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1. Mathematical Backgrounds
1.1. Notations

In this paper, a time-dependent system is defined on probability space (R?, F,P) with filtration F;. We assume that
generated process X; is F;-adapted for all ¢.

1.2. Assumptions
For rigorous technical results, we assume the following conditions for both generator and discriminator networks.

Assumptions for Generator Network.

« G-H1:
19, ) - fe(tay)H2 Vo(x,0) — oy, 0)|° vV Trlo(z,0) o(z,0)] < K, Vr,yeR™ (1)

e G-H2: The infinitesimal generator of the parameterized Fokker-Planck equation induces the curvature-dimension
condition: C'D(k, o0) (Villani, 2008; Bakry & Emery).

Assumptions for Discriminator Network.

« D-H1: The discriminator network is p-Lipschitz on 7, and ¢-Lipschitz on R? in a global sense:
|D(-,t1) = D(,t2)| < plts —t2|, [D(X1,-) — D(Xz,")| < q[| X1 — X (2)
forallt; #ty € T and X; # X € R%.
e D-H2: The norm of second derivatives for the discriminator network is always bounded for some value ¢:
i.e.,sup; ; |10:0; D(z, )| < gq.
1.3. Stochastic Differential Equations
In the main paper, we use the integral formulation, but it is generally written as /10’s diffusion:
dX; = fO(X,, t)dt + o(X,)dW,, 3)

where X; € R? and f : RY x U — R? is a neural network parameterized by 6.

By the Lipschitz continuity (i.e., G-H1) of both drift and diffusion functions, the solution to (3), X4, is always a Markov
process (@Pksendal, 2003).
2. Proofs

Proposition 1. (Controlled Stability of Discriminator) Let G(Xy, s) = X, be a generated sample obtained by the generator
G. For simple analysis, let us consider o(X) = o for some positive scalar ¢ > 0.! Then, the following probability

!"The result of this proposition can be easily extended to general measurable o (-), if we clarify the explicit condition on .
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inequality is satisfied:

2
P| s IDCX09) = D00 0)] 2 ¢ < 2 {0V B 1, ~ Xol +1C}: @

0<s<t

where the numerical constant C'is linearly dependent on o. In other words, C x o.

Proof. Tt is difficult to directly analyse the time-inhomogeneous Feller process, X, without appropriate and complicated
assumptions on f?. Because using a time-variable is to generate high-dimensional and complex data, we transform the
time-inhomogeneous Markov process, X, into a desirable form and analyze probabilistic properties of X;. Let X, = (X, 1)
be a time-augmented stochastic process suggested in (Bossy & Champagnat, 2010; Bottcher, 2014), it is easily shown that
the aforementioned time-augmented Markov semigroup can be defined. Let F; = o(X,; s < t) be a canonical filtration of
X;. Let 4 € P(R?) be a probability measure and define P := P*(X, € A) @ T (to € T) forall A € L(R? x T).

Theorem 1. (Bottcher, 2014) Let T = [0, C], assume that X, is a time-inhomogeneous Feller process and has right-
continuous infinitesimal generator AT. Let f € Coo(RY x T),mi 0 f € CHT),ma0 f € D(A]). Then, X, isa
time-homogeneous Feller process with generator L defined as follows:

Lf(j() :aqf(8,$)+As+f(S,$), (5)
where AT f(s,-) = 2 ¢ V2f(s,) + VT f(s,).

Based on the tools above, we reveal the impact to the probabilistic bound of perturbation according to varying magnitudes
of o in our SDE model. Let us first define the stochastic process M : R? x T — R as follows:

t
MP = D(X,) — D(Xo) — / (0u + AD)D(X ., u)du. (6)
0

This form is the time-inhomogeneous type of martingale formulation (Bossy & Champagnat, 2010) for it6’s formula over
discriminator D, i.e., E[MP|F,] = MP. In this form, the distortions induced by inhomogeneity are compensated by
differential operator ds. As M/} is martingale, one can induce the following probability inequality by applying Doob’s
maximal martingale inequality (Jksendal, 2003) to M-

1
| s 302, > o] < M) o

From (7), we can obtain the following inequality:

t
e< sup ||[MP], < sup [HD(XS,S)D(XS 0,5 =0)|l, + H/ —0uD(Xy, u)du +‘/ —AFD(X,, u)du }
0<s<t 0<s<t 0 2
S sup ||D(X975)7D(X€ 07570 ||2+ sup / ||78 D Xuau)HQdU’+ sup / HiAJrD X y U H2du
0<s<t 0<s<t 0<s<t
)

The second inequality is induced by applying Jensen’s inequality to Lebesgue measure du with convex function |||, and
the inequality sup, [A(s) + B(s) + C(s)] < sup, A(s) + sup, B(s) + sup, C(s).

1

B (2] 2 P |e< sup [MP]| > P |§ < sup 1D(X..5) - DX 0]
0< 0<s<t

+P [; < sup B(t)} +P {6

0<s<t

sup C’(t)} . )

3 7 o<s<t

By rewriting inequality above using P(A¢) = 1 — P(A),VA € X, and rescaling dummy variable ¢ — 3¢, we get

P [e < sup
0<s<t

D(XS)—D(XO)H] ;]E[HMtDH]+P[e>os<tigt3(t)}+]P’{e>os<1§;<>t0(t)]—2. (10)
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Then, we use the assumptions to remove second and third term in (10). While we assume that D is global p-Lipschitz
continuous on 7, the following inequality is induced by D-H1.

P[|D(X,t1) = D(X,t2)| < p[|(X,t1) = (X, t2)[| = plts — t2| | = 1. (11)

Let us assume € < pt. As the inequality in (11) is equivalent to |0, D|| < p iff D is p-Lipschitz continuous, the second
term in right-hand side of (10) is naturally bounded above with the following inequality because we assume that € < pt.
Subsequently, we get followings:

t t
P [ sup B(t) < e} <P [ sup / |0.D(G(Xo,u),u)|| du < sup / pdu :pt}
0<s<t 0<s<t Jo 0<s<t Jo

12)

¢
<P [ sup / 10w D( Xy, w)|| du < pt] =1.
0<s<t Jo

As our discriminator is assumed to be g-Lipschitz on data dimension, the following inequality is naturally induced. The
probability densities, P and @) induced by both dP; = p:(x)dL(x), dQ; = g(x)dL(x) for Lebesgue measure L(x) with
respect to RY, and Up g = supp(p;) U supp(g;) C RY. Based on the assumption that D(-,t) is global p-Lipschitz
continuous for any t € 7, we can induce the following set inclusion:

{w: D[G(Xo,t)(w),t] € Lip,(Upq)} C {w: D(Y(w),t) € Lipp(Rd),VY € R}, (13)

Assume that D(-,t) vanishes outside of supp(p;). Then, in probability, we can induce

P[D[G(X (w),t),t] € Lip,(supp(P))] <P [D(X,t) € Lip,(RY)] = P[[|[V:D(X,t)| < ¢] = 1, (14)
o d d
ATD(X,,s)|| < = V2?D(X,,s)|| + ViD(X,,s)|| <27 tod sup §; +q. 15
45 D09 < 33 VED(X)| + 3 ViDOXars)| < 2700d sup i+ (1s)
bounded second derivative g-Lipschitz on data space

We denote § = supg<;<, ¢; for simplicity. The following equality is naturally induced by the assumption D-H2.

P[||AfD(Xs,5)|| <27 'odj+q] =1, VO < s <t (16)
If e < 27'odg + g, this naturally induces the following probability inequality:

t
P [ sup C(t) < e] <P [ sup / |AF D(Xy,w)|| du < (27 odg + g)t| = 1. (17)
0

0<s<t 0<s<t

Lemma 1. The discriminator network D is 2(p V q)-Lipschitz on R% x T.

Proof. The proof is trivial by the triangle inequality.

|D(X1,t1) — D(Xa,t2)| < [D(X1,t1) — D(X1,t2)| + |[D(X1,t2) — D(Xa,t2)]
<plty —ta] + ¢ X1 — X (18)
<2(pVq) [ty — to] + | X1 = Xof] = 2(p V @) (X1, 1) — (X2, )] -

By integrating inequalities in (17) and (12) into (10), we can obtain the following inequality:

IN

B[ sup ID(X,,5) = D(Xo,0)] > ]

0<s<t

1 1 R
3 [[[aP]]] < §{E ID(X,t) = D(Xo,0)|| + ¢ [p+q + 27 odq] }

IA

2 .
A PVOEIX - Xoll+t 20V @) + 47 0dd] |,

19)
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where € = [p A (270dg + q)]t. The second inequality induced by the fact that D is global 2(p V q)-Lipschitz continuous
by Lemma 1, and the metric on R? x 7 can be decomposed into metrics on R? and 7.

IE[D(X,,t) = D(Xo, 0)l| < EID(Xi,t) = D(Xo,0)[| < 20V )E || X1 = Xo| < 2(0v ) (B|1Xe — Xol| +1). 20)

The proof is completed by setting C (p, q,0,d, HVQDH) =2(pV q) + 47 todq. Please note that this numerical constant is
linearly dependent on o. U

Proposition 2. (Controlled Stability of Wasserstein distance) Let us define the spatial-temporal gradient operator as
V.t = Vg + 04 Then, the expectation norm of the spatial-temporal gradient for the conditional distance is bounded as
follows:

E[||Veave®ila. @) <€+ (v a1 +e @

for some numerical constants k,C' > 0.

Proof. The left-hand side of inequality in (21) can be divided into two terms as follows:

E [H%,twvm\x, Q)

| S ENVWe@ila, @)l + [0V (Pif, Q)] (22)
First, We investigate the first term of right-hand side in (22):
E, |[VW? (Bilz, Q)| = / |V M,D?(2,0) — VEy,~q, D?(Y;, t)]| dBo(x) < / ¢, M, (|[VD(x)])) dBo(x)

. / IV Du| (2)p(t, 410, 2)po(x)dL(z) = ¢ / IV Dy || dB, = e < E[|VD(X,)]] @
<e g

The first inequality is induced by the assumption G-H2 on curvature-dimension condition C'D(k, 00) of our parameterized
Fokker-Planck equation. By the spatial constraints assumption D-H2, The last inequality is induced as |VD|| < g,
dP;(x)-almost surely. Subsequently, we investigate the second term of right-hand side in (22):

E, [0V (Pilz, Q)| = / 10:0: D% (z,0) — By, ~, D? (Y2, 1) dPo(, 0)
- / M, LD# (3,0) — E [8,D%(Y;, )] | dPo(x)
g/HMtLD“"(x,O)IId]P’o(x)+/E[||3tDW(Yt,t)||]dPO(I) 24)
< /Mt [||atD(x,t)|| + %d sup g; + IIVD(X)I@ dPo ()
02itd

=p+5d sup G +E|[VD(X,)| < p+q+27"0ds.
2 o<i<d
The first inequality is induced by the dual identity of Fokker-Planck equation: 9, M, f = M, L f for Markovian generator L,
and we use the fact that O;E f (z,t) = Ed; f (z, t) for bounded and second differentiable f(x,t). The second inequality is
induced by dividing L defined in Theorem 1 into two terms. The third equality holds as E,, M, [|[VD(Xy)| = E||VD(X,)|,
which is bounded above g almost surely. Combining these results, it is easy to see that the following inequality is satisfied:
27todj+p+ (1+e")g <2 todi+ (pV q)(1+ e ") where C = 27 odg. By the fact that [ e **dt < 1= the
proof is completed. O

Proposition 3. Let V* be the function defined above, and x, & be two initial states such that P, = hy[Py]. If the generator
solves the regularization term in (25), such that

min Ex,p, 28,V (0, X1, Z1) =0, (25)
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the following inequality holds:

Wa(Pe, Pr) < (/A + e by, o), (26)

where |||y, ) denotes La-norm over probability measure P, for some A > 0.

Proof. Assume that the function V* vanishes for some for some fixed x, 3 and parameter 6*. That is, V*(6*, z,y) := 0. In
this case, (25) indicates the following inequality:

@ =) VI aiay| @ =) < Ao —y) Iz —y), 27)

where we simply denote V f" = V. f(8*, z,t) for the fixed ¢. The drift function satisfying the inequality above is called
contraction function. By the Theorem 2 (Pham et al., 2009), this property gives powerful stochastic contraction for processes
X7, X7 starting at different initial states  ~ p,y ~ v. In particular, any diffusion Markov process of which drift functions
satisfy inequality in (27) can induce the following property:

K _
BIXE - XY < e [ e =il do ), @8)

where A = supp(p0) Usupp(vg) C R% Let us consider & = x + h(z) for some measurable h. As the optimal transport
between P¥, PY always exists, which is denoted as 7; Y, inducing the followings are straightforward.

We consider the system of SDEs consist of trained drift, diffusion functions f(6*), ando(6*) with different initial states.

dX; = (0%, Xy, 1) + o(X)dW} 29)
dX, = (6%, Xy, 1) 4+ o( X, )dW?

with 1.i.d Wiener processes th, W2, In this case, it is easy to see that Z; = (X, Xt) is also a Markov process on R? x R
We define +(Z;) = d?(Xy, X;) for the Euclidean metric d on R and define IT as an optimal transport between initial state
measures p and v. Expectation of Markov semi-group M;¢ over 7 yields followings:

Mudi = [ Bz = ()i = [ B[00 X020, Ko) = (o.9)] dil(a.)

A2 A2 A2
30
K —2Xt K —2Xt 272 K —2Xt 2 G0
< 3T UZo)d(p @ v)dll(z,y) = 3T Wi (p,v) = 3T IRl -
A2 JA
Iy = E..np(t, 2, ) denotes a push forward of II through transition kernel. Then, for the any Z;,
WE(PF~H PRI = iﬁlf/L(Zt)dHt(Zt) < /Ldrt. (31
By combining two inequalities above and the fact that Eyj[M;:] = Er,[t], we can conclude that Wy (P¥ P%) <
_ 2 _
\/§ + e |[R|7, ). Where A = KA,
O
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