

∫ P+Q∏
t=P+1

(
pφ,γ(yt|xt, zt)

pψ,σ(xt|xt−1,yt−1, zt)
)
dxP+1:P+Q ,

≈
P+Q∏
t=P+1

[
1

Np

Np∑
j=1

pφ,γ(yt|xjt , zt)

]
, (22)

where, in the decoder, we first sample xjt from
pψ,σ(xt|xjt−1,y

j
t−1, zt) (for t > P + 1) or from

pψ,σ(xt|xjt−1,yt−1, zt) (for t = P + 1) for 1 6 j 6 Np
and then sample yjt from pφ,γ(yt|xjt , zt) for 1 6 j 6 Np
to form the MC approximation. This decoder is initial-
ized using the output of the encoder, i.e., we sample xj1:P

from the inference distribution qΩ(x1:P |y1:P+Q, z1:P+Q)
for 1 6 j 6 Np, which is assumed to be factorized as
follows:

qΩ(x1:P |y1:P+Q, z1:P+Q)

= qΩ(x1:P |y1:P , z1:P ) ,

= q1(x1, z1, ρ)

P∏
t=2

qψ′,σ′(xt|xt−1,yt−1, zt) . (23)

Here, we set q1(x1, z1, ρ) = p1(x1, z1, ρ) for simplicity
and we use the same RNN architecture (i.e. AGCGRU) for
qψ′,σ′ and pψ,σ .

Experimental details : We treat ρ, σ and σ′ as hyperpa-
rameters and set ρ = 1 and σ = σ′ = 0. This implies
that qψ′,σ′ is a Dirac-delta function and the maximization of
ELBO (in eq. (21)) using SGD (SGVI) amounts to mimiza-
tion of the same cost function as defined in eq. (14) in the
main paper. The only difference is that now a) we have two
separate AGCGRUs for encoder and decoder and b) there
is no particle flow in the forward pass. We call this model
AGCGRU+VI and compare it to AGCGRU+flow. The other
hyperparameters are set to the same values as for the AGC-
GRU+flow algorithm. From Table 16, we observe that for
comparable RNN architectures, the flow based algorithm
significantly outperforms the variational inference based ap-
proach in the point forecasting task. The results in Table 17
indicate that in the probabilistic forecasting task, both parti-
cle flow and VI approaches show comparable performance
despite AGCGRU+flow having approximately half of the
learnable parameters of the AGCGRU+VI model.

5.8. Comparison of execution time, GPU memory
usage and model size

Table 18 summarizes the run time, GPU usage during train-
ing, and the size of the learned model for AGCRN-ensemble,
GMAN-ensemble, and the proposed AGCGRU+flow for the
four PeMS datasets. We observe that if we choose the en-
semble size so that the algorithms have an approximately
equal execution time, then the model-size of the ensemble
algorithms are comparable to our approach as well. How-
ever, our method requires more GPU memory compared to
the ensembles during training because of the particle flow
in the forward pass.
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Table 11. Average MAE, MAPE, and RMSE for PeMSD3, PeMSD4, PeMSD7, and PeMSD8 for 15/30/45/60 minutes horizons for
AGCGRU+flow with learnable and fixed noise variance settings. The best result in each column is shown in bold. Lower numbers are
better.

Algorithm PeMSD3 (15/ 30/ 45/ 60 min)
MAE MAPE(%) RMSE

AGCGRU+flow (learnable) 13.79/14.84/15.58/16.06 14.01/14.75/15.34/15.80 22.08/24.26/25.55/26.43
AGCGRU+flow (γ = 0.01) 13.68/14.75/15.49/16.02 14.57/15.37/16.02/16.57 21.74/23.95/25.27/26.21
AGCGRU+flow (γ = 0.05) 13.96/15.05/15.76/16.25 15.87/16.66/17.23/17.62 22.08/24.33/25.64/26.54
AGCGRU+flow (γ = 0.10) 13.86/14.91/15.68/16.17 14.42/15.20/15.87/16.39 22.04/24.25/25.60/26.41

Algorithm PeMSD4 (15/ 30/ 45/ 60 min)
MAE MAPE(%) RMSE

AGCGRU+flow (learnable) 1.35/1.63/1.78/1.88 2.67/3.44/3.87/4.16 2.88/3.77/4.20/4.46
AGCGRU+flow (γ = 0.01) 1.35/1.63/1.79/1.89 2.68/3.45/3.89/4.20 2.88/3.77/4.20/4.47
AGCGRU+flow (γ = 0.05) 1.36/1.65/1.80/1.91 2.69/3.47/3.91/4.21 2.88/3.76/4.20/4.46
AGCGRU+flow (γ = 0.10) 1.36/1.65/1.80/1.90 2.70/3.47/3.89/4.18 2.92/3.81/4.24/4.49

Algorithm PeMSD7 (15/ 30/ 45/ 60 min)
MAE MAPE(%) RMSE

AGCGRU+flow (learnable) 2.15/2.70/2.99/3.19 5.13/6.75/7.61/8.18 4.11/5.46/6.12/6.54
AGCGRU+flow (γ = 0.01) 2.14/2.69/2.98/3.16 5.07/6.66/7.47/8.00 4.10/5.43/6.09/6.49
AGCGRU+flow (γ = 0.05) 2.16/2.71/3.00/3.20 5.13/6.74/7.61/8.19 4.09/5.41/6.06/6.48
AGCGRU+flow (γ = 0.10) 2.16/2.73/3.01/3.20 5.15/6.77/7.62/8.15 4.12/5.48/6.15/6.54

Algorithm PeMSD8 (15/ 30/ 45/ 60 min)
MAE MAPE(%) RMSE

AGCGRU+flow (learnable) 1.13/1.37/1.49/1.57 2.30/3.01/3.40/3.65 2.59/3.45/3.85/4.09
AGCGRU+flow (γ = 0.01) 1.13/1.37/1.49/1.57 2.31/3.03/3.44/3.71 2.60/3.43/3.84/4.09
AGCGRU+flow (γ = 0.05) 1.13/1.37/1.49/1.57 2.26/2.95/3.35/3.62 2.53/3.34/3.75/4.01
AGCGRU+flow (γ = 0.10) 1.13/1.38/1.51/1.60 2.31/3.04/3.49/3.80 2.57/3.41/3.86/4.14
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Table 12. Average CRPS, P10QL, and P90QL for PeMSD3, PeMSD4, PeMSD7, and PeMSD8 for 15/30/45/60 minutes horizons for
AGCGRU+flow with learnable and fixed noise variance settings. The best result in each column is shown in bold. Lower numbers are
better.

Algorithm PeMSD3 (15/ 30/ 45/ 60 min)
CRPS P10QL(%) P90QL(%)

AGCGRU+flow (learnable) 10.53/11.39/12.03/12.47 4.01/4.44/4.76/4.97 4.06/4.38/4.63/4.82
AGCGRU+flow (γ = 0.01) 12.83/13.90/14.63/15.17 7.26/8.10/8.46/8.77 6.68/7.08/7.55/7.86
AGCGRU+flow (γ = 0.05) 11.58/12.61/13.28/13.74 5.78/6.52/6.99/7.25 5.14/5.54/5.81/6.06
AGCGRU+flow (γ = 0.10) 13.14/14.18/14.95/15.43 7.79/8.57/9.22/9.53 6.64/7.05/7.28/7.53

Algorithm PeMSD4 (15/ 30/ 45/ 60 min)
CRPS P10QL(%) P90QL(%)

AGCGRU+flow (learnable) 1.08/1.32/1.46/1.56 1.28/1.62/1.82/1.97 1.05/1.26/1.37/1.45
AGCGRU+flow (γ = 0.01) 1.28/1.55/1.70/1.81 2.09/2.58/2.87/3.08 1.74/2.08/2.26/2.38
AGCGRU+flow (γ = 0.05) 1.19/1.47/1.62/1.72 1.82/2.30/2.57/2.77 1.48/1.84/2.04/2.15
AGCGRU+flow (γ = 0.10) 1.32/1.60/1.75/1.85 2.19/2.68/2.95/3.15 1.84/2.23/2.43/2.54

Algorithm PeMSD7 (15/ 30/ 45/ 60 min)
CRPS P10QL(%) P90QL(%)

AGCGRU+flow (learnable) 1.73/2.18/2.43/2.58 2.27/2.97/3.36/3.60 1.83/2.25/2.48/2.62
AGCGRU+flow (γ = 0.01) 2.02/2.55/2.82/3.01 3.59/4.57/5.05/5.35 3.00/3.77/4.22/4.54
AGCGRU+flow (γ = 0.05) 1.90/2.42/2.70/2.90 3.18/4.20/4.76/5.15 2.56/3.27/3.65/3.91
AGCGRU+flow (γ = 0.10) 2.09/2.65/2.94/3.12 3.80/4.87/5.41/5.77 3.18/4.04/4.47/4.73

Algorithm PeMSD8 (15/ 30/ 45/ 60 min)
CRPS P10QL(%) P90QL(%)

AGCGRU+flow (learnable) 0.90/1.10/1.20/1.28 1.10/1.43/1.61/1.73 0.87/1.01/1.09/1.14
AGCGRU+flow (γ = 0.01) 1.07/1.29/1.41/1.49 1.81/2.29/2.56/2.75 1.35/1.57/1.67/1.73
AGCGRU+flow (γ = 0.05) 1.00/1.23/1.35/1.43 1.58/2.04/2.31/2.50 1.21/1.43/1.52/1.58
AGCGRU+flow (γ = 0.10) 1.10/1.34/1.47/1.56 1.88/2.41/2.72/2.93 1.47/1.71/1.81/1.87
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Table 13. Average MAE, MAPE, and RMSE for PeMSD3, PeMSD4, PeMSD7, and PeMSD8 for 15/30/45/60 minutes horizons for the
proposed flow based approach and deterministic encoder-decoder models. Lower numbers are better.

Algorithm PeMSD3 (15/ 30/ 45/ 60 min)
MAE MAPE(%) RMSE

AGCGRU+flow 13.79/14.84/15.58/16.06 14.01/14.75/15.34/15.80 22.08/24.26/25.55/26.43
FC-AGCGRU 13.96/15.37/16.52/17.45 14.26/15.61/16.69/17.37 25.28/27.43/29.09/30.43
DCGRU+flow 14.48/15.67/16.52/17.36 15.06/16.06/16.91/17.84 23.86/26.12/27.54/28.76
FC-DCGRU 14.42/15.87/17.10/18.29 14.57/15.78/16.87/17.95 24.33/27.05/28.99/30.76
GRU+flow 14.40/16.10/17.63/19.18 14.56/15.99/17.33/18.89 23.06/26.15/28.64/30.97
FC-GRU 15.82/18.37/20.61/22.93 15.87/18.82/21.32/23.75 25.85/30.09/33.37/36.94

Algorithm PeMSD4 (15/ 30/ 45/ 60 min)
MAE MAPE(%) RMSE

AGCGRU+flow 1.35/1.63/1.78/1.88 2.67/3.44/3.87/4.16 2.88/3.77/4.20/4.46
FC-AGCGRU 1.37/1.74/2.00/2.20 2.69/3.67/4.41/5.00 2.92/3.96/4.62/5.09
DCGRU+flow 1.38/1.71/1.92/2.08 2.72/3.63/4.23/4.67 2.93/3.93/4.49/4.87
FC-DCGRU 1.38/1.78/2.06/2.29 2.69/3.72/4.51/5.16 2.95/4.09/4.81/5.34
GRU+flow 1.37/1.76/2.02/2.23 2.70/3.74/4.52/5.15 2.95/4.05/4.74/5.23
FC-GRU 1.46/1.91/2.25/2.54 2.84/3.97/4.88/5.66 3.10/4.35/5.20/5.85

Algorithm PeMSD7 (15/ 30/ 45/ 60 min)
MAE MAPE(%) RMSE

AGCGRU+flow 2.15/2.70/2.99/3.19 5.13/6.75/7.61/8.18 4.11/5.46/6.12/6.54
FC-AGCGRU 2.21/2.99/3.56/4.05 5.18/7.39/9.12/10.64 4.18/5.88/7.03/7.94
DCGRU+flow 2.19/2.87/3.29/3.61 5.16/7.17/8.48/9.42 4.16/5.66/6.54/7.14
FC-DCGRU 2.23/3.06/3.67/4.18 5.19/7.50/9.31/10.90 4.26/6.05/7.28/8.24
GRU+flow 2.24/3.02/3.55/3.96 5.27/7.58/9.30/10.60 4.28/5.97/7.00/7.73
FC-GRU 2.41/3.40/4.17/4.84 5.60/8.27/10.47/12.40 4.56/6.68/8.17/9.34

Algorithm PeMSD8 (15/ 30/ 45/ 60 min)
MAE MAPE(%) RMSE

AGCGRU+flow 1.13/1.37/1.49/1.57 2.30/3.01/3.40/3.65 2.59/3.45/3.85/4.09
FC-AGCGRU 1.16/1.48/1.70/1.87 2.30/3.17/3.78/4.25 2.58/3.53/4.12/4.54
DCGRU+flow 1.17/1.44/1.58/1.70 2.35/3.12/3.57/3.87 2.64/3.54/4.00/4.28
FC-DCGRU 1.16/1.49/1.70/1.87 2.25/3.16/3.85/4.37 2.54/3.49/4.08/4.49
GRU+flow 1.12/1.41/1.59/1.74 2.17/2.94/3.50/3.92 2.55/3.47/4.02/4.40
FC-GRU 1.20/1.56/1.81/2.02 2.29/3.09/3.70/4.22 2.63/3.61/4.24/4.73
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Table 14. Average MAE, MAPE, and RMSE for PeMSD3, PeMSD4, PeMSD7, and PeMSD8 for 15/30/45/60 minutes horizons for
AGCRN-ensemble, GMAN-ensemble, and AGCGRU+flow. The best and the second best results in each column are shown in bold and
marked with underline respectively. Lower numbers are better.

Algorithm PeMSD3 (15/ 30/ 45/ 60 min)
MAE MAPE(%) RMSE

AGCRN-ensemble 14.21/15.12/15.73/16.22 13.91/14.56/14.93/15.38 25.49/27.16/28.20/28.90
GMAN-ensemble 14.48/15.20/15.90/16.66 15.01/15.64/16.41/17.36 23.96/25.20/26.31/27.44
AGCGRU+flow 13.79/14.84/15.58/16.06 14.01/14.75/15.34/15.80 22.08/24.26/25.55/26.43

Algorithm PeMSD4 (15/ 30/ 45/ 60 min)
MAE MAPE(%) RMSE

AGCRN-ensemble 1.35/1.61/1.76/1.91 2.75/3.40/3.79/4.17 2.89/3.65/4.09/4.47
GMAN-ensemble 1.33/1.57/1.72/1.84 2.64/3.27/3.70/4.04 2.89/3.62/4.04/4.33
AGCGRU+flow 1.35/1.63/1.78/1.88 2.67/3.44/3.87/4.16 2.88/3.77/4.20/4.46

Algorithm PeMSD7 (15/ 30/ 45/ 60 min)
MAE MAPE(%) RMSE

AGCRN-ensemble 2.17/2.69/2.95/3.20 5.25/6.75/7.55/8.22 4.09/5.29/5.94/6.45
GMAN-ensemble 2.42/2.80/3.08/3.35 6.08/7.18/8.00/8.74 4.68/5.54/6.08/6.51
AGCGRU+flow 2.15/2.70/2.99/3.19 5.13/6.75/7.61/8.18 4.11/5.46/6.12/6.54

Algorithm PeMSD8 (15/ 30/ 45/ 60 min)
MAE MAPE(%) RMSE

AGCRN-ensemble 1.19/1.36/1.46/1.58 2.67/3.10/3.38/3.68 2.88/3.41/3.76/4.06
GMAN-ensemble 1.13/1.28/1.39/1.49 2.37/2.78/3.10/3.37 2.71/3.25/3.61/3.87
AGCGRU+flow 1.13/1.37/1.49/1.57 2.30/3.01/3.40/3.65 2.59/3.45/3.85/4.09

Table 15. Average CRPS, P10QL, and P90QL for PeMSD3, PeMSD4, PeMSD7, and PeMSD8 for 15/30/45/60 minutes horizons for
AGCRN-ensemble, GMAN-ensemble, and AGCGRU+flow. The best and the second best results in each column are shown in bold and
marked with underline respectively. Lower numbers are better.

Algorithm PeMSD3 (15/ 30/ 45/ 60 min)
CRPS P10QL(%) P90QL(%)

AGCRN-ensemble 12.64/13.44/13.96/14.27 6.90/7.40/7.54/7.53 6.10/6.43/6.79/6.96
GMAN-ensemble 12.79/13.49/14.13/14.77 7.17/7.67/8.08/8.45 5.86/6.16/6.44/6.68
AGCGRU+flow 10.53/11.39/12.03/12.47 4.01/4.44/4.76/4.97 4.06/4.38/4.63/4.82

Algorithm PeMSD4 (15/ 30/ 45/ 60 min)
CRPS P10QL(%) P90QL(%)

AGCRN-ensemble 1.20/1.44/1.56/1.68 1.82/2.21/2.39/2.57 1.53/1.82/1.93/2.08
GMAN-ensemble 1.16/1.38/1.51/1.62 1.73/2.11/2.35/2.54 1.45/1.70/1.82/1.92
AGCGRU+flow 1.08/1.32/1.46/1.56 1.28/1.62/1.82/1.97 1.05/1.26/1.37/1.45

Algorithm PeMSD7 (15/ 30/ 45/ 60 min)
CRPS P10QL(%) P90QL(%)

AGCRN-ensemble 1.90/2.39/2.60/2.81 3.22/4.15/4.55/4.89 2.55/3.19/3.35/3.58
GMAN-ensemble 1.96/2.31/2.53/2.73 3.16/3.83/4.23/4.53 2.20/2.59/2.81/3.00
AGCGRU+flow 1.73/2.18/2.43/2.58 2.27/2.97/3.36/3.60 1.83/2.25/2.48/2.62

Algorithm PeMSD8 (15/ 30/ 45/ 60 min)
CRPS P10QL(%) P90QL(%)

AGCRN-ensemble 1.03/1.20/1.28/1.38 1.63/1.97/2.14/2.34 1.18/1.34/1.39/1.48
GMAN-ensemble 0.95/1.10/1.19/1.28 1.40/1.68/1.88/2.04 1.12/1.26/1.34/1.41
AGCGRU+flow 0.90/1.10/1.20/1.28 1.10/1.43/1.61/1.73 0.87/1.01/1.09/1.14
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Table 16. Average MAE, MAPE, and RMSE for PeMSD3, PeMSD4, PeMSD7, and PeMSD8 for 15/30/45/60 minutes horizons for
AGCGRU+flow and AGCGRU+VI. Lower numbers are better.

Algorithm PeMSD3 (15/ 30/ 45/ 60 min)
MAE MAPE(%) RMSE

AGCGRU+flow 13.79/14.84/15.58/16.06 14.01/14.75/15.34/15.80 22.08/24.26/25.55/26.43
AGCGRU+VI 15.08/16.10/16.83/17.53 15.26/16.10/16.74/17.43 26.17/28.02/29.13/30.17

Algorithm PeMSD4 (15/ 30/ 45/ 60 min)
MAE MAPE(%) RMSE

AGCGRU+flow 1.35/1.63/1.78/1.88 2.67/3.44/3.87/4.16 2.88/3.77/4.20/4.46
AGCGRU+VI 1.46/1.76/1.94/2.06 2.94/3.73/4.20/4.52 2.97/3.78/4.22/4.48

Algorithm PeMSD7 (15/ 30/ 45/ 60 min)
MAE MAPE(%) RMSE

AGCGRU+flow 2.15/2.70/2.99/3.19 5.13/6.75/7.61/8.18 4.11/5.46/6.12/6.54
AGCGRU+VI 2.33/2.92/3.23/3.45 5.59/7.26/8.16/8.78 4.22/5.48/6.10/6.50

Algorithm PeMSD8 (15/ 30/ 45/ 60 min)
MAE MAPE(%) RMSE

AGCGRU+flow 1.13/1.37/1.49/1.57 2.30/3.01/3.40/3.65 2.59/3.45/3.85/4.09
AGCGRU+VI 1.29/1.52/1.65/1.74 2.94/3.51/3.86/4.10 2.96/3.59/3.94/4.17

Table 17. Average CRPS, P10QL, and P90QL for PeMSD3, PeMSD4, PeMSD7, and PeMSD8 for 15/30/45/60 minutes horizons for
AGCGRU+flow and AGCGRU+VI. Lower numbers are better.

Algorithm PeMSD3 (15/ 30/ 45/ 60 min)
CRPS P10QL(%) P90QL(%)

AGCGRU+flow 10.53/11.39/12.03/12.47 4.01/4.44/4.76/4.97 4.06/4.38/4.63/4.82
AGCGRU+VI 11.00/11.80/12.38/12.94 4.14/4.53/4.82/5.10 4.27/4.58/4.81/5.02

Algorithm PeMSD4 (15/ 30/ 45/ 60 min)
CRPS P10QL(%) P90QL(%)

AGCGRU+flow 1.08/1.32/1.46/1.56 1.28/1.62/1.82/1.97 1.05/1.26/1.37/1.45
AGCGRU+VI 1.08/1.31/1.45/1.54 1.26/1.59/1.79/1.93 1.04/1.25/1.36/1.45

Algorithm PeMSD7 (15/ 30/ 45/ 60 min)
CRPS P10QL(%) P90QL(%)

AGCGRU+flow 1.73/2.18/2.43/2.58 2.27/2.97/3.36/3.60 1.83/2.25/2.48/2.62
AGCGRU+VI 1.72/2.18/2.42/2.60 2.25/2.97/3.39/3.66 1.80/2.24/2.47/2.63

Algorithm PeMSD8 (15/ 30/ 45/ 60 min)
CRPS P10QL(%) P90QL(%)

AGCGRU+flow 0.90/1.10/1.20/1.28 1.10/1.43/1.61/1.73 0.87/1.01/1.09/1.14
AGCGRU+VI 0.95/1.13/1.24/1.31 1.15/1.44/1.62/1.76 0.90/1.03/1.10/1.15
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Table 18. Execution time, memory consumption (during training)
and model size for AGCRN-ensemble, GMAN-ensemble and
AGCGRU+flow for the four PeMS datasets. Lower numbers are
better.

Algorithm Execution time (minutes)
PEMS03 PEMS04 PEMS07 PEMS08

AGCRN-ensemble 369 243 183 224
GMAN-ensemble 444 224 195 185
AGCGRU+flow 325 205 154 177

Algorithm GPU memory (GB)
PEMS03 PEMS04 PEMS07 PEMS08

AGCRN-ensemble 6.55 5.19 4.09 3.47
GMAN-ensemble 15.45 9.45 8.46 4.45
AGCGRU+flow 25.27 18.76 12.45 8.45

Algorithm Model Size (MB)
PEMS03 PEMS04 PEMS07 PEMS08

AGCRN-ensemble 11.52 11.52 11.45 11.45
GMAN-ensemble 9.54 9.51 9.45 9.35
AGCGRU+flow 12.88 12.86 12.86 12.85
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