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1. Open-source Dataset
Transition matrix for CIFAR-10/100. For the experiment summarized in Table 1, we implemented open-source code to
generate the noise transition matrix discussed by (Han et al., 2018), as well as the 9-layered CNN architecture (https:
//github.com/bhanML/Co-teaching).

Open-set noise. For the experiment summarized in Table 2, we used the same dataset for open-set noisy labels presented
by (Lee et al., 2019) (https://github.com/pokaxpoka/RoGNoisyLabel).

Clothing1M. For the experiment summarized in Table 3, we used the open-source dataset presented by (Xiao et al., 2015)
(https://github.com/Cysu/noisy_label).

2. Collaboration with Other Methods

Figure 1. Test accuracy for the proposed collaboration model with co-teaching.

Our collaboration model with co-teaching achieved the most accurate performance for the CIFAR-100 dataset with
asymmetric noise, which verifies that our WDN can be integrated into existing methods to improve their performance
significantly, especially when the density of pre-logits is highly-concentrated. Fig.1 reveals that co-teaching quickly falls into
over-parameterization and induces drastic drop in accuracy after the 15th-epoch. WDNcot also exhibited a slight accuracy
drop. However, it surpassed the baseline co-teaching method by a large margin (+7%) during training. This demonstrates
that our enhanced samples XT can alleviate the over-parameterization issues faced by conventional co-teaching models,
which helps improve their accuracy significantly.

3. Comparisons to Related Works
Table 1 indicates that no previous methodology can conceptually include our method.

Because the solution to the Fokker-plank equation can be explicitly calculated without any additional parameter, our method
is fully non-parametric (in terms of additional parameters against those required by the original neural network). By contrast,
co-teaching is parametric, because it requires a clone network with additional parameters that are copies of those in the
original network. Similarly, MLNT requires an additional teacher network for training, which also contains a large number
of parameters.

Many methods based on small-loss criteria select certain samples, whereas our method uses the combination of ρN certain
and (1− ρ)N normalized uncertain samples. Therefore, our method can make the full use of the batches of training datasets,
where (1− ρ)N + ρN = N . Additionally, our method does not assume any class-dependent prior knowledge. Rather than
considering class-wise prior knowledge, our method uses holistic information from both certain and uncertain samples (i.e.,
Y and XT ) in the logit space. Other meta-class-based model, such as MLNT, assume class-wise meta prior knowledge

https://github.com/bhanML/Co-teaching
https://github.com/bhanML/Co-teaching
https://github.com/pokaxpoka/RoGNoisyLabel
https://github.com/Cysu/noisy_label
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Table 1. Differences of the proposed method for other methods.

Methodology Parametric Class-dependency Distillation Sample-weight Sample-selection

DivideMix 3 7 7 7 3
Co-teaching 3 7 3 7 3

JoCoR 3 7 3 7 3
MLNT 3 3 3 7 7

(Ren et al., 2018) 7 7 7 3 7
NPCL 7 7 7 3 7
GCE 7 7 7 3 7

WDN 7 7 7 7 7

from a teacher network.

In (Arazo et al., 2019), they assumed the beta-mixture model as a label distribution on the label space. However, due to the
non-deterministic type of noisy label distribution, it sometimes fails to train with an extremely non-uniform type of noise.
For example, (Arazo et al., 2019) reported failure cases with the Clothing1M dataset. It shows that fundamental assumption
on noise model of mixup needs to be improved as a future work. Similar to this method, our work have trouble when dealing
with synthetic asymmetric noise with a high ratio where a relatively large performance drop is observed (despite our method
produces the second best performance in the table).

In most recent work (Li et al., 2019), they also adopted Co-train by implementing additional dual networks, which requires a
very sophisticated methodology called Co-divide/guessing based on SSL. In their method, the Wasserstein distance between
labeled and unlabeled probability measures is well-controlled. We believe that applying the OT/Markov theory (as in our
paper) to their method will broaden understanding of the LNL problem.

In contrast to sample weight methods such as GCE and NPCL, which require prior knowledge regarding the cardinality of
the training samples to be weighted, our method is free from this assumption, because our Wasserstein normalization can be
applied in a batch-wise manner.

4. Technical Difficulty in Applying General Optimal Transport/Markov Theory to Label Space
Let X and Y be uncertain and certain samples in pre-softmax feature space, respectively. We consider the distributional
constraint on the label-space (the space of σ(X), σ(Y ), where σ denotes the soft-max function). This space cannot
appropriately define the objective function such as (7) of the main paper. Because all the samples in this label space
is of the form σ(X) = [a1, a2, · · · , an] such that

∑d
i=1 ai = 1, label-space is d-dimensional affine-simplex Ud, which

is subset of the Euclidean space Ud ⊂ Rd. In this case, the definition of Wasserstein space in (6) of the main paper is
unacceptable while dE is not a true metric on Ud. The Wasserstein space P2(Ud) is merely investigated in the mathematical
literature, which makes us unable to use all the technical details and assumptions, theories developed in the P2(Rd), which
are theoretical ground of our work. However, if we interpret this problem slightly different point of view and consider
pre-softmax Rd,P2(Rd) as our base space, all the technical issues/problems when we try to use OT tools in P2(Ud) can be
overcome/ignored. while softmax is the non-parametric one-to-one function connecting pre-softmax feature space Rd to
Ud, there exists a unique label in Ud as a mapped point of the manipulated uncertain samples. Even though our objects are
defined on the pre-softmax space, the theoretical analysis in Proposition 3 of the main paper contains the softmax function
to evaluate the concentration inequality of proposed transformation F affecting in label-space Ud.

5. Mathematical Background
In this section, we introduce important definitions, notations, and propositions used in our proofs and the main paper.

5.1. Notation

We denote f#µ as a push-forward of µ through f . C∞0 (Rd) denotes the set of∞-class functions with compact support in
Rd. For the Lp-norm of the function f , we denote ‖f‖p,ξ = (

∫
|f |pdξ)

1
p . The Hessian matrix of the function f is denoted
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as Hess[f ] = [∂i∂jf ]di,j . Sym
+
d denotes the space for semi-definite positive symmetric matrices of size d × d. ‖f‖Lip

denotes the Lipschitz norm of the function f . For any matrix A ∈Md, we let ‖A‖op denote the operator norm of A.

5.2. Diffusion-invariance and Hyper-contractivity

Definition 1. The Markov semigroup (Pt)t≥0 in Rd acting on a function f ∈ C∞0 is defined as follows:

Ptf(x) =

∫
f(x′)pt(x, dx

′), (1)

where pt(x, dx′) is a transition kernel that is the probability measure for all t ≥ 0.

Definition 2. (Diffusion Operator) Given a Markov semi-group Pt at time t, the diffusion operator (i.e., infinitesimal
generator) L of Pt is defined as

Lg(y) = lim
t→0

1

t
(Ptg(y)− g(y)) =

∑
i,j

∂2

∂yi∂yj
Bij(y)g(y)−

∑
i

Ai(y)
∂

∂yi
g(y), (2)

where B and A are matrix and vector-valued measurable functions, respectively. Bij denotes the (i, j)-th function of B and
Ai denotes the i-th component function of A.

Definition 3. (Diffusion-invariant Measure) Given the diffusion operator L, the probability measure µ is considered to be
invariant measure to L when EX∼µ[Lf(X)] = 0 for any f ∈ C∞0 .

Lemma 1. (Infinitesimal generator for the multivariate Gaussian measure, (Bolley & Gentil, 2010).) The Gaussian
measure Nξ := N (mξ,Σξ) with a mean mξ and covariance Σξ is an invariant measure according to the following
diffusion-operator L:

Lf(x) = ΣξHess[f ](x)− (x−mξ)
T ∇f(x), ∀f ∈ C∞0 (Rd), (3)

where Bij(x) := [Σξ]ij is a constant function, and Ai(x) := xi −mi
ξ.

This generator serves as our main tool for the geometric analysis of the upper bound ε. In Section 5 in the main paper,
we introduced an approximate upper-bound K̂2(µ) without any general description of the inequality involved. We now
introduce the underlying mathematics for (33). Because our detour measure is Gaussian, there is a unique semi-group Pth
called the multidimensional Ornstein-Ulenbeck semi-group that is invariant to Nξ. Specifically, Pt is defined as follows:

Psh(X) = EZ∼NI

[
h
(
e−sX +

√
1− e−2s(Σ

1
2

ξ Z + mξ)
)]
, ∀h ∈ C∞0 . (4)

The invariance property of Pt relative to our detour measure is naturally induced by the following Proposition:

Proposition 1. We define C : Rd → Rd and C(X) = AX + b such that A ∈ Sym+
d ,b ∈ Rd, and select an arbitrary

smooth h ∈ C∞0 (Rd). We then define the diffusion Markov semi-group Psh as follows:

Psh(X) = EZ∼N
[
h
(
e−sX +

√
1− e−2sC(Z)

)]
. (5)

Then, N (A2,b) is invariant with respect to Ps, meaning the following equality holds for every h and s ≥ 0:∫
Rd

[Psh(X)− h(X)]dN (A2,b)(X) = 0. (6)

Proof. For simplicity, we denote N (A2,b) := NC .∫
Psh(X)dNC(X) =

∫ ∫
h(e−sX +

√
1− e−2sC(Z))dNC(X)dN (Z)

=

∫ ∫
h ◦ C(e−sZ ′ +

√
1− e−2sZ)dN (Z ′)dN (Z).

(7)
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The second equality holds because C is linear in Rd. Let e−s = cos θ and e−2s = sin θ for any 0 ≤ θ ≤ 2π. Then, we
define φ as φ(Z ′, Z) = e−sZ ′ +

√
1− e−2sZ = cos(θ)Z ′ + sin(θ)Z, and π(Z ′, Z) = Z. Based on the rotation property

of the standard Gaussian measure, one can induce the following equality.

(N ⊗N ) ◦ (C ◦ φ)−1 = ((N ⊗N ) ◦ φ−1) ◦ C−1 = N ◦ C−1. (8)

However, we know that dN [C−1(X)] = dNC(X) =
(
(2π)d|A2|

)− 1
2 e−0.5(X−b)TA−2(X−b). By combining (7) and (8),

one can derive the following result:∫
h ◦ C(e−sZ ′ +

√
1− e−2sZ)d[N ⊗N ] =

∫
h(X)d

[
(N ⊗N ) ◦ φ−1 ◦ C−1

]
(X)

=

∫
h(X)d[N ◦ C−1](X) =

∫
h(X)dN [C−1(X)]

=

∫
h(X)dNC(X).

(9)

Proposition 1 demonstrates the invariance property of the defined semi-group. If we set A = Σ
1
2

ξ ,b = mξ, then we can
recover (4).

We are now ready to define the approximation of K2(µ) in terms of semi-group invariance. Specifically, for any real-valued
smooth h, we define the following inequality:

K̂2(µ) = EX∼µ[Lh(X)] = lim
s→0

EX∼µ
[

1

s
(Psh(X)− h(X))

]
= lim
s→0

1

s
EX,Z∼NI

[
h
(
e−sX +

√
1− e−2s(Σ

1
2

ξ Z + mξ)
)
− h(X)

]
≤ K2(µ).

(10)

This inequality holds if h is selected to induce a supremum over the setC∞0 , where suph K̂2(µ, h) = suph EX∼µ[Lh(X)] =

K2(µ). Although a more sophisticated design for the test function h will induce a tighter upper bound for K̂2, we determined
that the L2-norm is generally sufficient.

Definition 4. (Diffuseness of the probability measure) We define the integral operator K2 :W2(Rd)→ R+ as follows:

K2(µ) =

√
sup
f∈C∞0

∫
Rd
|Lf(x)| dµ(x). (11)

According to Definition 3, we know that
∫
Lf(X)dNξ(X) = 0 for any f . Based on this observation, it is intuitive that K2

estimates how the probability measure ξ is distorted in terms of diffusion invariance. While this measure takes a supremum
over the function space C∞0 , it searches for a function that enables the estimation of maximal distortion. Because the
value of K2 is entirely dependent on the structure of µ, K2 can be considered as a constant for the sake of simplicity if the
uncertain measure µ is fixed over one iteration of training.

Definition 5. (Diffusion carré du champ) Let f, g ∈ C∞0 (Rd). Then, we define a bilinear form Γc in C∞0 (Rd)×C∞0 (Rd)
as

Γe(f, g) =
1

2
[LΓe−1(fg)− Γe−1(fLg)− Γe−1(gLf)], e ≥ 1. (12)

We also denote Γ(f) ≡ Γ(f, f). The bilinear form Γ can be considered as a generalization of the integration by the parts
formula, where

∫
fLg + Γ(f)dµ = 0 for the invariant measure µ of L.

Definition 6. (Curvature-Dimension condition, (Ambrosio et al., 2015)) We can say that the infinitesimal generator L
induces the CD(ρ,∞) curvature-dimension condition if it satisfies Γ1(f) ≤ ρΓ2(f) for all f ∈ C∞0 .

Because our diffusion operator generates a semi-group with respect to the Gibbs measure, the curvature-dimension condition
can be calculated explicitly. Through simple calculations, the first-order (c = 1) diffusion carré du champ can be induced as
follows:

Γ1(f) =
(
[∇f ]TΣξ∇f

)2
. (13)
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Similarly, the second-order (c = 2) diffusion carré du champ is calculated as follows:

Γ2(f) =
1

2

[
L
(
Γ1(f2)

)
− 2Γ1 (f,L(f))

]
= Tr

([
Σξ∇2f

]2)
+
(
[∇f ]TΣξ∇f

)2
= Tr

([
Σξ∇2f

]2)
+ Γ1(f),

(14)

for an arbitrary f ∈ C∞0 (Rd). While Tr
([

Σ∇2f
]2)

is non-negative, we can infer that Γ1 ≤ Γ2. In this case, the diffusion
operator L defined in Lemma 1 induces the CD(ρ = 1,∞) curvature-dimension condition. For the other diffusion operators,
please refer to (Bolley & Gentil, 2010).

Proposition 2. (Decay of Fisher information along a Markov semigroup, (Bakry et al., 2013).) If we assume the
curvature-dimension condition CD(ρ,∞), then I(µt|Nξ) ≤ e−2ρtI(µ|Nξ).

The exponential decay of the Fisher information in Proposition 2 is a core property of the exponential decay of the
Wasserstein distance.

5.3. Fokker-Plank equation, SDE

Definition 7. (Over-damped Langevin Dynamics) We have

dXt = −∇φ(Xt;mξ)dt+
√

2τ−1ΣξdWt, (15)

where φ (Xt;mξ) = τ
2d

2 (Xt,mξ), Wt denotes Brownian motion, and d denotes Euclidean distance. The particle Xt

is distributed in Xt ∼ pt. The probability density limt→∞ p(x, t) with respect to X∞ converges to the Gaussian density
X∞ =

√
Σξ(Z + mξ) ∼ p∞(x) = q(x) ∝ e−d(x,mξ)

TΣ−1
ξ d(x,mξ).

In classical SDE literature, it is stated that E
[
sup0≤t≤T

∣∣∣X̂t −Xt

∣∣∣] ≤ G(N%)
− 1

2 , where G(T ) is some constant that

depends only on T and X̂ denotes the true solution of the SDE in (15). While the number of uncertain samples is greater
than N% > 40, our method exhibits acceptable convergence.

5.4. Gaussian Wasserstein Subspaces

It is known that the space of non-degenerate Gaussian measures (i.e., covariance matrices are positive-definite) forms a
subspace in the 2-Wasserstein space denoted asW2,g

∼= Sym+
d × Rd. Because the 2-Wasserstein space can be considered

as a Riemannian manifold equipped with Riemannian metrics (Villani, 2008),W2,g can be endowed with a Riemannian
structure that also induces the Wasserstein metric ((McCann, 1997)). In the Riemannian sub-manifold of Gaussian measures,
the geodesic between two points γ(0) = NA and γ(1) = NB is defined as follows (Malagò et al., 2018):

γ(α) = Nt = N (m(α),Σ(α)), (16)

where m(α) = (1−α)mA+αmB and Σ(α) = [(1− α)I + αT ] ΣA [(1− α)I + αT ], where T ΣAT = ΣB . In Section 7
of the main paper, we set (mA,ΣA) → (mξ,Σξ) and (mB ,ΣB) → (mξk ,Σξk). Regardless of how ξ is updated, the
statistical information regarding the current certain measure ξk is considered in the detour Gaussian measure, which yields a
much smoother geometric constraint on µ.

6. Proofs
Proposition. The distributional normalization F maps µ into the certified robust region with controllable radius ε2 =
K2(µ)e−t (i.e., BNξ (K2e

−t (µ))), where K2(µ) > 0 is a constant that depends on µ.

Proof. We assume that the probability measure µt is absolutely continuous with respect to the detour Gaussian measure
N (mξ,Σξ) = Nξ, µt � Nξ. In this case, according to the Radon-Nikodym theorem, there is a corresponding unique
probability density q(t, x) = qt(x) ∈ C∞0 such that dµt = qtdNξ.
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Lemma 2. (WI-inequality, (Otto & Villani, 2000)) If the stationary state of µt with respect to Pt satisfies
limt→∞ Eµ[Ptf ] = 0 for any f ∈ C∞0 , then the following inequality holds:

d

dt+
W2(µ, µt) ≤

√
I(µt|Nξ). (17)

By integrating both sides of the inequality in Lemma 2 with respect to t ∈ (0,∞), the following inequality can be obtained:

W2(µt,Nξ) =

∫ ∞
0

d

dt+
W2(µt,Nξ)dt ≤

∫ ∞
0

√
I(µt|Nξ)dt. (18)

In the aforementioned inequality, we replace the Fisher information with the diffusion generator L as follows:

W2(µ,Nξ) ≤
∫ ∞

0

√
I(µt|Nξ)dt

=

∫ ∞
0

√∫
[Ptq]−1Γ(Ptq)dNξdt =

∫ ∞
0

√∫
L(− logPtq)dµtdt.

(19)

The second equality above is derived by leveraging the properties of the bilinear operator Γ ((Bakry et al., 2013; Villani,
2008)) with respect to the diffusion operator L, which is defined as follows:∫

[Ptq]
−1Γ(Ptq)dNξ = −

∫
L(logPtq)qtdNξ =

∫
L(− logPtq)dµt ≥ 0. (20)

For simplicity, we denote |g| = g+ for any g ∈ C∞0 . According to Proposition 2, we can relate Ftµ = µt to its initial term
µ = µt=0 as follows:

∫ ∞
0

√∫
L(− logPtq)(X)d[Ftµ](X)dt ≤

∫ ∞
0

√
e−2ρt

∫
L (− logPt=0q) (X)dµ(X)dt

≤
∫ ∞

0

√
e−2ρt sup

g∈C∞0

∫
L+g(Z)qdNξ(Z)dt

=

∫ ∞
0

√
e−2ρtdt

√
sup
g∈C∞0

∫
L+g(X)dµ(X)

= ρ−1K2(µ).

(21)

The second inequality is naturally induced, because the proposed objective function is defined to select the maximum
elements over the set of functions g ∈ C∞0 and Lg ≤ L+g. If the integral interval is set to (0, s), then we can induce
W2(µ,Ftµ) ≤ 1

ρ (1− e−s)K2(µ). Our diffusion-operator induces ρ = 1, which completes the proof.

Proposition. There is a scalar 0 < β <∞ dependent on ξ such that the following inequality holds:

W2(ξ,Ftµ) ≤
[√

dβλmax(Σξ) + ‖EξY ‖2

]
∨
[
e−tK2(µ) +K2(ξ)

]
. (22)

As a motivation for setting a detour measure to Nξ, we mentioned the natural property of the non-collapsing Wasserstein
distance of W2(ξ,Nξ) 6= 0. However, it is unclear from a geometric perspective exactly how the upper bound (i.e.,
W2(ξ,Nξ) ≤ ?) can be induced based on the intrinsic statistics term (i.e., ε1). Specifically, in the situation where the
covariance matrices of ξ and Nξ are identical, it is difficult to determine a theoretical upper bound without additional tools.
The first part of this proof focuses on resolving this important issue. The second part of the proof is naturally induced by
Proposition 1. Please note that in the following proposition, parameter for Wasserstein moving average is set to α = 0 for
clarity.
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Proof. Before proceeding with the first part of the proof, we define a constant β as follows:

β = sup
1≤j≤d

∫ 1

0

1

s
EYsv2

s,j(Ys)ds. (23)

If we assume a mild condition such that mins,j inf1≤j≤dO(vs,j) ≥ O(
√
s), then the integral term in β is finite and

well-defined. This value will directly yield the upper bound of the Kullback–Leibler (KL) divergence of ξ. First, we
introduce the following inequality.

Lemma 3. (de Bruijn’s identity, (Johnson & Suhov, 2001; Nourdin et al., 2014)) We let Y ∼ ξ, Z ∼ N (0, I) denote

a standard Gaussian random variable, and let define Ys =
√
sY +

√
1− sΣ

1
2

ξ Z with the score function defined as
vs(x) = ∇ log ps(x) with respect to the random variable Ys. Then, the following equality holds:

KL(ξ|N (0,Σξ)) =

∫ 1

0

Tr

(
1

2s
ΣξEps∼Ys [vs(Ys)vs(Ys)T ]

)
ds. (24)

From (24), we can derive the relations between KL-divergence and the constant β defined earlier.∫ 1

0

1

2s
Tr
(
ΣξEx[vs(Ys)vs(Ys)

T ])
)
ds ≤

∫ 1

0

1

2s
Tr
(
ΣξEx[vs,ivs,j ]

d
i,j)
)
ds

≤
∫ 1

0

1

2
λmax(Σξ)

d∑
j=1

E

[
v2
s,j(Ys)

s

]
ds ≤ 1

2
λmax

∫ 1

0

d∑
j=1

βds =
1

2
λmax(Σξ)dβ.

(25)

The second inequality holds based on the following element property of symmetric positive-definite matrices:

Tr(AB) ≤ ‖A‖opTr(B) = λmax(A)Tr(B), ∀A,B ∈ Sym+
d . (26)

It should be noted that because the distribution of ξ is compactly supported (i.e., supp(q) is compact), the maximum
eigenvalue of the covariance Σξ is finite. The other relations are induced by the aforementioned definition. Next, we relate
the KL-divergence and 2-Wasserstein distance naturally.

Definition 8. (Talagrand inequality for Gaussian measures, (Otto & Villani, 2000)) For any non-degenerate Gaussian
measure N with a mean 0, the following inequality is satisfied:

W2(ξ,N ) ≤
√

2KL(ξ|N ), ∀ξ ∈ P2(Rd). (27)

By combining Definition 8 and (25), we can derive the following expression:

W2(ξ,N (0,Σξ)) ≤
√

2KL(ξ|N (0,Σξ)) ≤
√
dβλmax(Σξ) <∞. (28)

According to the triangle inequality for the 2-Wasserstein distance, we obtain:

W2(ξ,N (mξ,Σξ)) ≤ W2(ξ,N (0,Σξ)) +W2(N (mξ,Σξ),N (0,Σξ)). (29)

We investigated that the geodesic distance between two Gaussian measures having the same covariance is equivalent to the
Euclidean distance between two means. Therefore, we can obtain the following equality:

W2(N (mξ,Σξ),N (0,Σξ)) =W2(ι
mξ

# [N (0,Σξ)],N (0,Σξ))

= ‖mξ − 0‖2 = ‖EξY ‖2 ,
(30)

where ιa(X) = X + a for any vector a ∈ supp(q). Now, by adding the two inequalities defined earlier, we can obtain

W2(ξ,N (mξ,Σξ)) ≤ ‖EξY ‖2 +
√
dβλmax(Σξ), (31)

where it is easily shown that the upper-bound is only dependent on the statistical structure of ξ. Specifically, the term
‖EξY ‖2 represents the center of mass for a density of ξ and

√
dβλmax(Σξ) is related to the covariance structure of ξ.
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By applying Proposition 6 to both Ftµ and ξ, we can easily recover (7) of the main paper as follows:

W2(ξ,Ftµ) ≤ ε =W2(ξ,N (mξ,Σξ)) +W2(N (mξ,Σξ),Ftµ)

≤
([
‖EξY ‖2 +

√
dβλmax(Σξ)

]
∧K2(ξ)

)
+ e−tK2(µ)

≤
[√

dβλmax(Σξ) + ‖EξY ‖2

]
∨
[
e−tK2(µ) +K2(ξ)

]
.

(32)

The second inequality is easily obtained as (a ∧ b) + c ≤ a ∨ (b+ c) for any a, b, c ≥ 0, which completes the proof.

Because our detour measure is Gaussian, we have the following inequality for any h ∈ C∞0 (Rd):

K̂2(µ) = lim
s→0

1

s
EX,Z∼NI

[
h
(
e−sX +

√
1− e−2s(Σ

1
2

ξ Z + mξ)
)
− h(X)

]
≤ K2(µ) (33)

where this equality holds if h is selected to induce a supremum over the set C∞0 . For approximation, we simply consider
h(X) = ‖X‖2 as a test function. In this case, the following inequality naturally holds: ε̂ = K̂2(ξ) + K̂2(Fµ) ≤
K2(ξ) +K2(Fµ) ≤ K1(ξ) ∨ (K2(ξ) +K2(Fµ)) = ε. Thus, ε̂ can be considered as an approximation of the theoretical
upper bound ε suggested in Proposition 1. Subsequently, we investigate the effects of Wasserstein normalization based on
K̂2(µ) in (33).

We explicitly introduce the detailed assumptions on µ as follows:

EFs?µ[f2]− [EFs?µ[f ]]2 ≤ (1 + η)EFs?µ[A∇fT∇f ], f ∈ C∞0 (Rd) (34)

This inequality renders the probabilistic assumptions for relating curvature-dimension condition and Wasserstein distance.
This property is core to induce the explicit concentration inequality.

Proposition. Let assume that the uncertain measure µ satisfy the inequality above. Then, there exists δ > 0 such that the
following concentration inequality for an uncertain measure holds:

µ̂
(
|σ − Eξ[σ]| ≥ δ

)
≤ 6e

−
√

2δ
3
2

K2(µ) , (35)

where σ denotes the soft-max function.

Proof. Before proceeding with the main proof, we first prove the existence of s?. The limit of the interval with respect to η
converges to a singleton {∞} as I = limη→0[ 1

η ,∞). In this case, (34) is the same as the Poincaré inequality for a Gaussian
measure Nξ, which can be written as

lim
η→0

EFs?µ[f2]− [EFs?µ[f ]]2 ≤ lim
η→0

(1 + η)EFs?µ[A∇fT∇f ]

= EFs?µ[Σξ∇fT∇f ].
(36)

While the Poincaré inequality in (36) is uniquely defined, we can find at least one value s? satisfying (34). Let X(t, w) =
Xt(w) denote the stochastic process with respect to qt(x) defined in the proof of Definition 2 of the main paper. Additionally,
let c = Eξ[σ]− EFs?µ[σ]. Then, we can obtain the following inequality:

c = Eξ[σ]− EFs?µ[σ] = κ
(
Eξ
[σ
κ

]
− EFs?µ

[σ
κ

])
≤ κ sup

g∈Lip1

(Eξg − EFs?µg)

≤ κW1(Fs?µ, ξ) ≤ κW2(Fs?µ, ξ) ≤
κK2(µ)

1 + η
.

(37)

The first inequality is induced by the assumption regarding the κ-Lipschitzness of the function σ and the second inequality
is induced by the Kantorovich-Rubinstein theorem. The third inequality is natural becauseWa(·, ·) ≤ Wb(·, ·) for any
1 ≤ a ≤ b <∞. because (34) is equivalent to the Poincaré inequality for the measure Fs?µ, it satisfies the Bakry-emery
curvature-dimension condition CD(1 + η,∞). Thus, as shown in the proof of Proposition 1 (i.e., (21)), the last inequality
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is induced. Additionally, based on the concentration inequality of Fs?µ [Proposition 4.4.2 (Bakry et al., 2013)], we can
derive the following probability inequality:

Fs?µ [σ(Xs?(w)) ≥ EFs?µ[σ] + δ] ≤ 3e
− δ√

1+ηκ , (38)

where the Poincaré constant for Fs?µ is naturally 1 + η and ‖σ‖Lip = κ. Next, we will derive the desired form from (38).
First, we introduce the following inequality.

σ(Xs?) ≥ EFs?µ[σ] + δ ≥ Eξ[σ] + δ − κ

1 + η
K2 (39)

The last inequality is directly induced by (37) because −c ≥ − κ
1+ηK2. While η, κ, and K2 are constants with respect to w,

the following set inclusion can be obtained naturally:

S1 = {w : σ(Xs?(w)) ≥ EFs?µ[σ] + δ} ⊇ {w : σ(Xs?(w)) ≥ Eξ[σ] + δ − κ

1 + η
K2} = S2. (40)

For the modified version of the original probability inequality, we take probability measure Fs?µ[·] for the sets S1,S2,
which is defined as

3e
− δ√

1+ηκ ≥ Fs?µ ({w : σ(Xs?(w)) ≥ EFs?µ[σ] + δ})

≥ Fs?µ
(
{w : σ(Xs?(w)) ≥ Eξ[σ] + δ − κ

1 + η
K2}

)
.

(41)

The concentration inequality around Eξ[σ] is obtained by combining the inequalities induced by σ and −σ as follows:

1

2
Fs?µ

 ⋃
h∈{σ,−σ}

{w : h(Xs?(w))− Eξ[h] ≥ ±
(
δ − κ

1 + η
K2}

)
= Fs?µ

(
{w : |σ(Xs?(w))− Eξ[σ]| ≥ δ − κ

1 + η
K2}

)
≤ 6e

− δ√
1+ηκ .

(42)

The inequality in (42) is the general form containing the relation between the upper bound of the probability and (η, κ,K2).
While this form is quite complicated and highly technical, we choose not to present all the detailed expressions of (42) in the
main paper. Rather than that, we re-write it in a much simplified form for clarity. Specifically, by setting κK2/(1+η) = 0.5δ
and rescaling δ to 2δ, the aforementioned inequality in (42) can be converted into the following simpler form:

Fs?µ ({w : |σ(Xs?(w))− Eξ[l]| ≥ δ) ≤ 6e−
√

2δ
3
2

κK2 . (43)

Finally, if we set σ = Softmax, then the Lipschitz constant is induced as κ = 1. This proof is completed by setting
s? := T .
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