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Abstract

Semantic understanding of programs is a funda-
mental problem for programming language pro-
cessing (PLP). Recent works that learn represen-
tations of code based on pre-training techniques
in NLP have pushed the frontiers in this direc-
tion. However, the semantics of PL and NL have
essential differences. These being ignored, we
believe it is difficult to build a model to better
understand programs, by either directly applying
off-the-shelf NLP pre-training techniques to the
source code, or adding features to the model by
the heuristic. In fact, the semantics of a program
can be rigorously defined by formal semantics
in PL theory. For example, the operational se-
mantics, describes the meaning of a valid pro-
gram as updating the environment (i.e., the mem-
ory address-value function) through fundamental
operations, such as memory I/O and conditional
branching. Inspired by this, we propose a novel
program semantics learning paradigm, that the
model should learn from information composed of
(1) the representations which align well with the
fundamental operations in operational semantics,
and (2) the information of environment transition,
which is indispensable for program understand-
ing. To validate our proposal, we present a hi-
erarchical Transformer-based pre-training model
called OSCAR to better facilitate the understand-
ing of programs. OSCAR learns from interme-
diate representation (IR) and an encoded rep-
resentation derived from static analysis, which
are used for representing the fundamental oper-
ations and approximating the environment tran-
sitions respectively. OSCAR empirically shows
the outstanding capability of program semantics
understanding on many practical software engi-
neering tasks. Code and models are released at:
https://github.com/pdlan/OSCAR.
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1. Introduction

Modern software typically contains tons of code, functions,
and modules with overwhelmingly complex structure or or-
ganization scheme. It poses great challenges for writing,
maintaining, and analyzing such programs. Fortunately, a
series of deep learning-based productivity tools were de-
veloped to automatically help programmers by analyzing
program (Ding et al., 2019; Duan et al., 2020; Yu et al.,
2020a), security auditing (Zhou et al., 2019; Buratti et al.,
2020), code retrieval (Luan et al., 2019; Ye et al., 2020;
Cummins et al., 2020b), and so on.

Inspired by the success of pre-trained representation for
semantics understanding of natural language (Devlin et al.,
2019; Brown et al., 2020; Xiong et al., 2020), there are many
recent attempts to graft the conventional NLP pre-training
techniques to source code (Buratti et al., 2020; Feng et al.,
2020; Lachaux et al., 2020; Guo et al., 2020; Yu et al.,
2020a), in which the code representation is obtained by cap-
turing contextual information from a substantial amount of
source code text, and is then used for a variety of down-
stream software engineering tasks after fine-tuning. For
instance, CuBERT (Kanade et al., 2020) leverages the pow-
erful pre-training contextual embedding model BERT (De-
vlin et al., 2019) to learn informative representations on
a Python corpus; CodeBERT (Feng et al., 2020) learns
general-purpose representations to bridge natural language
(NL) and high-level programming language (PL) by pre-
training on NL-PL pairs. Furthermore, features designed by
experts (e.g., data flow graph) (Guo et al., 2020) are added
to the pre-training model, aiming to provide additional in-
formation for program semantics understanding.

However, programming languages have many fundamental
differences in essence with natural languages. For example,
the same program may exhibit different behaviors against
its input and memory state, while there is no such explicit
concept in natural language. Therefore, we argue that the
current approaches that attempt to capture the semantic
proprieties directly from the source code, will limit the
semantics understanding of programs, be it applying off-the-
shelf NLP pre-training techniques, or adding features to the
model by the heuristic.

Indeed, the rigorous mathematical account of the meaning
(i.e., the semantics) of programming languages (Gunter,
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1992), has been well-studied by formal semantics (Winskel,
1993) in programming language theory. For instance, the
operational semantics (van Wijngaarden et al., 2012), which
is a widely used branch of formal semantics, captures the
meaning of a programming language by defining rules for
how its programs execute on an abstract machine. These
rules reflect the environment transitions according to the in-
structions, where the environment (Stuart, 2013) is formally
defined as a function mapping all memory addresses to their
values', and one instruction conducts a rigorously defined
operation, such as reading/writing the memory, basic arith-
metic, boolean logic, or conditional branching.

Inspired by the programming language theory, we propose
a code representation learning paradigm which could make
a model better understand programs. In particular, a code
representation should be learned from (1) a translation of
the source code text that aligns well with those fundamen-
tal operations defined in operational semantics; (2) the in-
formation of environment transition, which is obviously
indispensable for program understanding.

In order to verify the effectiveness of our proposal, we
further present a novel pre-training model called Opera-
tional Semantics for Code Abstract Representation (OS-
CAR) based on a hierarchical Transformer (Vaswani et al.,
2017), which is designed to capture the contextual infor-
mation among long sequences of code. On one hand, to
represent the fundamental operations, OSCAR utilizes in-
termediate representation (IR), which is more applicable
for learning code representation rather than high-level pro-
gramming languages, since the IR is modeled on an abstract
machine with a finite instruction set, which can be mapped
to the operational semantics almost perfectly. In particular,
the IR can be easily acquired by translation from binary or
source code of a target program. On the other hand, ob-
taining concrete and precise information of the environment
transition requires plenty of actual executions and calcu-
lations, which would be impractical and risky. Therefore,
OSCAR alternatively uses abstract information, which can
be obtained by abstract interpretation inspired static program
analysis without difficulty. Abstract interpretation (Cousot
& Cousot, 1977; 1979) describes program semantics by a
mathematical characterization of possible behaviors of the
program instead of modeling the behaviors after many ac-
tual execution trails of the program. In addition, to capture
the control structure of a target program or code snippet, we
develop a novel Positional Condition Encoding (PCE) to
encode the control flow information into the model.

Furthermore, to ensure the desired capacity of pre-trained
representation, we design a compact and effective objec-
tive function by combining two respective components: a

For simplicity, we consider that all the values are stored in
memory, e.g., LLVM values.

variant of MLM loss (Devlin et al., 2019) masking entire in-
structions, and a contrastive loss with different compilation
optimization techniques. With instruction tokens as input,
the model could capture token-level contextual knowledge
by optimizing the variant of MLM loss. Meanwhile, by gen-
erating syntactically diverse but functionally equivalent IRs
through different compilation optimization techniques, e.g.,
strength reduction, loop unrolling, and inline expansion, the
contrastive loss could provide informative self-supervision,
to help the model to efficiently capture the program- or code
snippet-level semantic knowledge.

Our contributions are concluded as follows:

* We propose a new learning paradigm that suggests
the pre-training model could learn code representation
from both the superficial instructions and the underly-
ing environment transitions, which alleviates the afore-
mentioned limitations of semantics understanding of
program according to operational semantics.

* We demonstrate our proposal by presenting OSCAR, a
hierarchical Transformer which represents the funda-
mental operations by IR and approximates the environ-
ment transitions by an encoded representation derived
from static analysis. We also design efficient training
objectives for OSCAR to largely facilitate the program
semantics understanding.

* OSCAR significantly boosts the performance of se-
mantics understanding of program on a wide range
of downstream practical software engineering tasks.
Moreover, OSCAR shows remarkable zero-shot ability,
i.e., without fine-tuning the parameters, comparing to
state-of-the-art pre-training methods.

2. Related Work

Inspired by the great success of deep learning on natural lan-
guage understanding, there is a growing body of exploratory
work on programming language understanding by incorpo-
rating code structure into DNN, such as abstract syntax tree
(AST) (Alon et al., 2020; Rabinovich et al., 2017; Yin &
Neubig, 2017; Wei & Li, 2017; Chen et al., 2018; Alon
etal., 2018; Mou et al., 2016; Alon et al., 2019; Zhang et al.,
2019; Bui et al., 2020) or graph (Brockschmidt et al., 2018;
Wang et al., 2020; Allamanis et al., 2018; Hellendoorn et al.,
2019; Duan et al., 2020; Cummins et al., 2020a; Ye et al.,
2020; Hellendoorn et al., 2019; David et al., 2020; Wang &
Su, 2020).

As the most commonly used architectures in NLP, the Trans-
former (Vaswani et al., 2017) has also been widely adopted
in code understanding tasks. Kim et al. (2020) achieve high
accuracy of next token prediction on code by feeding AST
to Transformer. Svyatkovskiy et al. (2020) propose to train
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a variant of GPT-2 (Radford et al., 2019) from scratch on
source code to improve the performance of code comple-
tion. Recent works employ pre-training on large-scale code
corpus and achieve promising results of code representa-
tion. Kanade et al. (2020) pre-train a BERT model on a
massive corpus of Python source code and get outstanding
performance on five code intelligence tasks. Buratti et al.
(2020) present C-BERT, which is a transformer-based model
pre-trained on a large collection of corpus written in C. Feng
et al. (2020) propose a cross-modal BERT called CodeBERT
between source codes and comments, written in program-
ming language and natural language respectively, and gain
excellent achievements on NL-PL tasks, such as code search
by natural language and code generation from comments.
By introducing the data flow to the model, Guo et al. (2020)
further improve the performance of CodeBERT. Ahmad
et al. (2021) present PLBART, which is also pre-trained on
a cross-modal corpus of programming language and nat-
ural language via denoising autoencoding. BinaryAl (Yu
et al., 2020a) leverage a BERT model pre-trained on binary
code to construct a hybrid model by combining with GNN
and CNN, and achieves excellent performance on binary
code similarity detection. Yu et al. (2020b) further introduce
a novel CNN as a feature extractor for source code, and
improve the performance of binary-source code matching.

To our best knowledge, the proposed OSCAR is the first at-
tempt for code representation using our PL theory-inspired
learning strategy that considers both the superficial program-
ming language and the underlying environment transitions,
to improve the performance of program and code under-
standing.

Intermediate Representation There are prior
works (Ben-Nun et al., 2018; VenkataKeerthy et al.,
2020; Cummins et al., 2020b) that attempt to understand
code on IR language with different motivations. For
example, Ben-Nun et al. (2018) argues that training model
on a specific source programming language (or machine
code for optimization) could not generalize to other
languages, and suggests that training on IR language is
better since it accepts code in various source languages.
Similarly, Cummins et al. (2020b) aims to produce a
language-agnostic, compiler-independent representation for
the program by leveraging a corpus of LLVM IR covering
six source programming languages.

Different from the motivations of previous methods, we
suggest that the IR is more applicable for learning code rep-
resentation rather than high-level PL since the IR is modeled
on an abstract machine with a finite instruction set, which
can be well mapped to operational semantics.

Contrastive Learning In recent years, contrastive learn-
ing (Hadsell et al., 2006; Chen et al., 2020; He et al., 2020)
shows promising results on unsupervised visual represen-

tation learning. Inspired by this, Jain et al. (2020) present
ContraCode, which applies contrastive learning on code rep-
resentation learning by adopting several source-to-source
transformations, such as variable renaming, dead code elim-
ination, and dead code insertion. The functionality of the
program would not be changed after the transformations,
therefore the underlying representations should be the same.

Different from ContraCode, we generate syntactically di-
verse but functionally equivalent IRs with different opti-
mization techniques in compilers. Unlike the transforma-
tions in ContraCode, different optimizations would lead
to huge differences in the syntax and structure of the IR,
such as strength reduction, loop unrolling, and inline ex-
pansion. This kind of diversity could provide informative
self-supervision in helping the model to efficiently capture
the program- or code snippet-level semantic knowledge.

3. Method

As mentioned above, operational semantics (van Wijngaar-
den et al., 2012; Stuart, 2013) captures the meaning of an
executable program by the environment transitions accord-
ing to the instructions on an abstract machine. To be more
concrete, we illustrate our motivation by structural oper-
ational semantics (Plotkin, 1981; Hennessy, 1990). The
meaning of assignment and composition on a simplified
abstract machine can be represented respectively as

(BE,s) =V
(L:=FE,s) = (sW(L—V))’

(C1,8) — &
<01;CQ7S> — <02,S/>,

where E, L,V denote expression, memory location and
value respectively, s € S denotes environment function
mapping all memory locations to values, and C represents
code snippet. Therefore, the meaning of assignment can
be explained as “the program L := E will update the envi-
ronment function s with L = V if the expression E in the
environment s reduces to V. Similarly, the composition
can be explained as “if the code snippet Cy in environment
s finishes in ', then the composed code snippet C; Cs in

19>

environment s can reduce to execute Cs in s'”.

Obviously, the semantics of a code snippet depends on two
parts: the instructions and the information of environment
transitions on the abstract machine. Therefore, we propose
that a good code representation would be sufficiently learned
from these two parts to better understand the semantics of
programs. In the following, we will present OSCAR, which
is a hierarchical model that learns code representation from
these two aspects.
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Figure 1. An illustration of the model architecture of OSCAR.

3.1. Input Representations
3.1.1. INTERMEDIATE REPRESENTATION (IR)

Learning representation directly from high-level PLs has
been widely adopted by existing program understanding
methods. However, the gap between the textual represen-
tation of source or binary code versus the actual computa-
tional meaning becomes larger along with the development
of modern programming languages and compilers. This non-
negligible gap increases the difficulty of code understanding
for existing models.

In general, in order to better analyze and optimize a pro-
gram, a modern compiler will translate the source code into
IR before it generates machine code for a target architecture.
IR is modeled after an abstract machine that is typically
designed so that each instruction represents exactly one fun-
damental operation. With this characteristic, IR becomes
a more accurate and appropriate representation of the in-
struction in operational semantics instead of high-level PLs.
We collect a large corpus of real-world programs (Details
in Appendix F.1) and translate them into LLVM IR as our
pre-training data. LLVM IR is one of the most commonly
used IR forms, and supports a wide variety of languages.

There is an additional advantage for using IR: if the target
code snippet is binary or assembly, the textual information
would be easily preserved when translating binary code to
IR, unless the binary is generated from strong obfuscation,
e.g., executable packing. Meanwhile, translating binary or
assembly back to source code (aka. decompilation) would
totally change the distribution and legibility of tokens, which
would deeply hurt the performance of source code-based
methods.

3.1.2. ABSTRACT ENVIRONMENT INFORMATION

We leverage the structural operational semantics to illustrate
how we encode the information of environment transitions
into the model. The inductive nature of structural opera-
tional semantics requires a properly defined initial condition,
which is described by the initial environment function. The
transitions can then be inferred step-by-step based on the
sequencing rules (i.e., composition, transformation, and con-
ditioning, please refer to Plotkin (1981); Hennessy (1990)).
To fully capture the concrete and precise information of
environment transitions, one has to iterate through many
possible combinations of input values and initial conditions,
and infer the transitions by actually execute the program
with the sequencing rules. This is obviously infeasible since
actual executions are quite time-consuming and risky, e.g.,
analysis for large software projects or malicious software.

Therefore, we alternatively use the abstract environment
information obtained from static program analysis, instead
of the concrete one. The abstract environment informa-
tion is inspired by the abstract interpretation (Cousot &
Cousot, 1977; 1979), and describes program semantics by
a mathematical characterization of possible behaviors of
the program instead of modeling the behaviors after many
actual execution trails of the program. Applying this idea to
structural operational semantics, each expression can reduce
to not only a concrete value, but also a relation or a possible
range in the value space.

Specifically, we extract three types of relational constraints
of the environment from the instructions: those governed
by static single assignment (SSA), those by memory reads,
and those by memory writes. This information can be easily
obtained by LLVM built-in analytic features, e.g., Memo-
rySSA. In addition, to better model the range constraints of
the environment , we extract auxiliary information from the
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control flow graph, i.e., the depth of loop, via LLVM Loop-
Info. Detailed descriptions about the extraction of abstract
environment information can be found in Appendix A.

3.2. Model
3.2.1. ARCHITECTURE

The model architecture of OSCAR is a hierarchical multi-
layer Transformer encoder, which is illustrated in Fig.1. In
particular, OSCAR consists of two levels of encoders. The
lower level is composed of two token-level encoders, which
are used to process tokens from IR and abstract environment
information, respectively. The upper level is an instruction-
level encoder, which aims to extract features further based
on the lower-level layer’s outputs. The implementation of
each level of encoders is identical to BERT (Devlin et al.,
2019). We call the two token-level encoders as IR and Env.
encoder, and the instruction-level encoder as Inst. encoder.

Typically, the token sequence of a practical program is
long. If we simply feed the sequence to a standard Trans-
former, the time and space cost will be extremely high
since the attention module suffers from quadratic computa-
tion and memory requirements with respect to the sequence
length. Most previous methods truncate the long input se-
quence (Kanade et al., 2020; Feng et al., 2020) to a short
one, such as 512 tokens. But obviously, a 512-long token
sequence will lose a significant amount of information in
the program or code snippet.

The hierarchical architecture of OSCAR is designed to better
solve this problem. We partition the instructions of the
input program into groups by every K instructions as one
group, and the IR (or abstract environment information)
tokens of each group would be fed into parameter-shared IR
(or Env.) encoders separately. The output representations
coming from one instruction of the token-level encoders,
would be averagely pooled, to aggregate the information at
the instruction level. Then, those instruction-level hidden
representations will be fed to the Inst. encoder for further
feature extraction. We set ' = 4 in our experiments.

Similar to Dai et al. (2020), we up-sample the output se-
quences of the instruction-level encoder by repeating each
hidden vector multiple times so that the length is enlarged
to the original token sequence. After up-sampling, con-
secutive vectors of each instruction would be exactly the
same and lost the detailed token-level signals. To involve
the uncompressed token-level signal, we adopt a residual
connection between uncompressed token-level hidden repre-
sentations and the up-sampling vectors. After that, another
two token-level encoders would try to recover the original
token sequences on the positions of the instruction masks.

3.2.2. POSITIONAL CONDITION ENCODING

Since the Transformer is developed to solve the problem of
sequence transduction in natural language, it cannot well
capture the complicated control structure of programming
languages, such as iteration logic and selection logic. How-
ever, the control flow information is indispensable for un-
derstanding the semantics of a program. To overcome this
problem, incorporating the control flow graph (CFG) into
Transformer has been widely adopted in prior works (Hel-
lendoorn et al., 2019; David et al., 2020).

In this paper, we design a more simple but effective method
called Positional Condition Encoding (PCE), to encode the
control flow information into the model through positional
encoding. PCE assigns three learnable embedding vectors
to the position of each instruction in the target program or
code snippet, representing the instruction’s current position,
and target positions after conditionally jumping with true
and false, respectively. Fig.2 shows the illustration of PCE
corresponding to the code snippet and the control flow graph,
where p;, p! and p? denote the learnable embedding at the
current position, true-jumping position, and false-jumping
position, of the instruction at position ¢ separately.

Jj+1 1 while (low <= high){ HO) ™

j+1 j+2z 42 @I mid = (low + high)/2;

j+2 j+3 j+a | if (x < v[mid]) @ @

j+3 j j high = mid - 1; |

j+4 j+5 j+6 @I else if (x > v[mid]) @

j+5 j j low = mid + 1; |

j+6 -1 -1 @ | else return mid;} @ @
(a) positional

(b) code snippet (c) control flow graph

condition encoding

Figure 2. An illustration of PCE. PCE could encode the informa-
tion of control flow graph into the model. Please note that the
example code snippet is written in C++ for readability.

To be more concrete, let h; € R? be the instruction-level
hidden representation at position 4, and WV € R%* de-
notes learnable projection matrix. The output z; of the first
self-attention module in the Inst. encoder can be written as

Z < 20) g, vy, (1)

jr=1 exp(aij)

Similar to Ke et al. (2020), we propose to model the relation-
ship between positions with different projection matrices.
Then, the correlation term cv;; in Eq.1 is calculated as

(h W) (h; W) + \/%deQ)(ijK)T

U @IUTE)T, (2)

1
Aqjj = —F—
' Vad

1 14+1 1
+—=@P U™ ——=
Vad ( Vad
where W WK € R?*? are the projection matrices for
the hidden representation h, U?, UK € R%*? are the pro-
jection matrices for the current positional embedding p, and
ULQ ULE %R %K ¢ RIXd gre for the true-jumping

NEIU)T +
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and false-jumping position embedding p' and p°. The scal-
1

ing coefficient T maintains the magnitude of «;;.

From Fig.2 we can see that PCE can incorporate the infor-
mation about outgoing edges of the nodes in the CFG into
the attention module, and the information about incoming
edges would also be captured after the calculation of posi-
tional correlation in Eq.2. This indicates that OSCAR could
capture all information of the CFG with PCE even that the
CFG has not been explicitly fed into the model.

3.3. Pre-training Objectives

Masked Instruction LM Predicting the masked tokens
is the most commonly used objective function in previous
BERT-based code representation methods (Kanade et al.,
2020; Feng et al., 2020; Guo et al., 2020). It’s essential to
OSCAR that captures the token-level contextual knowledge
from optimizing MLM loss during pre-training. However,
since both IR and abstract environment information are si-
multaneously provided to our model, it’s trivial to derive
particular tokens in the IR through the environment which
comes from the same instruction, and vice versa. To prevent
such potential information leakage, we propose to mask
consecutive tokens of an entire instruction. Specially, we
sample randomly 15% instructions from IR and paired envi-
ronment. We replace the instructions with [MASK] tokens
80% of the time, with random instructions 10% of the time,
and leave them unchanged 10% of the time.

Contrastive Learning with Optimization Techniques
How to effectively capture the program- or code snippet-
level semantic knowledge during pre-training is certainly
essential for code representation models. However, it has
not been well-studied by prior works.

Actually, modern compilers support versatile compilation
options for different demands of optimizations, e.g., mini-
mize execution time, memory footprint, storage size, etc. A
single source code snippet could be translated to contrasting
IR with different optimization techniques, but the meaning
of the code would not be changed. Naturally, the differ-
ent combinations of multiple optimizations can be used as
a method of data augmentation for source code (Details
in Appendix E). Motivated by this, we propose to employ
an objective on [CLS] token of contrastive learning with
a momentum encoder (He et al., 2020) as OSCAR’s self-
supervised task to better facilitate the semantics understand-
ing from program level, which is illustrated in Fig.1.

4. Experiments

We conduct the pre-training of OSCAR on a large corpus
of real-world programs from publicly available open-source
GitHub repositories, which covers a broad range of disci-
plines from operating systems and compilers, to machine

learning systems and linear algebra subprograms (Details
in Appendix F.1). We evaluate the performance of OSCAR
on several semantics understanding tasks for programs in
this section. We first perform our model on a practical and
important software engineering task, i.e., binary diffing. It
is a very fundamental task in reverse engineering and has
been widely used to enable different kinds of critical se-
curity analysis. After that, we evaluate the performance
of OSCAR for high-level PL understanding on the algo-
rithm classification task. Furthermore, as a pre-training
method, we investigate the performance of OSCAR in zero-
shot learning, where the parameters of OSCAR are fixed.
Finally, we analyze the components of our model in the
ablation study. Unless otherwise specified, all experiments
are conducted on a 12-layer OSCAR model which is com-
posed sequentially of three token-level encoder layers, six
instruction-level encoder layers, and three token-level en-
coder layers. We follow RoBERTa-base (Liu et al., 2019)
to set other model configurations (Details in Appendix B),
e.g., the dimensionality of hidden representation d is set to
768. The total sequence length of Inst. encoder is set to 512,
where the IR and Env. encoders each account for 256 in-
structions. Detailed descriptions of all downstream datasets
and optimization strategies of pre-training and fine-tuning
could be found in Appendix G and H respectively.

4.1. Binary Diffing

Binary code differential analysis, a.k.a. binary diffing, is
a fundamental analysis capability, which aims to measure
the function-level similarity between two given binaries.
We evaluate the performance of OSCAR on binary diffing
by following the setting and the dataset described in Ding
et al. (2019). In addition to Asm2vec (Ding et al., 2019),
we further compare OSCAR with two baseline techniques:
BinDiff (Dullien & Rolles, 2005), which is the de facto
standard binary diffing tool based on graph isomorphism
detection; and BinaryAl (Yu et al., 2020a;b), which is a
most recently proposed binary code feature extractor based
on a hybrid model of neural network with BERT, CNN and
GNN, and achieves state-of-the-art performance on code
similarity detection.

Following Ding et al. (2019), we evaluate baseline tech-
niques and OSCAR on five commonly used programs using
Recall@]. All five programs are compiled with GCC 7.5.0
against four different optimization levels. The results are
given in Tab.1. As shown, OSCAR consistently outperforms
BinDiff, Asm2vec, and BinaryAl across all optimization
levels of five programs in terms of recall, by a large margin.
For example, in the most difficult matching situation, i.e.
diffing between the O0 and O3 optimization levels, OSCAR
improves the recall over all baseline techniques on every
program.
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Table 1. Binary code similarity detection using the Recall at position 1 (Recall@1) metric on popular software across different

optimization levels.

Software ‘ Methods ‘ 00-01 00-03 O01-03 02-03 ‘ Avg.
BinDiff (Dullien & Rolles, 2005) | 0.4360 0.0419 0.1600 0.6455 | 0.3209
SQLite Asm2vec (Ding et al., 2019) 0.2407 0.2084 0.4270 0.5520 | 0.2371
BinaryAI (Yu et al., 2020a;b) 0.8245 0.5563 0.6667 0.8107 | 0.7146
OSCAR 0.8063 0.6467 0.7148 0.8198 | 0.7469
BinDiff (Dullien & Rolles, 2005) | 0.7143 0.1237 0.1959 0.4271 | 0.3653
Aib Asm2vec (Ding et al., 2019) 0.1805 0.2371 0.3814 0.5104 | 0.3274
BinaryAl (Yu et al., 2020a;b) 0.9023 0.6392 0.7010 0.7708 | 0.7533
OSCAR 0.9023 0.7423 0.7835 0.8229 | 0.8128
BinDiff (Dullien & Rolles, 2005) | 0.5464 0.1893 0.4831 0.8190 | 0.5095
Libeurl Asm2vec (Ding et al., 2019) 0.4911 04916 0.6012 0.6426 | 0.5566
BinaryAl (Yu et al., 2020a;b) 0.8550 0.7282 0.7991 0.8620 | 0.8111
OSCAR 0.8560 0.7405 0.8190 0.8512 | 0.8167
BinDiff (Dullien & Rolles, 2005) | 0.5364 0.2939 0.6304 0.9658 | 0.6066
BusyBox Asm2vec (Ding et al., 2019) 0.3236 0.3767 0.6163 0.6907 | 0.5018
BinaryAI (Yu et al., 2020a;b) 0.8541 0.7907 0.9023 0.9478 | 0.8737
OSCAR 0.8764 0.8183 0.8883 0.9520 | 0.8838
BinDiff (Dullien & Rolles, 2005) | 0.1096 0.0257 0.1768 0.6956 | 0.2519
LibTomCrypt Asm2vec (Ding et al., 2019) 0.4345 0.4319 0.6869 0.7454 | 0.5747
BinaryAI (Yu et al., 2020a;b) 0.4906 0.4835 0.6114 0.7491 | 0.5837
OSCAR 0.6483 0.5404 0.6630 0.7583 | 0.6525

4.2. Algorithm Classification

In this subsection, we study the performance of OSCAR
on high-level programming language understanding. We
conduct the experiments on POJ-104 dataset (Mou et al.,
2016), which contains 104 algorithm problems that were
submitted to an online judge system. All samples were
written in C/C++ by students. The dataset has around 500
samples per algorithm. The experimental setting we used
is exactly same with ProGraML (Cummins et al., 2020a;b),
which achieves state-of-the-art classification accuracy on
this dataset.

Table 2. Classification error on POJ-104 test dataset. The per-
formance of all baseline methods is cited from Cummins et al.
(2020b).

Methods | Error(%)
TBCNN (Mou et al., 2016) 6.00
NCC (Ben-Nun et al., 2018) 5.17
XFG (Ben-Nun et al., 2018) 4.56
XFG w/o inst2vec vocab 4.29
ProGraML (Cummins et al., 2020a;b) |  3.38
OSCAR \ 1.92

Tab.2 shows the results of classification error. According

to the table, our model achieves significant improvement
comparing with all previous methods by a large margin,
which indicates that OSCAR could well understand the
semantics of source code written in high-level PLs.

4.3. Zero-Shot Learning

In the previous subsection, we show that after fine-tuning
the parameters on downstream tasks, OSCAR could out-
perform prior methods on both binary code or high-level
programming language. In this subsection, we further in-
vestigate the performance of pre-trained OSCAR in the
zero-shot learning setting, i.e., evaluate OSCAR without
modifying the parameters. In the comparison, we choose
CodeBERT (Feng et al., 2020) as a baseline which shows
promising zero-shot ability in the PL-NL probing task. We
conduct the empirical study on the code similarity task by
leveraging the POJ-104 dataset described above. Follow-
ing Ye et al. (2020), we label two programs as similar if they
are solutions to the same problem, and use mean average
precision (MAP) as the evaluation metric. The difference
is that we only evaluate our model on the testing dataset
without using the training and validation sets.

Since there is no supervision on [CLS] token in CodeBERT
during pre-training, it’s potentially unfair to only use the rep-
resentation on [CLS] token in this task. Following Reimers
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Table 3. Mean average precision (MAP) on POJ-104 test
dataset. The performance of all baselines is cited from Ye et al.
(2020).The pre-trained model of { is downloaded from the official
release of Feng et al. (2020).

| Methods | MAP(%)
code2vec (Alon et al., 2019) 1.90
NCC (Ben-Nun et al., 2018) 39.95
Trianing-based NCC w/o inst2vec 54.19
Aroma-Dot (Luan et al., 2019) 52.09
Aroma-Cos 55.12
MISIM (Ye et al., 2020) 82.45
CodeBERT-[CLS] (Feng et al., 2020)7| 10.38
Pre-training | CodeBERT-avg. of outputs{ 9.62
w/o fine-tuning | OSCAR 1 _6—1 45.24
OSCAR 49.17

et al. (2019), we additionally calculate the average of the
outputs on all tokens of CodeBERT as the representation
in comparison. Furthermore, despite that both CodeBERT
and OSCAR have 12 transformer layers, OSCAR has more
parameters (163M) than CodeBERT (125M) since there are
two simultaneous token-level encoders, i.e., IR encoder and
Env. encoder. For a fair comparison, we also report the
MAP of a shallow OSCAR with only one token-level en-
coder layer before and after the six instruction-level encoder
layers, which is called OSCAR;_¢_; and has only 107M
parameters.

As shown in Tab.3, without further modifying the parame-
ters, the pre-trained OSCAR and OSCAR;_g_; both show
promising performance on code similarity detection, com-
paring to other pre-trained models. This indicates that OS-
CAR has the potential of transferability on downstream
tasks without fine-tuning.

Please note, although OSCAR optimizes a similarity loss
function (See Sec.3.3) in the pre-training phase, the defi-
nitions of two data samples as similar are totally different
between pre-training and this task: one labels two IRs as
similar if they are generated from the same code snippet
with different optimization techniques, and the other labels
two programs written by different students as similar if they
are solutions to the same OJ problem. Therefore, the ob-
jectives of OSCAR pre-training and this task are not the
same, and the pre-trained OSCAR model demonstrates the
capability of semantics understanding of program in the
zero-shot learning setting.

4.4. Ablation Study

In this subsection, we investigate the effects of each compo-
nent in OSCAR on binary diffing task using BusyBox, and
the experimental setting is identical to above. Tab.4 ablates

Table 4. Ablation study on the components of OSCAR.

Methods | Avg. Recall@1

OSCAR 0.8838
w/o PCE 0.8662
w/o contrastive loss 0.8267

CuBERT (Kanade et al., 2020) w/ IR 0.4650

the effects of the two components of OSCAR: contrastive
loss and PCE. As shown in the figure, all components are
beneficial, improving the recall on the binary diffing task.
Meanwhile, we further train a BERT on IR corpus, which
is similar to CuBERT (Kanade et al., 2020) because they
share exactly the same architecture, and the only difference
is that CuBERT is pre-trained on Python corpus. The result
shows that, CuBERT with IR performs not well on the bi-
nary diffing task, which reflects the hierarchical architecture
of OSCAR is also significantly beneficial.

5. Discussion

In this section, we discuss a few potential drawbacks of our
method, which are left for future work.

Real-time Code Analysis Currently, we analyze the tar-
get code snippet relying on compiler and static program
analysis, which requires that the target code snippet should
be compilable. This dependence may limit the applications
of OSCAR on real-time code analysis, such as in the modern
integrated development environment (IDE). However, there
are many alternatives to choose for real-time IR translation
and environment information extraction. For example, the
interpreter can translate interpreted language (e.g., Python
interpreter) into IR in an interactive style; and even for some
compiled languages, interactive interpreters are also been
developed (e.g., Cling? for C++) which support just-in-time
(JIT) compilation. With these technologies, there is no need
to require the target code snippet to be a compilable pro-
gram, but only a complete basic block.

Token Semantics Analysis of Source Code When com-
pilers translate source code to IR, partial semantics of tokens
is lost since all variables’ names would be automatically
normalized and replaced by LLVM value identifier. It may
lead to a failure of semantics analysis as important infor-
mation is contained in the variable name. For example,
CuBERT (Kanade et al., 2020) claims that it can detect the
following code written in Python is buggy:

num_batches = batch_size / num_examples

where OSCAR may fail in handling this case with high
probability. It may be well-solved by keeping the original
tokens in IR. We leave it for future work.

https://github.com/root-project/cling.
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6. Conclusion

In this paper, we propose a novel pre-training model called
OSCAR to learn better code representation. Motivated by
operational semantics, we suggest that, instead of learn-
ing representation directly from high-level programming
languages, the intermediate representation is a better ab-
straction of the semantics of instructions; meanwhile, to
well understand the meaning of a program, we propose
the abstract environment information should be necessar-
ily considered. Besides, we introduce two additional tech-
niques to make up the OSCAR. First, we incorporate the
control flow information into the model through a novel
positional encoding called PCE. Second, to provide a code
snippet-level self-supervision during pre-training, we intro-
duce contrastive loss by generating syntactically diverse
but functionally equivalent IRs with different optimization
techniques. OSCAR empirically shows promising results on
practical software engineering tasks, including both binary
code and high-level programming language understanding,
and also demonstrates the transferability on downstream
tasks without modifying the parameters of the pre-trained
model.
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