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1. Proofs

Proof of Theorem 1.

Let A, y be a solution of Equations (8—12). We will prove by induction on the depth d that every node v of depth d in every
tree ¢ € T is such that the variables y,; belong to {0, 1} and that there is a unique node v in ¢ at depth d such that y,, = 1.
Equation (8) gives the result for d = 1. Now, suppose that the result is true up to depth d and let v be a node of depth
d + 1 in some tree ¢ of the forest. Let u be the parent of v. By induction hypothesis, y,, belongs to {0, 1}. If y,, = 0, then
Equation (9) implies that y,, = 0. If y,, = 1, then y,, = 1 if \;q = 1 (resp. 0) and v is the left (resp. right) child of u, and 0
otherwise. In all cases, we have y,, € {0,1}. Therefore, there is a unique node v in ¢ of depth d such that y,, = 1. This
concludes the induction step and proves the theorem.

Proof of Theorem 2.

(1) Let A\, y,x, s be a feasible solution.
We will first prove that the numeric features of this solution are consistent with all splits.
Theorem 1 ensures that y is integral and that in each tree ¢ there is a unique leaf [ such that y; = 1. Let P be the path
from the root of ¢ to [. A backward induction along P using Equation (9) shows that y,, = 1 for every vertex v in P
and also implies that y,, = 0 for all nodes that are not in P.
Let v be a non-leaf node along P. Let ¢ be the feature of v and j be its split level (i.e., such that v € V% ;). If P goes
to the left child of v, then Equation (16) ensures that 1] = 0 and Equation (15) ensures that u¥ =0 forany k > j.
Equation (20) then ensures that x; < xf Otherwise, if P goes to the right child of v, then Equations (17) and (15)
ensure that ¥ = 1 for any k < j. Equation (18) ensures that zi7 > 0, and Equation (20) then gives z; > z. Therefore,
by disjunction of cases, x; is consistent with the split at node v.
If ¢ is a binary feature, then Equations (21-23) immediately ensure that x; = 0 if P goes to the left and x; = 1
otherwise, which gives the consistency. The same reasoning on the v gives the consistency for the categorical features.

(ii) This result immediately follows from the fact that the number of variables and constraints is in O(N,,) and that the only
constraints with more than two non-zero coefficients are constraints (10), (13), (20), and (27) with O(NN,,) non-zero
terms overall in each case.

(iii)) We will use Cui et al. (2015) notations when referring to the OAE formulation. The proof reconstructs a solution of the
linear relaxation of OAE from the optimal solution of the linear relaxation of OCEAN. We prove this result when all
the features are numeric. The other cases are simpler and derive from a similar proof scheme.

Let A, y, «, p be an optimal solution of the linear relaxation of our formulation. We reconstruct a solution of the linear
relaxation of OAE as follows. First, remark that OAE’s variables ¢» and OCEAN’s variables y corresponding to tree
leaves represent the same quantities. Therefore, given a tree ¢ and a leaf k of ¢, define

Dtk = Ytk
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where the ¢ refer to the variables in OAE. The flow constraints (8)-(9) of OCEAN then immediately imply
> o =1.
k=1

Let 7 be a numerical feature and let }z be the index associated vyith the original value &; in OCEAN (see Section 3.3).
OAE has the same splits as OCEAN except for the split level j; corresponding to the original value of ;. With this,
OCEAN defines variables {12, . .., 4"} and OAE defines variables {v;1, . . ., Vin, } with n; = k;.

Now, let us set the following values:
pl o if ] > e

~j—1

Vi = — ﬁg where [Lg = { (vars)

0  otherwise.

Summing the values of v;; as defined in Equation (vars), we obtain Z vij = pd — ul Moreover, observe that !
does not intervene in constraints (16) of OCEAN, and uz ‘ does not 1ntervene in constralnts (17) The convexity of
the cost and the optimality of the solution of OCEAN considered then imply that 1 = 1 and ,u # < €1in an optimal
solution of the linear relaxation, and therefore ¥ —(,insucha way that:

n;
E Vij = 1.
Jj=1

Let us now prove that:
ok < Y v, VE VR, Vp € Ty, (dis)

vESkp

which implies (by aggregation) the following constraints of OAE:

bk < m | DD DR AR (agg)

PETtk VESkp

For this, consider a tree ¢, a leaf k, and a node p on the path to leaf k. Let j, be the index of the split corresponding
to p. Suppose that the path goes to the left at p. Constraint (9) of OCEAN implies that ¢ = yu < y4(p)- Hence,

jp—1 Jp—1
dov=wl T =1

VESkp

and since Yy < 1 — uffl by constraint (15) and (16) of OCEAN, we obtain (dis). Suppose now that the path goes
to the right at p. Constraint (9) of OCEAN implies that ¢, = ys < Yir(p)- Hence,

) _—
Yov=mr =
vESkp

and since yYi(p) < uf”fl by constraint (17) of OCEAN, we obtain (dis).

Moreover, the majority vote constraints (13) and (14) of OCEAN ensure that the majority vote constraint of OAE is
satisfied, and thus the solution built is a feasible solution of OAE.

We finally evaluate the cost of this solution. We place ourselves in the general context of a piecewise linear convex loss
function, as in Cui et al. (2015) Define EJ = ((Z;,27), the value of the loss for feature i if the counterfactual value for
feature i is x7, where z/ is the coordlnate of split j for feature i in OCEAN and 1 < j < n;. Defining ¥ = 0 and
x;“H =1, the objective of OCEAN is:

O+ S ),
=0
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Reindexing the sum and using the fact that i{ = 1 and /i"* = 0, we can rewrite this objective with an error non-greater
than the numerical precision € as:

n;
o
DT = )
=1

Let bg be the coordinate of the splits for OAE. Finally, let j; be the index of the split of OCEAN corresponding to ;.
We have bg = :cf for j < 7;, and bf = xf *1 for j > ji. Consider now the costs C;;(x°) in the objective of OAE, which
correspond to £(Z;, JEZ) where iz is the nearest point of Z; in the cell j of OAE. By convexity of the loss, iz is the right
extremity of the cell if j < Ji» the left extremity if j > Ji and &; if j = ;. Given the index shift between 11 and bg
in 7;, we get Cy; () = £(#;,27) = £2. The value of the objective of OAE for the solution reconstructed is therefore

n;

i Uz
_ o
D 0iCiy =Y ol = E(@ = i),
j=1 j=1

j=1

which is the value of the optimal solution of OCEAN.

In summary, we have built a feasible solution of the linear relaxation OAE whose objective is equal to the value of the
linear relaxation of OCEAN. This concludes the proof.

Implied integrality of the x variables for binary features and v variables for categorical features.

Consider an optimal solution of the continuous relaxation of variables « for binary features and v for categorical features.
Fix all the variables but those corresponding to one of these features. Since the variables y are integer in an optimal solution,
the feasible set of the resulting problem is a simplex, and a basic optimal solution is therefore integer.

2. Model Refinements

In this section, we discuss some additional formulation refinement and extensions. Firstly, we provide improved formulations
for ordinal features. Next, we discuss multivariate splits for numerical features and combinatorial splits for categorical
features.

Ordinal features. These features involve ordered levels in a similar fashion as numerical features, but open intervals
between successive levels bear no meaning or should be prohibited. In this case, no fractional value should arise due to (e.g.,
actionability or plausibility) side constraints, and the associated costs are typically discretized over the ordinal levels. To
efficiently model these features, we use specialized constraints that represent a simplification of the formulation used for
numerical features.

Let k; be the number of possible categories for ordinal feature ¢ € . For each tree ¢, let thij be the set of internal nodes
involving a split on feature ¢ at level j, such that samples with feature level smaller or equal to j descend to the left branch,
whereas other samples descend to the right branch. Consistency of feature i can be ensured through auxiliary variables w;
for j € {1,...,k; — 1} which take value 0 if feature 7 has a level smaller or equal to j and 1 otherwise. These conditions

can be ensured as follows:

wgflzwzﬂ_‘ j€{2,...7k’i—1} (L
w] <1 =y Je{l kim1hte T veVy @
ngytr(U) je{lv"'vkiil}’tGIYjUGVtIij 3)
ng{O,l} je{l,... k —1}. 4)

Multivariate splits on numerical features. If the need arises, one can also model the search for counterfactual explanations
in contexts where some splits of the decision trees (or isolation trees — e.g., as in extended isolation forests) involve linear
combinations of the features. To that end, we can rely on big-M constraints as follows:

arx < by — €+ M (1 — yir() teT,veV (5)
aX > by + € — My (1 — Yir(v)) teT,veVl (6)



Optimal Counterfactual Explanations in Tree Ensembles

It is important to use the smallest possible value for the big-M constants to achieve a good linear relaxation. Given that
numerical features are normalized in the interval [0, 1], we can use:

p
Mt—it = Z maX{O, atvp} — btv (7)
k=1
p
My = by — Y min{0, apy}- (8)
k=1

Combinatorial splits on categorical features. As usual for categorical features, k; will be used to denote the number of
possible categories for feature ¢ € Ic, and let /] be a variable that will take value 1 if x; belongs to category j € {1,...,k;}
and 0 otherwise. Combinatorial splits on categorical features involve sending certain categories towards the right branch,
and the rest on the left. For each split at an internal node v of tree ¢, let C;", be the set of categories that descend towards the

vt
right branch. Then, the consistency of categorical feature ¢ through the forest with combinatorial splits can be modeled as:

> vl <1 —yu teT,veV] )
ject,

Z Vlj > Ytr(v) teT,ve VtI (10)
Ject,
vl € {0,1} jec; (11)
Z vi=1. (12)
jE€C;

3. Detailed Numerical Results

This section provides additional detailed experimental results complementing those of the main paper.

3.1. Detailed Performance Comparisons

Figures F1 and F2 extends Figures 2 and 3 in the main body of the paper with an analysis on all datasets and methods. In
those figures, and missing data point for a method means that no feasible counterfactual has been found (possible for FT due
to the way the search process is conducted) or that the CPU time limit of 900 seconds has been exceeded.

The left section of Table Al extends the results of Table 3 in the main paper for a varying number of trees “#T” in
{10, 20, 50, 100, 200, 500} with a maximum depth fixed to 5. In a similar fashion, the right section of the table extends
these results for varying depth “#D” in {3, 4, 5,6, 7, 8} with a number of trees fixed to 100.
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Figure F2. Comparative analysis of CPU time as a function of the number of trees in the ensemble — considering all data sets
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Table Al. Time and solution quality comparison, considering all configurations

#T Data FT MACE OAE OCEAN #D Data FT MACE OAE OCEAN
Ts) R TGs) R Ts) R TG) R Ts) R TGs) R Ts) R TG) R

10 AD NA — 664 10 005 1.0 007 10 3 AD 227 226 976 1.0 025 1.0 013 1.0
cC 051 230 599 13 008 1.0 005 10 cC 913 1282 769 61 019 1.0 0.08 1.0

CP 042 185 585 1.0 003 1.0 002 1.0 CP 486 59 759 1.0 005 1.0 005 1.0
GC 023 174 517 1.0 004 10 005 1.0 GC 914 19 1827 1.0 135 1.0 025 1.0
ON 013 1060 >900 — 013 1.0 007 1.0 ON 335 385  >900 — 058 10 022 1.0

PH 023 17 67.13 1.0 002 1.0 002 10 PH 482 13 8446 10 016 10 008 1.0

SP NA — 280 7.6 014 1.0 007 10 SP NA — >900 — 274 10 028 1.0

ST NA — >900 — 012 1.0 002 10 ST NA — >900 — 065 1.0 011 10

20 AD NA — 792 10 044 10 013 1.0 4 AD 207 225 1519 1.0 671 10 035 1.0
cC 162 222 756 13 047 10 011 1.0 CC 1440 265 1566 14 1.6 10 038 1.0

CP 127 106 807 1.0 007 10 005 L0 CP 1000 49 1268 1.0 012 1.0 0.19 1.0
GC 081 100 769 1.0 029 1.0 013 1.0 GC 992 52 1521 1.0 225 10 059 1.0
ON NA — >900 —  0.89 1.0 021 1.0 ON 474 521  >900 — 586 10 094 1.0

PH 063 14 9215 1.0 007 1.0 005 1.0 PH 602 15 1642210 028 10 019 1.0

SP NA — 1051 49 088 1.0 016 1.0 SP NA — >900 — 4031 1.0 1.19 1.0

ST NA — >900 — 035 1.0 005 1.0 ST NA — >900 — 876 10 035 1.0

50 AD NA — 1280 1.1 871 10 057 1.0 5 AD 303 159 2060 1.1 2837 1.0 122 10
cC 806 59 2497 1.1 3.02 10 063 10 CC 2944 102 4125 12 552 10 134 1.0

CP 619 50 1065 1.0 020 1.0 0.7 1.0 CP 2268 45 1582 1.0 038 1.0 052 1.0
GC 444 62 1151 1.0 081 1.0 028 1.0 GC 1626 48 19.03 1.0 508 1.0 116 1.0
ON 210 977  >900 — 929 10 082 1.0 ON 1005 317  >900 —  >900 — 297 1.0

PH 272 16 >900 — 038 1.0 026 1.0 PH 1095 14 >900 — 094 10 052 1.0

SP NA — >900 — 1531 1.0 057 1.0 SP NA — >900 —  >900 — 273 1.0

ST NA — >900 — 675 10 023 1.0 ST NA — >900 —  69.64 1.0 1.10 1.0
100 AD 303 159 2060 1.1 2837 1.0 122 1.0 6 AD 411 216 2908 1.1  >900 — 203 1.0
CC 2944 102 4125 12 552 10 134 10 CC 5313 115 6236 12 2833 1.0 445 1.0

CP 2268 45 1582 1.0 038 1.0 052 1.0 CP 4820 9.1 2196 1.0 066 1.0 117 1.0
GC 1626 438 19.03 1.0 508 1.0 116 1.0 GC 2260 69 2041 1.0 615 1.0 128 1.0
ON 1005 317  >900 —  >900 — 297 1.0 ON 2594 247  >900 —  >900 —  7.08 1.0

PH 1095 14 >900 — 094 1.0 052 1.0 PH 2030 13 17861 1.0 098 10 136 1.0

SP NA — >900 —  >900 — 273 1.0 SP NA — >900 —  >900 — 542 1.0

ST NA — >900 — 6964 1.0 1.10 1.0 ST NA — >900 — 12852 1.0 147 1.0
200 AD 1069 148  39.18 1.0  >900 — 430 1.0 7 AD 838 223 3784 11  >900 — 424 10
CC 10637 83 12031 12 2189 1.0 4.12 1.0 CC 8539 136 9211 12 9218 1.0 11.13 1.0

CP 8053 34 2661 1.0 121 1.0 197 1.0 CP 7192 82 28.14 1.0 118 1.0 241 1.0
GC 5937 49 4091 1.0 1358 10 359 1.0 GC 3099 7.7 2650 1.0 2041 1.0 349 1.0
ON 3818 184  >900 —  >900 — 734 1.0 ON 49.16 709  >900 —  >900 — 1541 1.0

PH 3660 1.6 >900 — 344 1.0 199 1.0 PH 3133 13 >900 — 161 1.0 372 10

SP 4071 85 >900 —  >900 —  9.13 1.0 SP 2122 738 >900 —  >900 —  18.26 1.0

ST NA — >900 —  >900 — 470 1.0 ST  13.07 33 >900 —  >900 — 291 1.0
500 AD 5639 180 12025 1.1  >900 —  22.96 1.0 8 AD 1555 105 5930 1.1  >900 — 1235 1.0
CC 64008 49 >900 — 14536 1.0 1598 1.0 CC 13940 182 15447 13  >900 —  21.96 1.0

CP 47978 29 5936 1.0 345 10 774 10 CP 10449 9.1 3311 1.0 217 10 565 10
GC 36530 42 21464 1.0 4122 1.0 13.82 1.0 GC 4125 15 2745 10 3689 1.0 511 1.0
ON 26522 330  >900 —  >900 — 4735 1.0 ON 8472 603  >900 —  >900 —  72.87 1.0

PH 26196 15 >900 — 1096 1.0  13.05 1.0 PH 4532 13 23658 1.0 221 10 870 1.0

SP 26235 7.7 >900 —  >900 —  83.05 1.0 SP  28.16 6.7 >900 —  >900 —  27.94 1.0

ST NA — >900 — >900 — 5595 1.0 ST 15.07 3.0 >900 — >900 — 493 1.0
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3.2. Detailed Performance with Plausibility Constraints

This section provides additional detailed results concerning the performance of OCEAN with plausibility constraints via
isolation forests.

Firstly, Figure F3 displays the same computational time analysis as Figure 1 in the main paper, when considering the
additional plausibility constraints through isolation forests. As visible on this figure, OCEAN maintains a good scalability
for all objectives even with the plausibility restrictions.
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Figure F3. CPU time to find an optimal counterfactual explanations, considering different data sets and objectives
Finally, Table A2 reports the average computational time in seconds needed to find optimal counterfactual explanations
with (OCEAN-IF) and without (OCEAN-nolF) plausibility constraints as a function of the maximum depth of the trees (in

{5,6,7,8}, corresponding to a maximum of {32, 64,128,256} leaves). In these experiments, we use the [; objective, the
number of trees is set to the baseline value of 100, and the isolation forest has the same depth limit as the random forest.

Table A2. CPU time (s) of OCEAN with isolation forests for ensuring plausibility

Data set OCEAN-nolIF OCEAN-IF
Max-Depth 5 6 7 8 5 6 7 8
Max-Leaves 32 64 128 256 32 64 128 256
AD 0.75 1.43 2.70 5.36 1.82  3.83 7.26 14.10
CC 0.99 470 9.14 24.50 1.54 542 12.83 32.83
CP 0.44 1.18 2.74 5.32 0.85 1.35 3.18 7.06
GC 0.60 1.15 2.05 3.50 1.71 3.59 11.04 18.16
ON 1.34  3.19 9.61 36.81 1.64 429 11.79  41.87
PH 0.36 1.16 2.25 5.09 1.81 5.86 15.16  43.12
SP 2.71 6.60 15.92  34.02 4.43 7.18  27.63 37.98
ST 0.62 1.47 2.22 3.13 1.36  3.63 8.13 12.31

As visible in these experiments, the use of the plausibility restrictions through isolation forests roughly doubles the time
needed to locate optimal explanations. This increase directly relates to the fact that considering both the random forest and
isolation forest simultaneously involves considering twice the number of trees. Despite this increase of model complexity,
optimal explanations are found in less than one minute, even when considering a maximum depth of 8 (i.e., with up to 256
leaves per tree and 51, 200 leaves overall in both forests).

4. Open Source Code

All the material (source code and data sets) needed to reproduce our experiments is accessible at https://github.
com/vidalt/OCEAN under a MIT license.
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