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Abstract

In this paper, we present a novel generative adver-
sarial network (GAN) that can describe Marko-
vian temporal dynamics. To generate stochastic
sequential data, we introduce a novel stochastic
differential equation-based conditional generator
and spatial-temporal constrained discriminator
networks. To stabilize the learning dynamics of
the min-max type of the GAN objective function,
we propose well-posed constraint terms for both
networks. We also propose a novel conditional
Markov Wasserstein distance to induce a pathwise
Wasserstein distance. The experimental results
demonstrate that our method outperforms state-
of-the-art methods using several different types
of data.

1. Introduction

Recently, research has been actively conducted to synthesize
realistic dynamical data, which are ubiquitous and natural in
real-world scenes. To develop generative methods for time-
sequential data, the following important question should
be posed: How can we accurately model fake probability
distributions to represent time-varying real distributions?

To describe the probabilistic sequences of time-sequential
data, conventional methods typically adopt model-based ap-
proaches that generate discrete-time temporal states. These
approaches have widely employed recurrent neural networks
to generate samples (X1, - - - , X,,), in which the conditional
distribution, p(X,,| Xx<n), is dependent on black-box types
of dynamics induced by the recurrent networks. In this pa-
per, we propose an alternative method that utilizes stochas-
tic differential equations (SDEs) as probabilistic models to
generate continuous time-sequential data, X;, according to
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probability distribution X; ~ p;, which has the following
formulation:

dX? = f( X4, t,0)dt + X( X4, 0)dWy,  x ~ pi—g, (1)
where the first term propagates particles X; according to
drift function f(-, ¢, ) with parameters 6, and the second
term imposes randomness on the evolution paths of X,
using Wiener process W, and diffusion function 3. Then,
the combination of these two terms can explicitly render
probabilistic flows of data. Utilizing SDEs for generating
time-sequential data in our method has two advantages: it
ensures the generation of Markovian temporal dynamics
and stochastic/continuous sample paths.

(Model-based Temporal Dynamics — Markovian Tem-
poral Dynamics) Key to generating stochastic sequential
data is estimating an accurate conditional density, p(X;|X5),
which can describe complex dynamics over temporal transi-
tions. For this, recurrent networks (i.e., model-based)(Yoon
et al., 2019; Yingzhen & Mandt, 2018) have been used to
define the conditional distribution, p(X,|X<,). !, for accu-
rate time-sequential data generation. In contrast to model-
based approaches, our proposed method adopts stochastic
dynamics to define a conditional probability by introducing
a continuous Markov transition from X, to X, in which
the solution to (1), X4, is inherently a continuous Markov
process. In particular, let p(z, t|y, s) be a transition kernel?
that transitions spatial states y to x given a time interval
from s to t. Specifically, SDEs in (1) induce a unique form
of partial differential equations (PDES) (i.e., Fokker-Planck
equations) in a distributional sense, which proposes an evo-
lution rule for probability distribution p, at temporal state ¢:

atp(xa t|97 8)

1 2)
where the initial condition is x = X§ ~ pg. The mathemati-
cal characteristics of PDEs in (2) provide strong advantages
in the development of time-sequence generative models.

!To distinguish between the notations, we use n, k € N* for
discrete processes, and ¢, s € R™ for continuous processes.

2The transition kernel exists because X is Markovian given
an initial state x.
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The solution to this PDE can be more accurately specified
than arbitrary solutions in an infinite-dimensional space of
probability distributions p, over time, because any distribu-
tional flow ps — p; from temporal states s to ¢, induced by
the Fokker-Planck equations, is controlled by the parame-
terized drift and diffusion functions (i.e., fi(x, ), 2(-, 6)).
Owing to the specified dynamical formulation of p;, our
method requires a relatively small number of parameters, 6,
to search for the optimal solution of probabilistic flows. For
example, the proposed stochastic dynamics in (1) only uses
approximately 1.50/ parameters in total, whereas model-
based approaches typically require a large number of param-
eters (= 3.5 ~ 100M) to search large probability distribu-
tion spaces. Moreover, our method, in which the transition
dynamics between p; to ps implicitly stem from SDEs, does
not introduce additional constraint terms on the conditional
distribution to relate X; and X.

(Deterministic/Discrete — Stochastic/Continuous Sam-
ple Path) Conventional methods typically deal with se-
quential data in a conditional order, whereby data are
represented as d-dimensional state vectors X (n) =
[X1(n), -+, Xq(n)]. In this setting, sequential data are
described by a concatenation of the state vectors, X (n),
over 1" times along discrete and deterministic sample paths
(e,n e NT, 1 <n<T,and X7 € R, Thus, exist-
ing methods (Tulyakov et al., 2018; Esteban et al., 2017)
cannot describe random changes in state vectors for a par-
ticular time interval, because probabilistic information on
state vectors over temporal-paths is easily lost owing to the
concatenation of state vectors. Given a random latent vector,
conventional methods generate samples in a deterministic
conditional order and cannot accurately describe stochas-
tic variations over temporal paths. In addition, owing to
the characteristics of model-based approaches, continuous
states between X (n — k) and X (n) cannot be generated
for a finite time interval k < n € N, because generator
networks are typically implemented using recurrent network
models, inducing discrete-time stochastic processes X (n).
In contrast, our proposed method can generate continuous
samples X in a stochastic conditional order.

(Contributions & Novelty) Based on the SDEs in (1), our
proposed method generates continuous stochastic dynami-
cal flows for a given initial probability distribution pg, which
approximates time sequential real-data distributions ¢;. In
particular, our method aims to minimize the statistical dis-
crepancy (i.e., Wasserstein distance, V) between p; and ¢;:

minW(pe @), Xe~p, YO<St<T.  (3)
Pt

To solve (3), we introduce a novel generative adversarial net-
work (GAN) based on a Wasserstein-type of statistical dis-
crepancy. This minimization problem appears to be straight-
forward, but there are practical and theoretical issues that
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Figure 1. Conceptual illustration of the proposed method. The
fake distribution, p, is learned to minimize the Wasserstein dis-
tance, W(pt, g+ ), according to the real distribution, ¢;. The fake
distribution p; is evolved based on the Fokker-Planck equation
in (2) with respect to Markov transition density p(z, t|y, s), which
propagates distributions pop — ps<+ — Pt, as shown in the figure.

need to be addressed.

o The stability and generalization of the proposed generative
model is highly dependent on the behavior of the two terms
in (1). As stochastic sample X, is evolved by the stochastic
dynamics, drift and diffusion functions without well-posed
regularization inevitably induce unstable learning of the
min-max types of GAN objectives and over-fitting problems.
Thus, well-posed regularization terms should be imposed for
both networks to avoid over-parameterization and unstable
learning.

e X, is Markovian, and its conditional dependence accord-
ing to initial state X is implicitly given. However, the
primitive objective function in (3) is fundamentally flawed
because the Markov property is not included in the objec-
tive; thus, it is unable to explicitly describe the conditional
dependence of X and X; in (3). To analyze the proposed
dynamical system rigorously, we propose a Markov-type of
Wasserstein distance, which uses the property of Markov
process X; to make the stochastic dependence explicitly.

To solve the aforementioned issues and generate high-
quality time-sequential data, we present the following:

1. We present a novel stochastic dynamical GAN (Section
3.2), which can generate stochastic continuous data.

2. We introduce a novel SDE-based conditional gener-
ator (Section 3.3) and a spatial-temporal constrained
discriminator (Section 3.4) to deal with stochastic se-
quential data. To stabilize the learning dynamics of the
min-max types of GAN objective functions, we pro-
pose well-posed regularization terms for both networks.

3. We propose a novel temporal-adaptive Wasserstein
distance (Section 3.5) to induce a pathwise distance.
The theoretical results support the stabilization of this
newly proposed distance.

Fig.1 illustrates the basic idea of our method.
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2. Related Work

(Model-based Methods) Time-sequential data were gen-
erated using GANs by (Tulyakov et al., 2018). However,
this method required two different discriminator networks
to classify spatial and temporal dependencies separately,
because conditional dependency over temporal paths is not
considered in the generative model. To induce accurate tem-
poral dependency, a model-based approach that can approx-
imate conditional dependencies (e.g., RNN) was proposed
in (Yingzhen & Mandt, 2018). Recently, causal optimal
transport, which imposes constraints on transport plans, was
introduced by (Xu et al., 2020) to induce independence of
real samples given generated samples.

(Dynamics-based Methods) Dynamical systems (Yildiz
et al., 2019) have been proposed, in which continuous prob-
ability densities were evolved using the second-order ODEs.
However, because of the deterministic characteristics of the
sample paths governed by ODE:s, they could not accurately
generate diverse samples over temporal paths, even though
their Bayesian neural network restrictively described the
randomness of sample dynamics. In contrast, our method di-
rectly implements stochastic models based on SDEs, which
can be considered a stochastic version of the dynamical
systems in (Yildiz et al., 2019). It should be noted that our
method is equivalent to the deterministic model with the
first order method proposed by (Yildiz et al., 2019) if we set
3 to 0in (1). Fig.2 depicts the differences between the SDE-
and ODE-based approaches. A dynamical system based on
SDEs can stochastically represent data.

3. Stochastic Dynamical GANs
3.1. Mathematical Notations

Let (Q,F, F;,P) be a complete and filtered probability
space on which a d-dimensional Wiener process W, is de-
fined such that {F;>¢} is the natural filtration according to
W, augmented by P-null sets. In this paper, the real and
fake probability measures are absolutely continuous with
Lebesgue measure £ on data space R?. In other words,
we assume that probability densities p; and ¢; exist such
that dP; = py(x)dL(z) and dQ; = ¢;(z)dL(x). The push-
forward operation is defined as f4«[P](4) = P(f~1(A))
for some set A C R? with probability measure P and
measurable function f. For simplicity, we will denote
max(a,b) = a V band [c]+ = max(c,O0).

3.2. Problem Formulation

The conventional objective of learning WGAN (Arjovsky
etal., 2017) is to find a generator network that minimizes the
1-Wasserstein distance between real (Q and fake distributions

P as follows:

inf Wi (P, Q) = iIGlf supEpD(X) —EgD(Y)
D
= inf sup E; [D? (G°(Z))] — EqD?(Y),
“)

where GG and D denote the generator and the 1-Lipschitzian
discriminator network parameterized by 6 and ¢, respec-
tively. This type of conventional generator takes a Gaus-
sian random variable Z as input and is trained to produce
a random variable as output, which is distributed by P?,
ie.,G%Z) ~ PP Thus, the generated samples, G(Z),
represent random objects only for a fixed time.

In contrast to conventional methods, our goal is to find
the best temporally evolving fake probability measure, P¢,
which is parameterized by neural networks with parameters
6. In particular, we aim to find a generator G?( X, ¢) that
minimizes Wasserstein distance V) between Q; and PY over
t time sequences:

T
ajn [ W (G40 @) T()
T ®)
—min [ W (21, Q:) T(ar),
0

where P/ = Gg’# (+,t) [Po] denotes the push-forward of Py
using generator G?(-, ). In (5), time sequence measure 7" is
defined as T'(dt) = ), o7 0, (dt) for a strictly ordered set
T = {t;}, where t; < t; foralli < j, withmaxt; = T and
Dirac-delta function 6. We denote |7 | as the number of time
steps in 7. Thus, if we assume | 7| — oo, it approximates
the time sequence entirely on R

G? in (5) forces our fake stochastic process X; to follow
the real stochastic process Y; ~ Q.

/GG(XS,t)d]P’S = /XtdIP’t A /Ytth, vt >s, (6)

where equality holds by the definition of the push-forward
operation. We assume that the initial distributions of real
and fake data are identical, i.e., Qy = Py. If we find the
best probability measure, P/ well describes the real data
distribution, Q;.

3.3. SDE-based Conditional Generator

To generate time-sequential data X, given the initial value
Xy, we introduce a novel conditional generator G? : R% x
T — RZ. As an equivalent integral formulation of the SDE
in (1), we can implement the proposed generator using the
following formulation:

t t

GO (Xo,t) = X, = X0+/ f(XS,s,Q)ds—i—/ (X, 0)dW,,
0 0

)
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Figure 2. Contributions of our stochastic diffusion term. Our
sample paths driven by SDEs can be represented stochastically
(i.e., blue lines). In contrast, conventional samples driven by ODEs
are deterministic over temporal paths (i.e., black lines).

where f denotes a twice differentiable function parameter-
ized by neural network parameters 6, f : R x T x R™ —
R?, and W; denotes a d-dimensional Wiener process. Then,
G?(Xy,t) in (7) is interpreted as a conditional generator
summed over time ¢ with stochastic noise W and temporal
conditional code s. In particular, G(Xy,t) can generate
stochastic sample paths by gradually transforming X to
X; using the stochastic dynamics defined in (7). If there are
infinitesimal time changes Ag & 0 such that |t — s| = A,
we can rewrite (7) as an approximated recursive formulation.

GV (X4 t) = X! ~ X+ [(Xs, 5,0) As+3(Xs, 0) /AL Z,

®)
where small changes in f (s, -) Ay and a d-dimensional Gaus-
sian random variable with small variance /A, are added to
generate X7 attime t = s + A,. As the Gaussian random
variable with small variance is added to every sample path to
render infinitesimal random changes of objects, probability
measures P; can be defined at every continuous time ¢ > 0.

3.4. Spatial-Temporal Constrained Discriminator

To discriminate between time-varying random objects X,
produced by our generator G?( X, t) in (7), the proposed
discriminator takes an additional random variable ¢ as
an input. In particular, our discriminator is defined as
a neural network D¥(X;,t) parameterized by ¢, where
D¥ : RY x T — R. Similar to the generator, D¥(X,,t)
can be considered a conditional discriminator, in which the
conditional code is set to a temporal state ¢.

To guarantee the stability of discriminators based on the min-
max type of GAN objective functions, conventional vanilla
GANS typically impose Lipschitz constraints on discrim-
inator networks. For example, WGAN-LP (Petzka et al.,
2018) adopts the p-Lipschitzness of discriminators to sat-
isfy assumptions on the Kantorovich duality. In contrast,
our discriminator takes two random variables (X¢,¢) and
needs to classify the time-evolving samples produced by
SDE-based generators. Thus, it is quite challenging to make
our discriminator more stable than vanilla GANs. Therefore,

we introduce two Lipschitz constraints on the spatial (R%)
and temporal (7)) domains as follows.
(Spatial Lipschitzness):
ID?(X,) = D?(Y,))| <q[|X = Y|, VX #Y € R™.
©))
(Temporal Lipschitzness):
|D¥(-,t) — D¥(-,8)| <plt—s|, VE#seT. (10)

If our discriminator satisfies the two conditions in (9) and
(10), we denote D¥ € Lip;.

To impose spatial-temporal constraints, we propose the fol-
lowing objective for the discriminator network:

W(%p, Q) =Ex,vt,s { (D“’(-,L}))f : iwh s)) vV

(P o]

foranyt # s € T,X #Y € R% In (11), spatial-temporal
constraints on our discriminator network enable stable learn-
ing to reduce undesired temporal perturbation induced by
generated stochastic samples X.

To investigate the effect of constraint terms explicitly from a
probabilistic point of view, we present the following propo-
sition, which demonstrates that the probability for maximal
perturbations in our discriminator is bounded by three major
factors: spatial-temporal Lipschitz constants (p, ¢), diffu-
sion terms Y, and the norm of the Hessian matrix for our
discriminator network, ||V2D® H )

Proposition 1. (Controlled Stability of the Discriminator)
Let X, = GY(Xo, s) be a stochastic sample generated by
(7), where T denotes the maximal element in T € T. Then,
the following probability inequality is satisfied:

P [ sup ||D¥(Xs,s) — D¥(Xo,0)|| > ¢

0<s<T
2
< {pVoEIXr - Xol| + TC} (12)

where a numerical constant C'is linearly dependent on ¥
and ||V2D?|| (i.e.,C < %, || V2D#|)).

The proof of Proposition 1 can be naturally derived from
the martingale property and It6’s lemma of Markov process
X, governed by the dynamics in (7). According to the
Proposition 1, the upper bound in (12) is controlled by the
sum of the following three terms:

(pvqg) + TE + T|VD?||, (13)
~~ ——

Lipschitz Constraints  Stochastic variance Hessian norm

where Lipschitz constraints (p, ¢) are not dependent on time
variables, and the second term is related to the expressivity
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Algorithm 1 SD-GANs

Require: Neural networks f, D with initial weights 6, @0, respectively. Hyperparameters A = 10 3 and p V g = 1.

for £ = 1 to K (i.e., the total number of training iterations) do

1) Generate Markovian temporal samples using SDEs in (7) : X; = fot fds + fot XdWs
2) Calculate gradients for the GAN objective of the generator network in (18) with the SC-regularization term in (20):

Vg = Vo [IEX%;QVA (ek, X, Xt) + EIN]PUW('Qk (Pfk |, Qt)]
3) Calculate gradients for the GAN objective of the discriminator network in (18) with the ST-constraint term in (11):

k k
Ve =V, [W(¢k7p7 q) = Eqnp, W7 (Pf Iw,Qt)]
4) Calculate the temporal expectation of gradients:
Vi + Eier [Vé], Vi Eier [pr]
5) Update the generator and discriminator networks
0k+1 _ 0k _ v19€7 SDk+1 — SDk _ vi
end for

of our generator. Implementing only the spatial constraint
is not sufficient for the complete control of the stability
of discriminator outputs, as the probabilistic upper bound
is also related to the perturbations of the temporal axis
(i.e.,q). Thus, without the control term over the temporal
axis of D?(x,t), the proposed dynamical system has the
potential risk of failing to learn the GAN objective, while
q is not bounded. To stabilize the discriminator network
against temporal perturbation, we impose constraints to
satisfy pV qg = 1.

3.5. Conditional Markov Wasserstein Distance

Because real and fake samples depend on probability mea-
sures with different sample paths, we need to induce a tem-
poral pathwise Wasserstein distance between IP; and Q; for
t € T. To this end, we present a novel conditional Wasser-
stein distance’ with fake stochastic samples P, ~ X, started
at Py ~ X = = € R%, and real samples Q; ~ Y;:

W (Py|z, Q) = My D¥(z,0) — Ey,~q,D¥(Y2,t), (14)

where M, denotes a Markov semi-group and is defined as
follows:

M,D?(z) = E[D?(Xy,1)|Xo = a]. (15)

Then, based on the Markov property, a dual semi-group M,
exists such that the following equality holds:

/ M,D¥ (z,0)dPy — / D¥ (2, 0)d(M:Po) ()
— [ Do tltsls =0 0im(a)it@)  (16)

= /D“"(Xt,t)dIPt.

The conditional formulation of the Wasserstein distance
in (14) reveals the relation between the SDE in (1) and the

SW(P|2, Q) is not a true distance on P, (R?). Instead, it is a
real-valued measurable function W(P; |z, Q:) : RY — R.

Fokker-Planck equation in (2), where the transition density
according to the solution of the Fokker-Planck equation,
p(+, -0, z), is explicitly used to define the expectation of the
Markov-semi-group in (16).

Using equality in (16), we can obtain Ep, ., [M;D¥ (x,0)]
= E[D¥ (X, s)] for any s < ¢, which means that the ex-
pectation of the proposed conditional Wasserstein distance
W(P?|x, Q;) in (14) with respect to the initial distribution
is equivalent to a conventional Wasserstein distance.

sup Epp,W (PY)2,Q5) = W(PY,Q,).  (17)
DeLip}

Using the proposed conditional Markov Wasserstein dis-
tance in (14), our objective function 7 is defined as follows:

min max J (6, @)
o ¢

t (18)
= ir{}f/ sup Ep, . W?¥ (Pg\x, Q) dT'(s).
0 ¢

Proposition 2. Let the objective function in (18) be solved
by (G*, D*) with parameters (0*, ©*). Then, (G*, D*) also
solves the minimization problem in (5).

Proposition 2 indicates that we can generate a fake prob-
ability measure P; to imitate real probability measure Q;
using the proposed SDE-based generator and our condi-
tional Markov Wasserstein distance. The overall procedure
for the proposed method is summarized in Algorithm 1.

In the previous section, we investigated the probabilistic
perturbation bounds of the discriminator network according
to the bounded ST-constraints. The next proposition demon-
strates the effect of the ST-constraints on our conditional
Wasserstein distance in (14).

Proposition 3. (Controlled Stability of the Wasserstein dis-
tance) Let us define the spatial-temporal gradient operator
as @m = V. + 0. Then, the expectation norm of the
spatial-temporal gradient for conditional distance (14), is
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bounded as follows:

1+k—erT

Em,t [H@x,tww(]}»tm,(@t)

J<c+ova
(19)
for some numerical constants x,C > Q.

The conditional formulation of the Wasserstein distance
in (14) is vital for calculating the Kantorovich dual formu-
lation (i.e., the min-max GAN objective), and the stability
of this term should be ensured during training. Stabilized
training can be induced as the gradient is being forced to lie
within the proposed ST-constraints.

4. Generalization to Out-of-Distribution Data

Let us consider a tuple (Q, Qf) where Q, and Q; indicate
probability measures for training and out-of-distribution
(OOD) datasets, respectively. Let us assume that generator
G?(-,t) is trained to represent Q; by solving the objective
in (18). In this section, we aim to answer the following
important question: Can our generator G°(&,t) preserve
the dynamics of generated samples with different initial
states T ~ QO ?

In other words, we want to investigate the effect of the
Wasserstein distance between PP, and the newly propagated
distribution IP’t given a different initial state & ~ QO (i.e.,
out-of-distribution), W (P, ]P’t). In particular, if initial state
distribution QO is arbitrary, then the distance is not con-
trolled during the test time; thus, we cannot ensure that
the generated images are semantically consistent with the
original samples.

In this section, to suppress the semantic inconsistency during
the test time, we introduce a novel stochastic contraction
(SC)-constraint term on the generator network as follows.

VA0, z, ) =

E.y {(x — )7 [V flaws (1—ayy + M] (@ — ac)} .o

where « is sampled from uniform distribution U on [0, 1],
and A > 0 is a hyperparameter. The following proposi-
tion shows that semantic inconsistency is controlled if the
generator minimizes V*:

Proposition 4. Let V' be the function defined above, and
x, & be two initial states such that Py = hy[P;]. Assume
that the generator satisfies the following constraint term:

rngin]EXtN]PhXtNﬂa,tV)‘(@,Xt,Xt) =0. (D

Then, the following inequality holds:

Wa(Pe,Be) < \ KA +e T [0, @22

where ||-||y,, ) denotes Ly-norm over probability measure
P for some numerical constant K > 0.

The proposition is a direct consequence of Theorem 2 (Pham
et al., 2009). Moreover, we can obtain the super-martingale
inequality:

(supHXt XtH > e> < KA1 ‘ATHXO Al
teT

(23)
Both inequalities in (22) (in terms of distributional metric)
and (23) (in terms of probabilistic concentration) indicate
that generated samples X, with different initial states are
forced to be similar to X; with the bounded exponential
ratio.

We trained our generator network G to minimize the reg-
ularization term in (21) for semantic consistency. For the
numerical investigation of the generator representation with
out-of-distribution initial states, we provide three examples.

(1) Noise Robustness. Let us assume that h(z) = = + Z,
where Z ~ N(0, I;) makes an initial state distorted by
Gaussian random noise. Let " = 1 and K = X for con-
venience. In this case, E[||h — Id|*] = E||Z||> = d, and
the upper bound in (22) is induced as v/1 + e—2*td, which
shows that although the initial distribution Qg is perturbed
by Gaussian noise, the Wasserstein distance is not widely
distorted. By considering the bounded Wasserstein distance,
one can expect that generated samples PP, will be similar to
clean images IP; for a large ¢. Fig.4 (second row) shows the
generated samples from the initial state with injected Gaus-
sian noise. Artifacts are gradually removed as ¢ increases,
which demonstrates the effectiveness of the proposed regu-
larizer. Contrary to our method, the generated samples from
the ODE-based method in Fig.4 (first row) show that the
injected noise in the initial state is still propagated by the
dynamics.

(2) Fashion-MNIST. Let 3y ~ Qg be an initial state mea-
sure, in which random variable ¥ indicates the samples from
Fashion-MNIST. Fig.5 shows that the proposed method
learns dynamic transitions of image rotations, although the
initial state is sampled from unseen datasets. Specifically,
the global structure of each object is preserved, and we can
observe the image dynamics (e.g., rotation).

(3) Temporal Interpolation. Let us assume that the objec-
tive function in (18) is defined on discrete time intervals
T = {to, - ,tr}, where real data distribution Y; ~ ¢
indicates the sequence of video data for a finite time ¢ € 7.
As mentioned in Section 1, the proposed dynamical system
generates a stochastic process X; over a continuous tempo-
ral path t € R™. Thus, the following question can be asked:
Can we generate stochastic samples given another time set
T with the generator originally trained on T ?

To answer this question, we define a new time set 7; such

that T = To C T1--- C Ty, where T; i is defined recur-

t t! t t
sively as follows: Ti+1 = { . 0;’ Lot ;2,--- ,tlT},




Generative Adversarial Networks for Markovian Temporal Dynamics

iiiiH%iH%%%%%%%%%%%%%%%%%%%%%%%

Figure 3. (Temporal interpolation) To learn GANs, we only used samples from X<+ (highlighted in blue). Owing to the continuity of
the proposed method, we can also generate every finite unseen stochastic sample X, 4 - (highlighted in red).
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Figure 4. (Noise Robustness). For the generative model trained
on the Rot-MNIST dataset, the Gaussian noise is added to the
initial state distribution. The upper and bottom figures show gener-
ated samples from ODE2VAE (Yildiz et al., 2019) and SD-GAN,
respectively.
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Figure 5. (OOD sample generation) For trained generator G’
with the Rot-MNIST dataset, the upper figure indicates generated
samples X? with an initial measure on the test dataset (blue box).
We switched the initial measure to y ~ Qg, where y indicates
samples from Fashion-MNIST (red box).

and T; = {t§---t%}. Thus, a total number of time inter-

vals of T} is 2!-times larger than the original time set 7. The
generated images, highlighted in blue in Fig.3 indicate that
the images are sampled from the original temporal states
T, {G(-,t)}ser for learned generator G?. The images
highlighted in red indicate temporally interpolated samples
{GY(., t)};e7; 7 As shown in Fig.3, samples can be tem-
porally interpolated via smooth 2D image transitions, which
verifies that our generator network can learn the stochas-
tic dynamics of images with a relatively small number of
temporal states.

Figure 6. Generated samples for the Sprite Animation dataset.

5. Experiments
5.1. Implementation Details

(Generator Network) Conventional generative mod-
els (Tulyakov et al., 2018; Xu et al., 2020; Yingzhen &
Mandt, 2018) for time-sequential data typically use generic
LSTM layers to encode conditional temporal transitions for
a sequence of frames. In contrast, our generator network
consists of two functions (i.e., the drift function f and dif-
fusion function ¥ in (7)) with general convolutional layers.
The drift function was implemented as a four-layer convo-
lutional network, where temporal information ¢ was fused
into each convolutional layer through adaptive instance nor-
malization. The diffusion function was implemented as
a one-layer convolutional network. We implemented the
numerical SDE-solver presented in (Li et al., 2020) to simu-
late the stochastic processes using the aforementioned two
functions.

(Discriminator Network) To encode the temporal informa-
tion of the time-sequential data, input data were augmented
using the temporal bases of the Hilbert space H(L(t)). For
example, our discriminator network takes an input in the
form of X = (X, ®!, ®2), where ®(t) = sin (Zt). Thus,
in the case of 2D image data, temporal-augmented inputs
have dimensions of (C' + 2) x H x W. We designed the
discriminator network, which has a similar architecture to
that of PatchGAN (Isola et al., 2017). However, the convo-
lutional filters were smaller than those used in PatchGAN.
Please refer to the supplementary materials for detailed ar-
chitectures and hyperparameters settings.
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Table 1. Image quality evaluation using various datasets. The best results are boldfaced.

‘ Sprites Animation Human Actions  Rot-MNIST

Methods | FID KID

| ID KID | FID KID

MoCoGAN, #3.5M | 2.65 2.81
DisVAE, #162M | 1.48 1.76
ODE?VAE, #1.3M | 0.77 0.63
COT-GAN, 0.81 0.79

2.42 1.95 - -
3.08 3.26 — —
3.52 3.86 0.44 0.25
1.65 1.01 — —

SD-GAN, #1.5M | 0.35 037

0.88 0.83 0.31 0.22

B I I I I e P P P P 2

Figure 7. (Human action videos) The top, middle, and bottom rows show real data samples, generated samples from SD-GAN, and

samples from MoCoGAN, respectively.

5.2. Qualitative Evaluation

(Rot-MNIST) Similar to (Yildiz et al., 2019), we conducted
experiments on the MNIST dataset with temporal dynamics
for image rotation. For example, the dataset is represented
as ¢ ~ Y: = Ry, Y, for rotation matrix Ry, with angle
0; with {0;} = {6 = 0,--- ,07 = T}. The total length
of the sequences was set to 7' = 16. As shown in Fig.5,
the samples generated by our generator network exhibited
smooth changes in each digit, and the image styles were not
fixed during the transformation.

(Human Actions) We trained our method on a human ac-
tion video dataset (Gorelick et al., 2007). For data prepos-
sessing, we followed the settings presented in (Tulyakov
etal., 2018). In particular, we normalized each video to have
T = 16 sequences as the maximal length, because different
videos had inconsistent lengths. 72 videos were used to
train the GANs. Each frame of the videos had dimensions
of 3 x 64 x 64. As shown in Fig.7, the proposed method
produced smooth and realistic transitions for the frames,
whereas previous methods (Tulyakov et al., 2018) produced
blurry artifacts in frames.

(LPC-Sprite Animations) We trained our method on the
LPC-Sprite dataset with animated cartoon characters, in
which the visual styles for clothing and hairstyles can be
controlled. The dataset was obtained from an open-source

project page*. For more challenging tasks, we chose approx-
imately 13K unique characters, which is a larger number
than the original settings in (Yingzhen & Mandt, 2018) (i.e.,
1K). Each generated data had 7' = 8 sequences of frames
with dimensions of 3 X 64 x 64. Fig.6 shows that the gener-
ated samples appear realistic and represent various temporal
dynamics.

5.3. Quantitative Evaluation

To evaluate time sequential 2D image data, we used the
Fréchet Inception distance (FID) (Heusel et al., 2017) and
Kernel Inception distance (KID) (Bifkowski et al., 2018) as
evaluation metrics. To evaluate the time sequential data with
these metrics, we estimated the scores using 5000 generated
images. In Table 4, the FID and KID scores were multiplied
by 10~2 and 10*, respectively. For comparison, we chose
state-of-the-art temporal data generation methods, which
are MocoGAN (Tulyakov et al., 2018), DisVAE (Yingzhen
& Mandt, 2018), ODE?VAE (Yildiz et al., 2019), and COT-
GAN (Xu et al., 2020). Because compared methods had
different network architectures, we reported the number
of trainable learning parameters for the generative model
for a fair comparison. As shown in Table 4, our method
(SD-GAN) considerably outperformed other state-of-the-art
methods in terms of both the FID and KID.

*nttp://lpc.opengameart .org
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6. Conclusion

We presented a novel GAN describing the Markovian tem-
poral dynamics. ST-constraints are suggested to stabilize
the learning dynamics induced by the SDE-based genera-
tor network with respect to the controlled Fokker-Planck
equation. The theoretical results reveal that the proposed
ST-constraints stabilize the learning dynamics. To guarantee
the generalization of the OOD dataset, an SC-regularization
term is proposed, which induces a bounded Wasserstein dis-
tance of the generated samples with different initial states.
The experimental results show that the proposed method
produces a realistic and smooth transition between frames.
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