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A. Details of Abstract Environment
Information

We develop a LLVM pass to produce the environment in-
formation. In the environment information, arguments of
the functions are named ai, i = 0, 1, 2, ..., NArguments − 1;
SSA values are named vi, i = 0, 1, 2, ..., NValues − 1;
stack variable allocated by alloca instruction are named
mi, i = 0, 1, 2, ..., NStackVariables−1. There may be one or
more constraints of environment for every instruction, and
constraints are separated by semicolon.

A.1. Constraints of Arithmetic and Logical Operations

Constraints of arithmetic and logical operations can be rep-
resented as follows: vi = x op y or vi = op x, where vi
is the SSA value of the result of the operation, x, y can be
SSA values, arguments or constants, and op can be binary
or unary operators such as +,−, ∗, / or trunc, fptoint.

A.2. Constraints of Memory Operations

For allocating memory for stack variables, the constraint
can be represented as vi = reference mj , where vi is the
address of the allocated stack variable mj .

For memory load, the constraint can be represented as vi ←
mj = y0, y1, ... or vi ← dereference x = y0, y1, ..., where
vi is loaded value and mj is the loaded stack variable name
if the memory address points to a stack variable, otherwise x
is the memory address to load. y0, y1, ... are possible values
loaded from the memory address analyzed by MemorySSA
pass.

For memory store, the constraint can be represented as vi →
mj or vi → dereference x, where vi is the value to store
in the memory and mj is the stack variable to be stored if
the memory address points to a stack variable, otherwise
x is the memory address, which can be either SSA values,
arguments or constants.
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For getting element pointer, the constraint can be repre-
sented as vi = gep x y0, y1, ..., where base pointer x can
be SSA values, arguments, stack variables or constants, and
indices yi can be vi, ai or constants.

A.3. Constraints of Selection

For PHI node, the constraint can be represented as vi =
x0, x1, ..., where x0, x1, ... are possible values of vi.

For selecting value by condition value, the constraint can
be represented as vi = select x y0 y1, where x is a boolean
condition value, and y0, y1 are selected values when x is
true or false respectively.

A.4. Other Constraints

For return value, the constraint can be represented as ret =
x, which means that the return value of the function is x.

For loop depth, the constraint can be represented as loop =
0, 1, 2, ..., which shows the loop depth of the current instruc-
tion analyzed by LoopInfo pass.

B. Details of Architecture
We have two separated positional condition encoding for IR
and Env.. For three kinds of IR encoding, there is a special
code for [CLS]. And for true encoding and false encoding,
there is a special code −1 for the unknown position. The
unknown code is for the instructions like switch or call, for
which we cannot decide the next position or there are more
than two target positions. A switch instruction can also be
converted to a sequence of branches to prevent unknown
position code in this case. For Env. encoding, it is similar
except that [CLS] is replaced by [SEP]. The hidden state
of [CLS] in the last layer of the instruction-level trans-
former is connected to a MoCo head. The dimension of
the MoCo head is 256 and the length of the MoCo queue is
65536. Finally, when applying masked language model, an
IR instruction and its corresponding Env. constraints won’t
be masked at the same time.



C. The influence of K
In the section of experiments, we set K = 4 as constant,
which means that each IR and Env. Transformer encoder
would process sequences with a length of 32 and 16 tokens.
Larger K would lead to significant computation increment
and memory consumption since the complexity of attention
layers is quadratic (i.e., O(L2)). But in the meanwhile,
larger k would also improve the capability of capturing the
contextual information among long sequences. In this sec-
tion, we investigate the performance gap between different
choices of K in Table.1.

Table 1. Classification error on POJ-104 test dataset.
ASTNN (Zhang et al., 2019) could access the symbol names in
source code, which will be normalized in other IR-based methods.

Methods Error(%)

ASTNN (Zhang et al., 2019) 1.8
OSCAR (K = 4) 1.92
OSCAR (K = 16) 1.72

D. Hardware-related Program Semantics
Understanding

In this section, we investigate whether OSCAR performs
well on hardware-related semantics understanding. We con-
duct experiments on two widely-used tasks: device mapping
and coarsening threads predictions. We exactly follow the
same experimental settings with (Ben-Nun et al., 2018;
Cummins et al., 2020). The results have shown in Table.2
and 3. In both experiments, OSCAR performs well com-
paring to baseline methods, and shows good capabilities
of program semantics understanding on hardware-related
tasks.

Table 2. Error rate (%) on device mapping task.
AMD NVIDIA

DeepTuneIR 26.9 31.6
inst2vec(Ben-Nun et al., 2018) 19.7 21.5

ProGraML(Cummins et al., 2020) 13.4 20.0
OSCAR 11.2 10.3

Table 3. Speedups achieved by coarsening threads
DeepTuneIR inst2vec inst2vec-imm OSCAR

Cypress 1.17 1.37 1.28 1.35
Tahiti 1.23 1.10 1.18 1.30
Fermi 1.14 1.07 1.11 1.27
Kapler 0.93 1.06 1.00 1.12

E. Compliant Options for Constrative
Learning

We totally generate 19 variants for every function from dif-
ferent sequences of LLVM passes. Firstly, we generate
three variants using opt of the LLVM toolchain with stan-
dard passes of -O1/2/3. Then for every LLVM IR assembly
file, we randomly drop and shuffle the passes of the -O2
optimization level and use opt to generate the variants. The
standard -O2 optimization passes are shown in Tab.4. The
algorithm for generating the passes is as follows:

Algorithm 1 Generating LLVM passes
Input: List of the standard -O2 optimization passes P , max-

imal shuffled items M which is even.
Output: List of the generated optimization passes P ′

1 Generate a random integer N ∈ [0, len(P )];
2 Randomly select N items P ′ from P ;
3 Generate a random even integer m ∈ [0,M ];
4 Randomly select m unique items S from {0, 1, ..., N − 1};
5 for i← 0 to m− 2 by 2 do
6 P ′[S[i]]↔ P ′[S[i+ 1]];
7 end

In our case, we set M = 20.

F. Pre-training Data and Pre-Processing
F.1. Pre-training Data

We assembled a large corpus of real-world programs for
pre-training from publicly available open-source non-fork
GitHub repositories, summarized in Table.5. The software
covers a broad range of disciplines from operating systems
and compilers, to machine learning systems and linear al-
gebra subprograms. After collecting the corpus, we first
compile them into LLVM IRs using Clang 11 with -O0
optimization level1. Then, for each program, we further gen-
erate 19 variants with the same functionality (20 in total), by
random arrangement and combination of different LLVM
optimization passes. After that, we sample about 500k func-
tions from the dataset. In the pre-training phase, we sample
several functions from the dataset to form a mini-batch as
the training data for each iteration.

F.2. Pre-Processing

Firstly, we use wllvm2 with Clang 11 to compile the source
code to LLVM IR. For every object file, wllvm will generate
an LLVM IR bitcode file, which can be then converted to

1Except for Linux Kernels which could only be built with -O1
or above.

2https://github.com/travitch/
whole-program-llvm
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an LLVM IR assembly file. For every LLVM IR assembly
file, we extract the functions which occur in all 20 variants
of the file.

Then we use the above-mentioned LLVM pass to filter out
the functions which exceed the maximal instructions as
well as generate PCE, environment information, and IR
instructions with normalized identifier names.

After that, we tokenize the LLVM IR assembly code and
process the names of functions and types as follows:

1. If an identifier name is a mangled C++ symbol, de-
mangle it and remove extra information. Only function
names will be retained. Also, for type names, extra
information such as template arguments or namespaces
will be removed.

2. Split the names into words by underscore and case.

3. Use byte pair encoding to break down the words into
subwords.

Literal constants will also be split into subwords using BPE.

Finally, we convert IR instructions and environment infor-
mation into raw text and split them into the training set and
the validation set with the ratio of 19:1.

G. Downstream Dataset
G.1. Binary Diffing

We collected several programs and libraries. The numbers
of the programs in the training/validation/testing dataset are
13, 2, and 5. Firstly, we compile them using GCC 7.5.0 with
debug information and four different optimizations levels
(-O0/1/2/3). Then, we use debug information to generate
the ground truth of matched functions in different variants
of binaries and then stripped the debug information out of
the binaries as well as replace the function symbols with
meaningless strings. We only treat two binary functions as
equivalent if their function names and source code filenames
in the debug information are both the same. In this way, we
can ensure that the ground truth collected is correct, though
it may not be exhaustive. After that, we use retdec3 decom-
piler to convert the binaries to LLVM IR, and then process
the IR to generate raw text input in the above-mentioned
way.

For the training and validation set, only the functions that
occur in all four variants of a binary will be used. However,
for the test set, all the functions will be included as we need
to retrieve a function from all the functions of another binary.
The numbers of the functions in the training/validation/test-
ing dataset are 71000, 5804, and 40791.

3https://retdec.com/

Before matching the functions using BinDiff(Dullien &
Rolles, 2005), we remove the names of the functions in
IDA except for the exported symbols as BinDiff will match
two functions if they have the same name, which results in
invalid results.

We use Recall@1 as the evaluation metrics, which can be
computed in this manner:

For binaries B1, B2 as the sets of binary functions, we
have a ground truth mapping f1 : B′1 → B′2, where
B′1 ⊆ B1, B

′
2 ⊆ B2. For every x1 ∈ B′1, we also find

a x2 = f2(x1) ∈ B2 which maximizes similarity(x1, x2)
computed by our model, which is the cosine similarity of the
[CLS] feature vectors of these two functions. MoCo(He
et al., 2020) head is not involved in the computation of the
feature vectors. Then, we have:

Recall@1 =
|f1 ∩ f2|
|f1|

G.2. POJ-104

POJ-104 dataset(Mou et al., 2016) is collected from an
online judge platform, which contains 104 program classes
written by 500 different people randomly selected per class,
so there are a total of 52000 samples in the dataset. We
use the dataset for the task of clone detection and algorithm
classification.

For the POJ-104 clone detection task, we compile the code
of the POJ-104 dataset to LLVM IR assembly files with
Clang 11 and -O0 optimization level. To compile the code
successfully, we prepend following statements before the
code:

#include <bits/stdc++.h>
using namespace std;

Then, we replace void main with int main and disable all the
warnings to compile the source code. After that, we extract
the IR instructions, environment information , and PCE
information from the produced LLVM IR assembly files in
the above-mentioned way. We concatenate the functions in
an LLVM IR assembly file into a single input sequence and
truncate it to 255 instructions.

Finally, we split the dataset according to the labels. 64
classes of programs are used for training; 16 classes of
programs are used for validation; 24 classes of programs are
used for testing.

For the algorithm classification task, we use the compiled
IR files from the dataset processed by NCC(Ben-Nun et al.,
2018)4. The dataset is split by 3:1:1 for training, validation,

4https://github.com/spcl/ncc/tree/master/
task
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and testing. To successfully compile the programs, #in-
clude statements are also prepended before the source code.
Data augmentation is applied on the training set by com-
piling each file 8 times with different optimization options
(-OO/1/2/3 and w/ or w/o -ffast-math). We keep up to four
functions per source code file and truncate each function to
255 instructions.

We use MAP@R as the evaluation metrics of the clone
detection task. MAP@R is defined as the mean of average
precision scores, each of which is evaluated for retrieving R
most similar samples given a query. In our case some source
code files (˜3%) are not compilable, so we only retrieve
Ri most similar samples for every query where Ri is the
number of the valid samples of the same class with the query
si. Detailed information of how to compute our evaluation
metrics is as follows.

We denote the set of all the samples as S = {si | i =
0, 1, 2, ..., N − 1}, where N is the number of the samples.
And the label of si is l(si). Then, we denote the similarity
scores between si and sj computed by our model f as
similarity(si, sj) = cos(f(si), f(sj)). The feature vectors
f(si) and f(sj) computed by our model are the output of
the two-layer MLP of the MoCo head.

For every si ∈ S, let Si = {sj ∈ S | l(sj) =
l(si), sj 6= si}, and Ri = |Si|. We retrieve Ri most
similar samples as Qi from S − {si} by similarity scores
similarity(si, sj), sj ∈ S − {si}. Then, we have:

Precisioni =
|Qi ∩ Si|
|Si|

MAP@R =
1

N

N−1∑
i=0

Precisioni

H. Training Details
H.1. Pre-training

The loss for the pre-training task is:

L = λLMLM + µLMoCo

where λ is MLM loss coefficient and µ is MoCo loss co-
efficient. We strictly follow the algorithm of MoCo, ex-
cept that xkey is an augmented image in MoCo, while
xkey = [xIRkey : xEnvKey] is the augmented IR instruc-
tion and its environment information in our model.

We pretrain the model on 8 V100 GPUs with the hyper-
parameters shown in Tab.6.

H.2. Binary Diffing

When training OSCAR for the binary diffing task, we
firstly sample a mini-batch of triplets of two samples
vi, v

+
i (i = 0, 1, 2, ..., N − 1,N is the size of the mini-

batch) of the same label, i.e. from the binary functions
generated by different optimizations with the same source
code function, and one sample of another label v−i (i =
0, 1, ..., N − 1). The feature vectors of the triplets are de-
noted v0, v

+
0 , v

−
0 ; v1, v

+
1 , v

−
1 ; ...; vN−1, v

+
N−1, v

−
N−1. The

label of vi is l(vi), and we have l(vi) = l(v+i ) 6= l(v−i ).
The loss L of the mini-batch is computed as follows:

τ =
√
d =
√
768

pi = exp(vi · v+i /τ)

sij = exp(vi · vj/τ) + exp(vi · v+j /τ)

ni = exp(vi · v−i /τ) +
N−1∑

j=0; l(vj)6=l(vi)

sij

L = − 1

N

N−1∑
i=0

log
pi

pi + ni

The feature vectors are the last-layer hidden states of the
[CLS] tokens in the instruction-level transformer. MoCo
head including the two-layer MLP is dropped. We train
the model on 4 V100 GPUs for 128000 steps with 6400
warm-up steps. Peak learning rate is 0.00002; weight decay
is 0.2; dropout and attention dropout is 0.1; batch size is 48
and update frequency is 1.

We use BinDiff, Asm2vec(Ding et al., 2019)5 and Bina-
ryAI(Yu et al., 2020a;b)6 v2 API as the baseline. All hyper-
parameters of Asm2vec are default. BinaryAI uses IDA Pro
and its Hex-Rays decompiler to generate C-like pseudo-code
for binary functions, and then upload it to Tencent’s server
to compute the similarity of the functions. Also, Asm2vec
and BinDiff both depend on IDA Pro and its dissembler or
decompiler. As the Hex-Rays decompiler is considered bet-
ter than the retdec decompiler, we think that the comparison
between OSCAR and BinaryAI is reasonable.

H.3. Code Classification

We firstly sum the [CLS] vectors of each function in an
LLVM IR assembly file to get the representation of the sam-
ple. Then the feature vectors are feed into a fully connected
layer followed by a projection layer and a softmax layer. Af-
ter that, we use the cross-entropy loss for the classification
task.

5https://github.com/McGill-DMaS/
Kam1n0-Community

6https://github.com/binaryai/sdk
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We train the model on 8 V100 GPUs for 100000 steps with
10000 warm-up steps. Peak learning rate is 0.00005; weight
decay is 0.01; dropout and attention dropout is 0.1; batch
size is 8 and update frequency is 4.
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Table 4. -O2 optimization passes

-tbaa -scoped-noalias
-forceattrs -inferattrs
-ipsccp -called-value-propagation
-attributor -globalopt
-mem2reg -deadargelim
-instcombine -simplifycfg
-prune-eh -functionattrs
-sroa -early-cse-memssa
-speculative-execution -jump-threading
-correlated-propagation -simplifycfg
-domtree -instcombine
-libcalls-shrinkwrap -pgo-memop-opt
-tailcallelim -simplifycfg
-reassociate -loop-simplify
-lcssa -scalar-evolution
-loop-rotate -licm
-loop-unswitch -simplifycfg
-instcombine -loop-simplify
-lcssa -scalar-evolution
-indvars -loop-idiom
-loop-deletion -loop-unroll
-mldst-motion -phi-values
-gvn -phi-values
-memcpyopt -sccp
-demanded-bits -bdce
-instcombine -jump-threading
-correlated-propagation -phi-values
-dse -loop-simplify
-lcssa -scalar-evolution
-licm -adce
-simplifycfg -instcombine
-barrier -elim-avail-extern
-rpo-functionattrs -globalopt
-globaldce -float2int
-lower-constant-intrinsics -loop-simplify
-lcssa -scalar-evolution
-loop-rotate -loop-distribute
-scalar-evolution -demanded-bits
-loop-vectorize -loop-simplify
-scalar-evolution -loop-load-elim
-instcombine -simplifycfg
-scalar-evolution -demanded-bits
-slp-vectorizer -instcombine
-loop-simplify -lcssa
-scalar-evolution -loop-unroll
-instcombine -loop-simplify
-lcssa -scalar-evolution
-licm -transform-warning
-alignment-from-assumptions -strip-dead-prototypes
-globaldce -constmerge
-loop-simplify -lcssa
-scalar-evolution -loop-sink
-instsimplify -div-rem-pairs
-simplifycfg
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Table 5. The eleven sources of LLVM IR used to produce pre-
training dataset. All software is downloaded from Github.

Software Domain #instructions #functions

Linux-vmlinux Linux Kernel 2,930,372 45,368
Linux-modules Linux Kernel 16,509,892 229,942
GCC Compiler 1,816,782 22,383
MPlayer Multimedia 1,223,068 12,747
OpenBLAS BLAS 515,985 5,415
PostgreSQL Database 939,199 12,807
Apache Web Server 390,135 5,519
Blender 3-D Creation 5,925,801 123,689
ImageMagcick Image Processing 440,265 7,182
Tensorflow Machine Learning 12,041,852 294,553
Firefox Browser 5,290,430 96,187

Total 48,023,781 855,792

Table 6. Hyper-parameters for pre-training.
Hyper-parameter Value

Training steps 1000000
Warm-up steps 30000
Peak LR 0.0001
Batch size 16
Update frequency 4
Dropout 0.1
Attention dropout 0.1
Weight decay 0.01
MoCo dimension 256
MoCo temperature 0.02
MoCo momentum 0.999
MoCo queue length 65536
MLM loss coefficient 1
MoCo loss coefficient 1000


