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Abstract
Many video classification applications require ac-
cess to personal data, thereby posing an invasive
security risk to the users’ privacy. We propose
a privacy-preserving implementation of single-
frame method based video classification with con-
volutional neural networks that allows a party to
infer a label from a video without necessitating
the video owner to disclose their video to other
entities in an unencrypted manner. Similarly, our
approach removes the requirement of the classi-
fier owner from revealing their model parameters
to outside entities in plaintext. To this end, we
combine existing Secure Multi-Party Computa-
tion (MPC) protocols for private image classifica-
tion with our novel MPC protocols for oblivious
single-frame selection and secure label aggrega-
tion across frames. The result is an end-to-end
privacy-preserving video classification pipeline.
We evaluate our proposed solution in an applica-
tion for private human emotion recognition. Our
results across a variety of security settings, span-
ning honest and dishonest majority configurations
of the computing parties, and for both passive and
active adversaries, demonstrate that videos can
be classified with state-of-the-art accuracy, and
without leaking sensitive user information.

1. Introduction
Deep learning based video classification is extensively used
in a growing variety of applications, such as facial recog-
nition, activity recognition, gesture analysis, behavioral
analysis, eye gaze estimation, and emotion recognition
in empathy-based AI systems (Ali et al., 2020; Liu et al.,
2019; Li et al., 2020; Liu et al., 2020b; Manna et al., 2020;
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Meinich-Bache et al., 2020; Peng et al., 2020; Shah et al.,
2019; Wu et al., 2019). Many existing and envisioned ap-
plications of video classification rely on personal data, ren-
dering these applications invasive of privacy. This applies
among other tasks to video surveillance and home monitor-
ing systems. Similarly, empathy-based AI systems expose
personal emotions, which are most private to a user, to the
service provider. Video classification systems deployed in
commercial applications commonly require user videos to
be shared with the service provider or sent to the cloud.
These videos may remain publicly available on the Internet.
Users have no control over the deletion of the videos, and the
data may be available for scraping, as done for instance by
Clearview AI (Hill, 2020). The need to protect the privacy
of individuals is widely acknowledged (National Science
and Technology Council, 2016). Concerns regarding pri-
vacy of user data are giving rise to new laws and regulations
such as the European GDPR and the California Consumer
Privacy Act (CCPA), as well as a perceived tension between
the desire to protect data privacy on one hand, and to pro-
mote an economy based on free-flowing data on the other
hand (Kalman, 2019). The E.U. is for instance considering a
three-to-five-year moratorium on face recognition in public
places, given its significant potential for misuse.

A seemingly straightforward technique to keep user videos
private is to deploy the deep learning models of the service
providers at the user-end instead of transferring user data
to the cloud. This is not a viable solution for several rea-
sons. First, owners of proprietary models are concerned
about shielding their model, especially when it constitutes
a competitive advantage. Second, in security applications
such as facial recognition, or deepfake detection, revealing
model details helps adversaries develop evasion strategies.
Furthermore, powerful deep learning models that memorize
their training examples are well known; one would not want
to expose those by revealing the model. Finally, deploy-
ment of large deep learning models at the user end may be
technically difficult or impossible due to limited computa-
tional resources. For these reasons, ML tasks such as video
classification are commonly outsourced to a set of efficient
cloud servers in a Machine-Learning-as-a-Service (MLaaS)
architecture. Protecting the privacy of both the users’ and
the service provider’s data while performing outsourced ML
computations is an important challenge.

Privacy-preserving machine learning (PPML) has been
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Figure 1. Privacy-preserving video classification as an outsourced
computation problem, illustrated for the 3-party computation set-
ting (3PC) with 3 servers S1, S2, and S3

hailed, even by politicians (Commission of Evidence-Based
Policymaking, 2017; Wyden, 2017), as a potential solution
when handling sensitive information. Substantial technolog-
ical progress has been made during the last decade in the
area of Secure Multi-Party Computation (MPC) (Cramer
et al., 2015), an umbrella term for cryptographic approaches
that allow two or more parties to jointly compute a speci-
fied output from their private information in a distributed
fashion, without revealing the private information to each
other. Initial applications of MPC based privacy-preserving
inference with deep learning models have been proposed
for image (Agrawal et al., 2019; Dalskov et al., 2020b; Ju-
vekar et al., 2018; Kumar et al., 2020; Mishra et al., 2020;
Riazi et al., 2018; 2019; Rouhani et al., 2018) and audio
classification (Bittner et al., 2021). We build on this existing
work to create the first end-to-end MPC protocol for private
video classification. In our solution, videos are classified
according to the well-known single-frame method, i.e. by
aggregating predictions across single frames/images. Our
main novel contributions are:

• A protocol for selecting frames in an oblivious manner.
• A protocol for secure frame label aggregation.
• An evaluation of our secure video classification pipeline

in an application for human emotion detection from video
on the RAVDESS dataset, demonstrating that MPC based
video classification is feasible today, with state-of-the-art
classification accuracies, and without leaking sensitive
user information.

Fig. 1 illustrates the flow of our proposed solution at a high
level. The video of end user Alice should be classified with
Bob’s model in such a way that no one other than Alice

sees the video, and no one other than Bob sees the model
parameters. Below we refer to both Alice’s video and Bob’s
model parameters as “data”. In Step 1 of Fig. 1, Alice
and Bob each send secret shares of their data to a set S of
untrusted servers (“parties”). While the secret shared data
can be trivially revealed by combining all shares, nothing
about the data is revealed to any subset of the servers that
can be corrupted by the adversary. This means, in particular,
that none of the servers by themselves learns anything about
the actual values of the data. Next, in Step 2, the servers
execute MPC protocols for oblivious frame selection, image
classification, and frame label aggregation. Throughout this
process, none of the servers learns the values of the data nor
the assigned label, as all computations are done over secret
shares. Finally, in Step 3, the servers can reveal their shares
of the computed class label to Alice, who combines them in
Step 4 to learn the output of the video classification.

Steps 1 and 3-4 are trivial as they follow directly from the
choice of the underlying MPC scheme (see Sec. 3). The
focus of this paper is on Step 2, in which the servers (par-
ties) execute protocols to perform computations over the
secret shared data (see Sec. 4). MPC is concerned with the
protocol execution coming under attack by an adversary
which may corrupt parties to learn private information or
cause the result of the computation to be incorrect. MPC
protocols are designed to prevent such attacks being suc-
cessful. There exist a variety of MPC schemes, designed
for different numbers of parties and offering various levels
of security that correspond to different threat models, and
coming with different computational costs. Regarding threat
models, we consider settings with semi-honest as well as
with malicious adversaries. While parties corrupted by semi-
honest adversaries follow the protocol instructions correctly
but try to obtain additional information, parties corrupted
by malicious adversaries can deviate from the protocol in-
structions. Regarding the number of parties (servers), some
of the most efficient MPC schemes have been developed
for 3 parties, out of which at most one is corrupted. We
evaluate the runtime of our protocols in this honest-majority
3-party computing setting (3PC), which is growing in pop-
ularity in the PPML literature, e.g. (Dalskov et al., 2020b;
Kumar et al., 2020; Riazi et al., 2018; Wagh et al., 2019;
Patra & Suresh, 2020), and we demonstrate how in the case
of malicious adversaries even better runtimes can be ob-
tained with a recently proposed MPC scheme for 4PC with
one corruption (Dalskov et al., 2020a). Our protocols are
generic and can be used in a 2PC, dishonest-majority setting
as well, i.e. where each party can only trust itself. Note that
in the 2PC setting, the computation can be performed di-
rectly by Alice and Bob if they are not very limited in terms
of computational resources. As known from the literature,
and apparent from our results, the higher level of security
offered by the 2PC setting comes with a substantial increase
in runtime.
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After discussing related work in Sec. 2 and recalling pre-
liminaries about MPC in Sec. 3, we present our protocols
for privacy-preserving video classification in Sec. 4. The
MPC protocols we present in Sec. 4 enable the servers to
perform all these computations without accessing the video
V or the convolutional neural network (ConvNet) modelM
in plaintext. In Sec. 5 we present an experimental evaluation
of our method when applied to emotion recognition from
videos of the RAVDESS dataset. Our ConvNet based secure
video classification approach achieves accuracies at par with
those in the literature for this dataset, while not requiring
leakage of sensitive information. Our prototype classifies
videos that are 3-5 sec in length in under 9 sec on Azure F32
machines, demonstrating that private video classification
based on MPC is feasible today.

2. Related Work
Privacy-preserving video classification. Given the inva-
sive nature of video classification applications, it is not
surprising that efforts have been made to protect the privacy
of individuals. Non-cryptography based techniques such as
anonymizing faces in videos (Ren et al., 2018), pixel ran-
domization to hide the user’s identity (Imran et al., 2020),
compressing video frames to achieve visual shielding effect
(Liu et al., 2020a), lowering resolution of videos (Ryoo
et al., 2017), using autoencoders to maintain privacy of the
user’s data (D’Souza et al., 2020), and changes in ways the
videos are captured (Wang et al., 2019b) do not provide
any formal privacy guarantees and affect the accuracy of
the inference made. Solutions based on Differential Pri-
vacy (DP) (Wang et al., 2019a) introduce noise, or replace
the original data at the user end by newly generated data,
to limit the amount of information leaked, at the cost of
lowering accuracy. The recently proposed “Visor” system
requires secure hardware (trusted execution environments)
for privacy-preserving video analytics (Poddar et al., 2020).

In contrast to the approaches above, in this paper we pursue
the goal of having no leakage of information during the
inference phase, without requiring special secure hardware.
To the best of our knowledge, our approach is the first in the
open literature to achieve this goal for private video classifi-
cation. To this end, we leverage prior work on cryptography
based private image classification, as described below, and
augment it with novel cryptographic protocols for private
video frame selection and label aggregation across frames.

Cryptography based image classification. There are 2
main approaches within cryptography that enable computa-
tions over encrypted data, namely Homomorphic Encryp-
tion (HE) and Secure Multiparty Computation (MPC). Both
have been applied to secure inference with trained neural
networks, including for image classification with ConvNets
(Byali et al., 2020; Gilad-Bachrach et al., 2016; Koti et al.,
2020; Kumar et al., 2020; Patra & Suresh, 2020; Chaudhari

et al., 2020; Riazi et al., 2019; 2018; Wagh et al., 2019;
2021). Neither have been applied to video classification
before. While HE has a lower communication burden than
MPC, it has much higher computational costs, making HE
less appealing at present for use in applications where re-
sponse time matters. E.g., in state-of-the-art work on private
image classification with HE, Chillotti et al. (2021) report a
classification time of ∼ 9 sec for a 28× 28 MNIST image
on 96vCPU AWS instances with a neural network smaller in
size (number of parameters) than the one we use in this pa-
per. As demonstrated in Sec. 5, the MPC based techniques
for image classification based on Dalskov et al. (2020b)
that we use, can label images (video frames) an order of
magnitude faster, even when run on less powerful 32vCPU
Azure instances (∼ 0.26 sec for passive 3PC;∼ 0.57 sec for
active 4PC). We acknowledge that this superior performance
stems from the flexibility of MPC to accommodate honest-
majority 3PC/4PC scenarios. HE based private image clas-
sification is by design limited to the dishonest-majority 2PC
setting, in which our MPC approach is too slow for video
classification in (near) real-time as well.

Emotion recognition. A wide variety of applications have
prompted research in emotion recognition, using various
modalities and features (Bhattacharya et al., 2020; Jia et al.,
2019; Jiao et al., 2020; Wei et al., 2020), including videos
(Zhao et al., 2020; Hu et al., 2019; Mittal et al., 2020a;b;
Deng et al., 2020). Emotion recognition from videos in the
RAVDESS benchmark dataset, as we do in the use case
in Sec. 5, has been studied by other authors in-the-clear,
i.e. without regards for privacy protection, using a variety
of deep learning architectures, with reported accuracies in
the 57%-82% range, depending on the number of emotion
classes included in the study (6 to 8) (Bagheri et al., 2019;
Mansouri-Benssassi & Ye, 2020; Bursic et al., 2020; Abdul-
lah et al., 2020). The ConvNet model that we trained for our
experimental results in Sec. 5 is at par with these state-of-
the-art accuracies. Jaiswal and Provost (Jaiswal & Provost,
2020) have studied privacy metrics and leakages when in-
ferring emotions from data. To the best of our knowledge,
there is no existing work on privacy-preserving emotion
detection from videos using MPC, as we do in Sec. 5.

3. Preliminaries
Protocols for Secure Multi-Party Computation (MPC) en-
able a set of parties to jointly compute the output of a func-
tion over the private inputs of each party, without requiring
any of the parties to disclose their own private inputs. MPC
is concerned with the protocol execution coming under at-
tack by an adversary A which may corrupt one or more of
the parties to learn private information or cause the result
of the computation to be incorrect. MPC protocols are de-
signed to prevent such attacks being successful, and can be
mathematically proven to guarantee privacy and correctness.
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We follow the standard definition of the Universal Com-
posability (UC) framework (Canetti, 2000), in which the
security of protocols is analyzed by comparing a real world
with an ideal world. For details, see Evans et al. (2018).

An adversary A can corrupt a certain number of parties.
In a dishonest-majority setting the adversary is able to cor-
rupt half of the parties or more if he wants, while in an
honest-majority setting, more than half of the parties are
always honest (not corrupted). Furthermore, A can have
different levels of adversarial power. In the semi-honest
model, even corrupted parties follow the instructions of the
protocol, but the adversary attempts to learn private infor-
mation from the internal state of the corrupted parties and
the messages that they receive. MPC protocols that are se-
cure against semi-honest or “passive” adversaries prevent
such leakage of information. In the malicious adversarial
model, the corrupted parties can arbitrarily deviate from
the protocol specification. Providing security in the pres-
ence of malicious or “active” adversaries, i.e. ensuring that
no such adversarial attack can succeed, comes at a higher
computational cost than in the passive case.

The protocols in Sec. 4 are sufficiently generic to be used in
dishonest-majority as well as honest-majority settings, with
passive or active adversaries. This is achieved by chang-
ing the underlying MPC scheme to align with the desired
security setting. Table 1 contains an overview of the MPC
schemes used in Sec. 5. In these MPC schemes, all com-
putations are done on integers modulo q, i.e., in a ring
Zq = {0, 1, . . . , q − 1}, with q a power of 2. The pixel
values in Alice’s video and the model parameters in Bob’s
classifier are natively real numbers represented in a floating
point format. As is common in MPC, they are converted
to integers using a fixed-point representation (Catrina &
Saxena, 2010). When working with fixed-point representa-
tions with a fractional bits, every multiplication generates
an extra a bits of unwanted fractional representation. To
securely “chop off” the extra fractional bits generated by
multiplication, we use the deterministic truncation protocol
by Dalskov et al. (2020b; 2020a) for computations over
Z2k . Below we give a high level description of the 3PC
schemes from Table 1. For more details and a description
of the other MPC schemes, we refer to the papers in Ta-
ble 1. Though these MPC schemes perform computations
over arithmetic domain Z2k due to low cost for integer ad-
dition and multiplication, performing computations over a
binary domain (boolean computations performed over Z2)
can boost the performance when computing non-linear func-
tions such as comparison and bit decomposition. We use
mixed computations that switch between arithmetic and
binary computations based on the type of computation.

Replicated sharing (3PC). After Alice and Bob have con-
verted all their data to integers modulo q, they send secret
shares of these integers to the servers in S (see Fig. 1). In

Table 1. MPC schemes used in the experimental evaluation for
2PC (dishonest majority) and 3PC/4PC (honest majority)

MPC scheme Reference Mixed circuit

passive 2PC OTSemi2k semi-honest adapt. of
(Cramer et al., 2018) edaBits

3PC Replicated2k (Araki et al., 2016) local share conv.

active
2PC SPDZ2k (Cramer et al., 2018),

(Damgård et al., 2019) edaBits

3PC SPDZ-wise
Replicated2k (Dalskov et al., 2020a) local share conv.

4PC Rep4-2k (Dalskov et al., 2020a) local share conv.

a replicated secret sharing scheme with 3 servers (3PC), a
value x in Zq is secret shared among servers (parties) S1, S2,
and S3 by picking uniformly random shares x1, x2, x3 ∈ Zq

such that x1+x2+x3 = x mod q, and distributing (x1, x2)
to S1, (x2, x3) to S2, and (x3, x1) to S3. Note that no sin-
gle server can obtain any information about x given its
shares. We use [[x]] as a shorthand for a secret sharing of x.
The servers subsequently classify Alice’s video with Bob’s
model by computing over the secret sharings.

Passive security (3PC). The 3 servers can perform the
following operations through carrying out local compu-
tations on their own shares: addition of a constant, addi-
tion of secret shared values, and multiplication by a con-
stant. For multiplying secret shared values [[x]] and [[y]], we
have that x · y = (x1 + x2 + x3)(y1 + y2 + y3), and so
S1 computes z1 = x1 · y1 + x1 · y2 + x2 · y1, S2 com-
putes z2 = x2 · y2 + x2 · y3 + x3 · y2 and S3 computes
z3 = x3 · y3 + x3 · y1 + x1 · y3. Next, the servers obtain an
additive secret sharing of 0 by picking uniformly random
u1, u2, u3 such that u1+u2+u3 = 0, which can be locally
done with computational security by using pseudorandom
functions, and Si locally computes vi = zi + ui. Finally,
S1 sends v1 to S3, S2 sends v2 to S1, and S3 sends v3 to
S2, enabling the servers S1, S2 and S3 to get the replicated
secret shares (v1, v2), (v2, v3), and (v3, v1), respectively, of
the value v = x · y. This protocol only requires each server
to send a single ring element to one other server, and no
expensive public-key encryption operations (such as homo-
morphic encryption or oblivious transfer) are required. This
MPC scheme was introduced by Araki et al. (2016).

Active security (3PC). In the case of malicious adversaries,
the servers are prevented from deviating from the proto-
col and gain knowledge from another party through the
use of information-theoretic message authentication codes
(MACs). For every secret share, an authentication message
is also sent to authenticate that each share has not been
tampered in each communication between parties. In ad-
dition to computations over secret shares of the data, the
servers also need to update the MACs appropriately, and
the operations are more involved than in the passive secu-
rity setting. For each multiplication of secret shared values,
the total amount of communication between the parties is
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greater than in the passive case. We use the MPC scheme
SPDZ-wiseReplicated2k recently proposed by Dalskov et
al. (2020a) that is available in MP-SPDZ (Keller, 2020).

Mixed circuit computation. We use local share conver-
sion techniques (Mohassel & Rindal, 2018; Araki et al.,
2018; Demmler et al., 2015) for replicated secret sharing
based MPC schemes; and we employ techniques that use
secret random bits - extended doubly-authenticated bits (ed-
aBits) (Escudero et al., 2020) for the setting with dishonest
majority. The local share conversion technique generates
shares of the local binary/arithmetic share. These generated
shares are then passed through a binary adder to generate
the equivalent converted share. The difference between the
arithmetic to binary and binary to arithmetic conversion lies
in the binary adder and the computation of the carry bit. This
process requires additive secret sharing over a ring without
any MACs. The edaBits is a set of m random bits that are
shared in the binary domain and its arithmetic equivalent is
shared in the arithmetic domain. The conversion between
domains occur using these shared random bits.

MPC primitives. The MPC schemes listed above provide
a mechanism for the servers to perform cryptographic prim-
itives through the use of secret shares, namely addition of
a constant, multiplication by a constant, and addition and
multiplication of secret shared values. Building on these
cryptographic primitives, MPC protocols for other opera-
tions have been developed in the literature. We use:

• Secure matrix multiplication πDMM: at the start of this
protocol, the parties have secret sharings [[A]] and [[B]] of
matrices A and B; at the end of the protocol, the parties
have a secret sharing [[C]] of the product of the matrices,
C = A × B. πDMM is a direct extension of the secure
multiplication protocol for two integers explained above,
which we will denote as πDM in the remainder.

• Secure comparison protocol πLT (Catrina & De Hoogh,
2010a): at the start of this protocol, the parties have secret
sharings [[x]] and [[y]] of integers x and y; at the end of the
protocol they have a secret sharing of 1 if x < y, and a
secret sharing of 0 otherwise.

• Secure argmax πARGMAX: this protocol accepts secret
sharings of a vector of integers and returns a secret sharing
of the index at which the vector has the maximum value.
πARGMAX is straightforwardly constructed using the above
mentioned secure comparison protocol.

• Secure RELU πRELU (Dalskov et al., 2020b): at the start
of this protocol, the parties have a secret sharing of z; at
the end of the protocol, the parties have a secret sharing
of the value max(0, z). πRELU is constructed from πLT,
followed by a secure multiplication to either keep the
original value z or replace it by zero in an oblivious way.

• Secure division πDIV: for secure division, the parties use
an iterative algorithm that is well known in the MPC
literature (Catrina & De Hoogh, 2010b).

Figure 2. Illustration of oblivious frame selection. The assumption
is made that Alice has 4 frames in total, each of size 2× 2× 1, and
Bob needs to select 2 frames, namely Frames 2 and 4. Alice has
a tensor A of size 4 × 2 × 2 × 1 and Bob has a 2D-matrix B of
size 2× 4. A is flattened securely to form Aflat of size 4× 4. A
secure matrix multiplication B × Aflat is performed resulting in
Fflat, a 2× 4 matrix holding the 2 selected frames. This matrix is
then expanded to matrix F of size 2× 2× 2× 1.

4. Methodology
The servers perform video classification based on the single-
frame method, i.e. by (1) selecting frames from the video
V (Sec. 4.1); (2) labeling the selected frames with a Conv-
Net model M (Sec. 4.2); and (3) aggregating the labels
inferred for the selected frames into a final label for the
video (Sec. 4.3). The video V is owned by Alice and the
modelM is owned by Bob. Neither party is willing or able
to reveal their video/model to other parties in an unencrypted
manner.

4.1. Oblivious Frame Selection

We assume that Alice has prepared her video V as a 4D
array (tensor) A of size N × h × w × c where N is the
number of frames, h is the height and w is the width of the
frame, and c represents the number of color channels of
the frame. As explained in Sec. 3, Alice has converted the
pixel values into integers using a fixed-point representation.
The values of the dimensions N,h,w, c are known to Bob
and the set of servers S. All other properties of the video
are kept private, including the video length, the frames per
second (fps), and video capture details such as the type of
camera used. Moreover, Bob and the servers S do not learn
the values of the pixels, i.e. the actual contents of the frames
remain hidden from Bob and S (and anyone else, for that
matter). For an illustration of Alice’s input, we refer to the
top of Fig. 2, where N = 4, h = 2, w = 2, and c = 1.

Bob samples a fixed number of frames from Alice’s video,
without revealing to Alice the frames he is selecting, as such
knowledge might allow Alice to insert malicious frames in
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the video in the exact positions that Bob is sampling. We
assume that Bob has a vector b of length n, with the indices
of the n frames he wishes to select. These indices can for
instance be 1, 1 + d, 1 + 2d, . . . for a fixed window size d
that is known to Bob. In the example in Fig. 2, n = 2, both
2nd and 4th frames are selected.

The idea behind protocol πFSELECT for oblivious frame se-
lection, as illustrated in Fig. 2, is to flatten A into a matrix
that contains one row per frame, use a matrix B with one-
hot-encodings of the selected frames, multiply B with A,
and finally expand the product. In more detail: Bob converts
each entry i of list b (which is an index of a frame to be se-
lected) into a vector of length N that is a one-hot-encoding
of i, and inserts it as a row in matrix B of size n×N . Alice
and Bob then send secret shares of their respective inputs
A and B to the servers S, using a secret sharing scheme as
mentioned in Sec. 3. None of the servers can reconstruct
the values of A or B by using only its own secret shares.

Next the parties in S jointly execute protocol πFSELECT for
oblivious frame selection (see Protocol 1). On line 1, the
parties reorganize the shares of tensorA of sizeN×h×w×c
into a flattened matrix Aflat of size N × (h ·w · c). On line 2,
the parties multiply [[B]] and [[Aflat]], using protocol πDMM

for secure matrix multiplication, to select the desired rows
from Aflat. On line 3, these selected rows are expanded
again into a secret-shared tensor F of size n×h×w×c that
holds the selected frames. F [1], F [2], . . . , F [n] are used in
the remainder to denote the individual frames contained in
F . Throughout this process, the servers do not learn the
pixel values from A, nor which frames were selected.

Protocol 1 Protocol πFSELECT for oblivious frame selection
Input: A secret shared 4D-array [[A]] of size N × h×w× c with
the frames of a video; a secret shared frame selection matrix [[B]]
of size n×N . The values N , h, w, c, n are known to all parties.
Output: A secret shared 4D-array F of size n×h×w×c holding
the selected frames
1: [[Aflat]]←

RESHAPE([[A]], N × h× w × c,N × (h× w × c))
2: [[Fflat]]← πDMM([[B]], [[Aflat]])
3: [[F ]]← RESHAPE([[Fflat]], n× (h×w× c), n× h×w× c)
4: return [[F ]]

4.2. Private Frame Classification

We assume that Bob has trained an “MPC-friendly” 2D-
ConvNet M for classifying individual video frames (im-
ages), and that Bob secret shares the values of the model
parameters with the servers S, who already have secret
shares of the selected frames from Alice’s video after run-
ning Protocol πFSELECT. By “MPC-friendly” we mean that
the operations to be performed when doing inference with
the trained ConvNet are chosen purposefully among oper-
ations for which efficient MPC protocols exist or can be
constructed. Recall that a standard ConvNet contains one or

more blocks that each have a convolution layer, followed by
an activation layer, typically with RELU, and an optional
pooling layer. These blocks are then followed by fully con-
nected layers which commonly have RELU as activation
function, except for the last fully connected layer which
typically has a Softmax activation for multi-class classifi-
cation. The operations needed for all layers, except for the
output layer, boil down to comparisons, multiplicatons, and
summations. All of these cryptographic primitives can be
efficiently performed with state-of-the-art MPC schemes, as
explained in Sec. 3. Efficient protocols for convolutional,
RELU activation, average pooling layers, and dense layers
are known in the MPC literature (Dalskov et al., 2020b). We
do not repeat them in this paper for conciseness. All these
operations are performed by the servers S using the secret
shares of Bob’s model parameters and of the selected frame
from Alice’s video, as obtained using πFSELECT.

As previously mentioned, Softmax is generally used as the
activation function in the last layer of ConvNets that are
trained to perform classification. Softmax normalizes the
logits passed into it from the previous layer to a probability
distribution over the class labels. Softmax is an expensive
operation to implement using MPC protocols, as this in-
volves division and exponentiation. Previously proposed
workarounds include disclosing the logits and computing
Softmax in an unencrypted manner (Liu et al., 2017), which
leaks information, or replacing Softmax by Argmax (Bit-
tner et al., 2021; Dalskov et al., 2020b). The latter works
when one is only interested in retrieving the class label with
the highest probability, as the Softmax operation does not
change the ordering among the logits. In our context of
video classification based on the single-frame method how-
ever, the probabilities of all class labels for each frame are
required, to allow probabilities across the different frames
to be aggregated to define a final label (see Sec. 4.3).

We therefore adopt the solution proposed by Mohassel and
Zhang (Mohassel & Zhang, 2017) and replace the Softmax
operation by

f(ui) =


RELU(ui)

C∑
j=1

RELU(uj)

, if
C∑

j=1
RELU(uj) > 0

1/C, otherwise

for i = 1, . . . , C, where (u1, u2, . . . , uC) denote
the logits for each of the C class labels, and
(f(u1), f(u2), . . . , f(uC)) is the computed probability dis-
tribution over the class labels. Pseudocode for the corre-
sponding MPC protocol is presented in Protocol 2. At the
start of Protocol πSOFT, the servers have secret shares of a
list of logits, on which they apply the secure RELU protocol
in Line 1. Lines 2-5 serve to compute the sum of the RELU
values, while on Line 6 the parties run a secure compari-
son protocol to determine if this sum is greater than 0. If
Sumrelu is greater than 0, then after Line 6, [[cn]] contains a
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secret sharing of 1; otherwise it contains a secret sharing of
0. Note that if cn = 1 then the numerator of the ith proba-
bility f(ui) should beXrelu[i] while the denominator should
be Sumrelu. Likewise, if cn = 0 then the numerator should
be 1 and the denominator C. As is common in MPC pro-
tocols, we use multiplication instead of control flow logic
for such conditional assignments. To this end, a conditional
based branch operation as “if p then q ← r else q ← s” is
rephrased as “q ← s+ p · (r− s)”. In this way, the number
and the kind of operations executed by the parties does not
depend on the actual values of the inputs, so it does not leak
information that could be exploited by side-channel attacks.
Such conditional assignments occur in Line 7 and 10 of
Protocol πSOFT, to assign the correct value of the numerator
and the denominator.

Protocol 2 Protocol πSOFT for approximate Softmax
Input: A secret shared list [[logits]] of logits of size C, where C
is total number of class labels
Output: A secret shared list [[SMapprox]] of size C of probabilities
for the class labels
1: [[Xrelu]]← πRELU ([[logits]])
2: [[Sumrelu]]← 0
3: for j = 1 to C do
4: [[Sumrelu]]← [[Sumrelu]] + [[Xrelu[i]]]
5: end for
6: [[cn]]← πLT (0,[[Sumrelu]])
7: [[denom]]← C + πDM ([[cn]], ([[Sumrelu]] − C))
8: [[denom inv]]← πDIV (1, [[denom]])
9: for i = 1 to C do

10: [[numer]]← 1 + πDM ([[cn]], ([[Xrelu[i]]] − 1))
[[SMapprox[i]]]← πDM ([[numer]], [[denom inv]])

11: end for
12: return [[SMapprox]]

A protocol πFINFER for performing secure inference with
Bob’s modelM (which is secret shared among the servers)
over a secret shared frame f from Alice’s video can be
straightforwardly obtained by: (1) using the cryptographic
primitives defined in Sec. 3 to securely compute all layers
except the output layer; (2) using Protocol πSOFT to compute
the approximation of the Softmax for the last layer. The
execution of this protocol results in the servers obtaining
secret shares of the inferred probability distribution over the
class labels for frame f .

4.3. Secure Label Aggregation

As illustrated in Fig. 3, we aggregate the predictions across
the single frames by selecting the class label with the high-
est sum of inferred probabilities across the frames. We
implement this securely as Protocol 3. To classify a video
V , the servers: (1) obliviously select the desired frames as
shown in Line 2; (2) securely infer the probability distribu-
tion SMapprox of all classes labels generated by the model
M on a specific selected frame, as shown in Line 4; (3) add
these probabilities, index-wise, to the sum of the probabili-
ties corresponding to each class that is obtained throughout

Figure 3. Illustration of label aggregation. Let us assume that n =
4 frames were selected for secure inference, and that there are C
= 7 classes. SMapprox holds the inferred probability distribution
over the class labels for each frame. Class label 5 is selected as the
final label because it has the highest sum of probabilities across all
classified frames.

the selected frames (Line 5-6); (4) securely find the index
L with maximum value in the aggregated list (Line 8). L
represents the class label for the video. At the end of Pro-
tocol 3, the servers hold a secret sharing [[L]] of the video
label. Each of the servers sends its secret shares to Alice,
who uses them to construct the class label L for the video.

Protocol 3 Protocol πLABELVIDEO for classifying a video
securely based on the single-frame method
Input: A video V secret shared as a 4D-array [[A]], a frame selec-
tion matrix secret shared as [[B]], the parameters of the ConvNet
modelM secret shared as [[M ]]
Output: A secret share [[L]] of the video la-
bel
1: Let [[probsum]] be a list of lengthC that is initialized with zeros

in all indices.
2: [[F ]]← πFSELECT ([[A]], [[B]])
3: for all [[F [j]]] do
4: [[SMapprox]]← πFINFER ([[M ]], [[F [j]]])
5: for i = 1 to C do
6: [[probsum[i]]]← [[probsum[i]]] + [[SMapprox[i]]]
7: end for
8: end for
9: [[L]]← πARGMAX ([[probsum]])

10: return [[L]]

5. Results
5.1. Dataset and Model Architecture

We demonstrate the feasibility of our privacy-preserving
video classification approach for the task of emotion detec-
tion using the RAVDESS database1 (Livingstone & Russo,
2018). We use 1,248 video-only files with speech modality
from this dataset, corresponding to 7 different emotions,
namely neutral (96), happy (192), sad (192), angry (192),
fearful (192), disgust (192), and surprised (192). The videos
portray 24 actors who each read two different statements

1https://zenodo.org/record/1188976

https://zenodo.org/record/1188976
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twice, with different emotions, for a total of 52 video files
per actor. For all emotions except for neutral, the statements
are read with alternating normal and strong intensities; this
accounts for the fact that there are less “neutral” instances
in the dataset than for the other emotion categories. As in
(Bursic et al., 2020), we leave out the calm instances, reduc-
ing the original 8 emotion categories from the RADVESS
dataset to the 7 categories that are available in the FER2013
dataset (Carrier et al., 2013), which we use for pre-training.
The videos in the RAVDESS dataset have a duration of 3-5
seconds with 30 frames per second, hence the total number
of frames per video is in the range of 120-150. We split
the data into 1,116 videos for training and 132 videos for
testing. To this end, we moved all the video recordings
of the actors 8, 15 (selected randomly) and an additional
randomly selected 28 video recordings to the test set, while
keeping the remaining video recordings in the train set. Our
train-test split of the RAVDESS dataset is most similar to
(Bursic et al., 2020) who report an accuracy of 56.9% with
their best ConvNet model. This is almost the same as the
accuracy that we obtain (see below).

We used OpenCV (Bradski & Kaehler, 2008) to read the
videos into frames. Faces are detected with a confidence
greater than 98% using MTCNN (Zhang et al., 2016),
aligned, cropped, and converted to gray-scale. Each pro-
cessed frame is resized to 48× 48, reshaped to a 4D-array,
and normalized by dividing each pixel value by 255.

For Bob’s image classification model, we trained a Conv-
Net with ∼ 1.48 million parameters with an architecture
of [(CONV-RELU)-POOL]-[(CONV-RELU)*2-POOL]*2-
[FC-RELU]*2-[FC-SOFTMAX]. We pre-trained2 the fea-
ture layers on the FER 2013 data to learn to extract facial
features for emotion recognition, and fine-tuned3 the model
on the RAVDESS training data. Our video classifier sam-
ples every 15th frame, classifies it with the above ConvNet,
and assigns as the final class label the label that has the
highest average probability across all frames in the video.
The video classification accuracy on the test set is 56%.

For inference with the MPC protocols, after training, we
replace the Softmax function on the last layer by the ap-
proximate function discussed in Section 4.2. After this
replacement, and without any further training, the accuracy
of the video classifier is 56.8%. This is in line with state-of-
the-art results in the literature on emotion recognition from
RAVDESS videos, namely 57.5% with Synchronous Graph
Neural Networks (8 emotions) (Mansouri-Benssassi & Ye,
2020); 61% with ConvNet-LSTM (8 emotions) (Abdullah
et al., 2020); 59% with an RNN (7 emotions) (Bursic et al.,

2With early stopping using a batch size of 256 and Adam
optimizer with default parameters in Keras (Chollet et al., 2015).

3With early-stopping using a batch size of 64 and SGD opti-
mizer with a learning rate 0.001, decay as 10−6, and momentum
as 0.9.

Table 2. Average time to privately detect emotion in a video of
duration 3-5 seconds. The avg. time is computed over a set of
10 videos with a number of frames in the 7-10 range, and with
n threads=32 in MP-SPDZ. Communication is measured per party.

F32s V2 VMs Time Comm.

Passive 2PC 302.24 sec 374.28 GB
3PC 8.69 sec 0.28 GB

Active
2PC 6576.27 sec 5492.38 GB
3PC 27.61 sec 2.29 GB
4PC 11.67 sec 0.57 GB

2020), and 82.4% with stacked autoencoders (6 emotions)
(Bagheri et al., 2019).

5.2. Runtime Experiments

We implemented the protocols from Sec. 4 in the MPC
framework MP-SPDZ (Keller, 2020), and ran experiments
on co-located F32s V2 Azure virtual machines. Each of the
parties (servers) ran on separate VM instances (connected
with a Gigabit Ethernet network), which means that the
results in the tables cover communication time in addition
to computation time. A F32s V2 virtual machine contains
32 cores, 64 GiB of memory, and network bandwidth of
upto 14 Gb/s. For the ring Z2k , we used value k = 64.

Table 2 presents the average time needed to privately clas-
sify a video. In the case of malicious adversaries, the MPC
schemes for 4PC (with protection against one corrupted
party) are faster than 3PC (with protection against one cor-
rupted party). The 3PC schemes are in turn substantially
faster than 2PC in both semi-honest and malicious settings.
As expected, there is a substantial difference in runtime be-
tween the semi-honest (passive security) and malicious (ac-
tive security) settings. These findings are in line with known
results from the MPC literature (Dalskov et al., 2020a;b).
In the fastest setting, namely a 3PC setting with a semi-
honest adversary that can only corrupt one party, videos
from the RAVDESS dataset are classified on average in 8.69
sec, which corresponds to approximately 0.08 sec per frame,
demonstrating that privacy-preserving video classification
with state-of-the-art accuracy is feasible in practice.

Our runtime results for emotion recognition – an application
with a very obvious privacy narrative – carry over to any
other application with a similar sized ConvNet (∼ 1.5M
parameters). Besides the size of the model, the other main
determining factor for the runtime is the video length, or the
number of frames sampled, which can of course differ from
one application to the next. To demonstrate that the overall
runtime of our solution increases linearly in the number of
frames, in Table 3 we present results for fabricated videos
of different lengths for passive and active 3PC.
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Table 3. Performance of our proposed approach in a 3PC setting on videos from the RAVDESS dataset that are artificially extended to
various lengths. Every 15th frame is sampled from the video for private frame classification by the ConvNet.

F32s V2 VMs Passive 3PC Active 3PC

Duration of video # selected frames Time Comm. Time Comm.

3 sec 7 7.58 sec 0.25 GB 23.82 sec 2.00 GB
5 sec 10 10.70 sec 0.36 GB 34.70 sec 2.85 GB

10 sec 20 21.47 sec 0.69 GB 69.82 sec 5.68 GB
20 sec 40 42.72 sec 1.38 GB 142.07 sec 11.31 GB

Table 4. Averages for classifying one RAVDESS video of duration 3-5 seconds. Average metrics are obtained over a set of 10 such videos
with a number of frames in the 7-10 range on F32s VMs with n threads=32 in MP-SDPZ. VC: time to classify one video (πLABELVIDEO);
FS: time for frame selection for one video (πFSELECT); FI: time to classify a selected frame for one video averaged over all selected frames
in the videos (πFINFER); LA: time taken for label aggregation (sum up all probabilities, πARGMAX). Communication is measured per party.

F32s V2 VMs Time VC Time FS Time single FI Time LA Comm. VC

Passive 2PC 302.24 sec 12.95 sec 35.38 sec 0.00500 sec 374.28 GB
3PC 8.69 sec 0.07 sec 0.26 sec 0.00298 sec 0.28 GB

Active
2PC 6576.27 sec 393.57 sec 759.211 sec 0.00871 sec 5492.38 GB
3PC 27.61 sec 0.94 sec 2.05 sec 0.00348 sec 2.29 GB
4PC 11.67 sec 0.15 sec 0.57 sec 0.00328 sec 0.57 GB

Detailed runtime and communication overhead for the three
subprotocols that constitute our private video classification
pipeline are provided in Table 4 for all MPC schemes consid-
ered in the paper. The results show that the largest contrib-
utor to the runtime is the classification of images (frames)
with the ConvNet.

While the presented runtime results are still too slow for
video classification in real-time, there is a clear path to sub-
stantial optimization that would enable deployment of our
proposed MPC solution in practical real-time applications.
Indeed, MPC schemes are normally divided in two phases:
the offline and online phases. The runtime results in Table
2 represent the time needed for both. The offline phase
only performs computations that are independent from the
specific inputs of the parties to the protocol (Alice’s video
and Bob’s trained model parameters), and therefore can be
executed long before the inputs are known. By executing the
offline phase of the MPC scheme in advance, it is possible
to improve the responsiveness of the final solution.

6. Conclusion and Future Work
We presented the first end-to-end solution for private video
classification based on Secure Multi-Party Computation
(MPC). To achieve state-of-the-art accuracy while keeping
our architecture lean, we used the single-frame method for
video classification with a ConvNet. To keep the videos
and the model parameters hidden, we proposed novel MPC
protocols for oblivious frame selection and secure label
aggregation across frames. We used these in combination

with existing MPC protocols for secure ConvNet based
image classification, and evaluated them for the task of
emotion recognition from videos in the RAVDESS dataset.

Our work provides a baseline for private video classifica-
tion based on cryptography. It can be improved and adapted
further to align with state-of-the-art techniques in video clas-
sification in-the-clear, including the use of machine learning
for intelligent frame selection. While our approach con-
siders only spatial information in the videos, the model
architecture in Sec. 4.2 can be replaced by different archi-
tectures such as CONV3D, efficient temporal modeling in
video (Lin et al., 2019), or single and two stream ConvNets
(Karpathy et al., 2014; Simonyan & Zisserman, 2014) to
fuse temporal information. Many such approaches use pop-
ular ImageNet models for which efficient MPC protocols
are available in the literature (Dalskov et al., 2020b; Kumar
et al., 2020), opening up interesting directions for further
research.
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