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A. A Review of α-Rank
α-Rank (Omidshafiei et al., 2019) is a new type of solution concept that is built on the response graph of a game. In
particular, it tries to find the so-called sink strongly-connected components (SSCC) nodes on the response graph that have
only incoming edges but no outgoing edges. α-Rank serves as a promising replacement for NE; the key associated benefits
are its uniqueness, and its polynomial-time solvability in multi-player general-sum games.

On the response graph, each joint pure-strategy profile is a node, and a directed edge points from node σ ∈ S to node S ∈ S
if 1) σ and S differ in only one single player’s strategy, and 2) that deviating player, denoted by i, benefits from deviating
from S to σ such that Gi(σ) > Gi(S). We are interested in the so-called sink strongly-connected components (SSCC)
nodes that have only incoming edges but no outgoing edges on the response graph. To find those SSCC nodes, α-Rank
constructs a random walk along the directed response graph, which can be equivalently described by a Markov chain, with
the transition probability matrix C being:

CS,σ =


η

1−exp
(
−α
(
Gk(σ)−Gk(s)

))
1−exp

(
−αm

(
Gk(σ)−Gk(s)

)) ifGk(σ) 6= Gk(S)

η

m
otherwise

CS,S = 1−
∑
i∈N

CS,σ

In the above Equation, η = (
∑
i∈N (|Si| − 1))−1, m ∈ N and α > 0 are three constants. Large α ensures the Markov

chain is irreducible, and thus guarantees the existence and uniqueness of the α-Rank solution, which is the resulting unique
stationary distribution π of the Markov chain,C>π = π. The probability mass of each joint strategy in π can be interpreted
as the longevity of that strategy during an evolution process.

B. Algorithm for Open-Ended (Meta-)Game Solvers

Algorithm 1 A General Solver for Open-Ended (Meta-)Games
1: Initialise: the “high-level” policy set S =

∏
i∈N Si, the meta-game payoff M,∀S ∈ S, and meta-policy πi =

UNIFORM(Si).
2: for iteration t ∈ {1, 2, ...} do:
3: for each player i ∈ N do:
4: Compute the meta-policy πt by meta-game solver S(Mt).
5: Find a new policy against others by Oracle: Sit = Oi(π−it ).
6: Expand Sit+1 ← Sit ∪ {Sit} and update meta-payoff Mt+1.
7: terminate if: Sit+1 = Sit,∀i ∈ N .
8: Return: π and S.
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C. The Effectiveness of Our Method on the RPS-X Game
We show via a worked example why our method will not fail to find the final strategy X in the RPS-X game, whereas
current diversifying methods do fail.1 Assume that we are in the state of the strategy space being {R,P, S}, we know that
PSROrn from this position will fail as the best response strategy is still within {R,P, S} (McAleer et al., 2020). Instead, we
show that if we follow our method and select the strategy with the largest expected cardinality as the best response, that
strategy {X} will be selected to be added to the population. There are four cases to consider, namely those of adding all
four strategies to the current population of strategies:

1. Strategy {R} is added to the population and we have the full strategy set {R,P, S,R}, which induces the following
meta-game:

M =


0 −1 1 0
1 0 −1 1
−1 1 0 −1
0 −1 1 0

.
and the following kernel matrix:

L = MMT =


2 −1 −1 2
−1 3 −2 −1
−1 −2 3 −1
2 −1 −1 2

.
which we can use to solve for the expected cardinality:

Tr
(
I− (L + I)−1

)
= 1.6667

2. Strategy {P} is added to the population and we have the full strategy set {R,P, S, P}. The result is the same as that of
adding {R} to the population and the expected cardinality is 1.6667.

3. Strategy {S} is added to the population and we have the full strategy set {R,P, S, S}. The result is the same as that of
adding {R} to the population and the expected cardinality is 1.6667.

4. Strategy {X} is added to the population and we have the full strategy set {R,P, S,X}, which induces the following
meta-game:

M =


0 −1 1 −2/5
1 0 −1 −2/5
−1 1 0 −2/5
2/5 2/5 2/5 0

.
and the following kernel matrix:

L = MMT =


2.16 −0.84 −0.84 0
−0.84 2.16 −0.84 0
−0.84 −0.84 2.16 0

0 0 0 0.48

.
which we can use to solve for the expected cardinality:

Tr
(
I− (L + I)−1

)
= 2.1486

which, due to inducing the largest expected cardinality out of all of the possible options to be added to the population,
strategy {X} would be added.

1Notably, vanilla PSRO will solve this game in this setting as it will just collapse to the Double Oracle method.
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D. Full Proofs
D.1. Proposition 4 [G-DPP Diversity Metric]

Proposition 4 (G-DPP Diversity Metric). The diversity metric, defined as the expected cardinality of a G-DPP, can be
computed in O(|S|3) time by the following equation:

Diversity
(
S
)

= EY∼PLS

[
|Y|
]

= Tr
(
I− (LS + I)−1

)
.

Proof. We can calculate the expected cardinality of a DPP sample by an exponential sum over all subsets of S as follows
(Gillenwater et al., 2018):

EY∼PLS

[
|Y|
]

=
∑
Y⊆S
|Y| PLS(Y)

=
∑
Y⊆S
|Y| det(LY)

det(LS + I)

where det(LY)
det(LS+I) represents the probability of sampling the subset Y, and therefore we are taking the sum over the

probabilities of sampling all different |Y|. Based on the following Lemma from Rising (2013):

Lemma (Theorem 2.3.9 in Rising (2013)). Let Y ∼ DPP(K) where K = I− (L + I)−1, and let {λi}ni=1 be
the eigenvalues of K. Then |Y| =

∑n
i=1 Zi where {Zi}ni=1 are independent Bernoulli trials with E[Zi] = λi.

we can write the expectation over the random variable |Y| by

EY∼PLS

[
|Y|
]

= E

[
n∑
i=1

Zi

]
=

n∑
i=1

E
[
Zi
]

=

n∑
i=1

λi = Tr
(
K
)
.

Since K = L(L + I)−1 = I− (L + I)−1 (Kulesza et al., 2012), we can relate the eigenvalues of L and K as follows,

λKi =
λLi

λLi + 1
, ∀i

where the superscript references which matrix the eigenvalues belong to. Finally, we have,

EY∼PLS

[
|Y|
]

=

n∑
i=1

λLS
i

λLS
i + 1

= Tr
(
I− (LS + I)−1

)
and we have the expected cardinality of a sample from our DPP based upon the kernel matrix LS. �

D.2. Proposition 5 [Maximum Diversity]

Proposition 5 (Maximum Diversity). The diversity of a population S is bounded by Diversity
(
S
)
≤ rank(M), and if M

is normalised (i.e., ||M[i,:]|| = 1,∀i), we have Diversity
(
S
)
≤ rank(M)/2. In both cases, maximal diversity is reached if

and only if M is orthogonal.

Proof. We start from the the case of an un-normalised meta-game. We can always do the SVD decomposition of M and get

M = UΣV>

Then, the kernel L of G-DPP can be written as

L = MM> = (UΣV>)(UΣV>)> = UΣ2U>

This means that the eigenvalues of L are λi = σ2
i > 0 where σi are the entries of the diagonal of Σ. Thus, based on

Proposition 4, we can write the expected cardinality given kernel L as

EY∼PLS

[
|Y|
]

=
∑
i

λi
λi + 1

=
∑
i

σ2
i

σ2
i + 1

.

This implies that all eigenvalues are positive and thus, a larger cardinality can only be achieved by either adding more
eigenvalues or making the eigenvalues larger. Since we can only get a maximum of n = rank(M) non-zero eigenvalues,
making the eigenvalues larger will increase the terms of the summation by λi

λi+1 < 1 which means that

supEY∼PLS

[
|Y|
]

= rank(M)

Thus, the maximum achievable diversity is obtained when population S makes M full rank and λi →∞,∀i.
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We now prove the case for a normalised (i.e., ||M[i,:]|| = 1,∀i) meta-game. We first show that a DPP is maximised over
orthogonal feature vectors. To do this we show that the probability of sampling the whole set of agents is maximised for
orthogonal vectors. Starting by noting Hadamard’s Inequality, it states that if N is the matrix having columns vi, then∣∣∣ det

(
N
)∣∣∣ ≤ n∏

i=1

∥∥vi∥∥,
where notably equality holds if and only if the vectors vi are orthogonal. Therefore, by this inequality we also know that the
determinant of M is maximised when the payoffs are orthogonal for each agent, as this allows the equality to hold.

Additionally, as we define our M to be a square matrix of size M ×M , we can decompose the determinant of L as,

det
(
LY
)

= det
(
MM>

)
= det

(
M
)

det
(
M>

)
= det

(
M
)2

and therefore we know that det(LY) is maximised whenever det(M) is maximised. According to the following equation,

PL
(
Y = Y

)
∝ det

(
LY
)

we therefore have that the probability of sampling the whole ground set is maximised when the det(LY) is maximised, which
coincides with the orthogonality of M.

Finally, based on the fact that orthogonal feature vectors maximise the diversity of a population, we show that a meta-game
with orthogonal feature vectors will receive an expected cardinality value of n2 .

We know that the entries of our kernel L are simply Lij = wiw
>
j . As long as ||wi|| = 1,∀i it will be the case that Lii = 1.

Additionally, as we have stated that the rows of the meta game are orthogonal, wiw>j = 0 ,∀i, j, so all off-diagonal entries
Lij = 0. For example, the kernel L for a meta game of size 3 would be,

L =

1 0 0
0 1 0
0 0 1

 ,
which is obviously the identity matrix of size M. The identity matrix has M eigenvalues of 1, and therefore we have

EY∼PLS

[
|Y|
]

=

n∑
i=1

λLi
λLi + 1

=

n∑
i=1

1

2
=
n

2
.

As the expected cardinality is maximised for orthogonal feature vectors, and we know that orthogonal feature vectors will
return an expected cardinality of n2 , we know that when our feature vectors are normalised this is the max achievable
expected cardinality. �

D.3. Proposition 6 [Diversity vs. Matrix Norm]

Proposition 6 (Diversity vs. Matrix Norm). Maximising the diversity in Eq. (11) also maximises the Frobenius norm of
‖M‖F , but NOT vice versa.

Proof. Based on Proposition 5, the maximum achievable diversity is:

supEY∼PLS

[
|Y|
]

= sup
∑
i

λi
λi + 1

= rank(M) = n

Since the terms in the above summation are 0 ≤ λi

λi+1 < 1, the expected cardinality is also maximised for λi → ∞,∀n.
Therefore, we have that the maximum achievable diversity is attained when the eigenvalues of L are maximised and that
rank(M) = n. In a G-DPP, we have that the kernel matrix is defined as L = MM>, and the Frobenius norm is written as∥∥∥M∥∥∥

F
=

√√√√ n∑
i=1

n∑
j=1

∣∣∣Mij

∣∣∣2 =

√
Tr
(
MM>

)
=
√

Tr
(
L
)

=

√√√√ n∑
i=1

λi

We have shown above that maximising the expected cardinality of L is achieved by maximising the eigenvalues of L and it
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directly follows that:

sup
∥∥∥M∥∥∥

F
= sup

√√√√ n∑
i=1

λi

is achieved as λi →∞,∀i.

Now we allude to why maximising ||M||F will not necessarily lead to a large diversity of agents (i.e., the opposite direction
of this proposition is not necessarily correct), but our measure based upon expected cardinality will. Firstly, note that given

||M||F =

√√√√ n∑
i=1

λi,

an optimiser may go about increasing this function in two manners. One manner may be to continually add new eigenvalues
which will help improve the overall diversity of M. However, an optimiser may also increase this norm by focusing on one
eigenvalue, or a subset of eigenvalues, and increase those to be as large as possible. Our major worry here would be that by
focusing on a subset of eigenvalues, new agents that are added to the population may be redundant as they are added to
increase the current set of eigenvalues - not to bring in new non-zero eigenvalues. This would lead to a lack of diversity in
the population. On the other hand, note the formula for expected cardinality is,

EY∼PLS

[
|Y|
]

=
∑
i

λi
λi + 1

and note how each eigenvalue can at most contribute a value of 1 to the expected cardinality value. The importance of this
is that an optimiser will gain less marginal benefit from increasing an already large eigenvalue than it would from adding a
new non-zero eigenvalue to the meta game. Therefore, whilst we can guarantee that our expected cardinality measure will
always search for new non-zero eigenvalues (and by that notion, more diverse agents), we can not guarantee the same for
the Frobenius norm measure. �

D.4. Proposition 7 [Uniqueness of Diverse Best Response]

Proposition 7 (Uniqueness of Diverse Best Response). Eq. (11) is a strictly concave function. The resulting best response
in Eq. (12) has a unique solution.

Proof. We study the sign of the second derivative of the diversity measure (Eq.(11)) in a neighbourhood of the positive
semidefinte symmetric matrix L. We apply a perturbation to L such that L̃ = L + εA with A being a symmetric matrix
and ε ∈ R, as a result, what we need to show is:

∂2

∂ε2
Tr
(
I− (L̃ + I)−1

) ∣∣∣∣
ε=0

< 0

First, we notice that

I− (L̃ + I)−1 = I−
∞∑
n=0

(−1)n(L̃)n = −
∞∑
n=1

(−1)n(L̃)n =

∞∑
n=0

(−1)n(L + εA)n+1

where we used the matrix expansion (I + L̃)−1 =
∑∞
n=0(−1)nL̃

n
. We can always ensure ||L̃||F < 1 by choosing ε

small enough and redefining L :=
L

||L||F + β
, β > 0 ∈ R if necessary. We note that after this modification L remains a

legitimate matrix for a DPP due to being positive semidefinite, and do not affect the rankings of agents. Then,

∂2

∂ε2

(
I− (L̃ + I)−1

) ∣∣∣∣
ε=0

=
∂2

∂ε2

∞∑
n=0

(−1)n(L + εA)n+1

∣∣∣∣
ε=0

=

∞∑
n=0

(−1)n
∂2

∂ε2
(L + εA)n+1

∣∣∣∣
ε=0

=
1

2
A2

∞∑
n=0

(−1)n(n+ 1)(n)Ln−1 +
1

2

∞∑
n=0

(−1)n(n+ 1)(n)Ln−1A2 (1)
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The series
∑∞
n=0(−1)n(n+ 1)(n)Ln−1 can be written as

∞∑
n=0

(−1)n(n+ 1)(n)Ln−1 =

∞∑
n=0

(−1)n+1(n+ 2)(n+ 1)Ln

= −
∞∑
n=0

(−1)n+2 ∂2

∂L2L
n+2

= − ∂2

∂L2

∞∑
n=0

(−1)n+2 Ln+2

= − ∂2

∂L2

(
L2 −L3 + L4 − . . .

)
= − ∂2

∂L2

(
(I + L)−1 + L− I

)
= −2(I + L)−3

where we used the matrix expansion (I + L)−1 =
∑∞
n=0(−1)nLn which holds under the modifications specified before.

Finally, we obtain that
∂2

∂ε2
Tr
(
I− (L̃ + I)−1

) ∣∣∣∣
ε=0

= Tr

(
∂2

∂ε2

(
I− (L̃ + I)−1

)) ∣∣∣∣
ε=0

= −Tr
(
A2(I + L)−3 + (I + L)−3A2

)
< 0

Where the last inequality comes from the fact that both (I + L)−3 and A2 are positive definite and the trace of the product
of two positive definite matrices is positive. We therefore have shown that the expected cardinality is a strictly concave
function, which are known to have a unique optimiser. �

D.5. Theorem 8 [Convergence of Diverse FP]

Theorem 8 (Convergence of Diverse FP). The perturbation sequence induced by diverse FP process is a uniformly
bounded martingale difference sequence; therefore, diverse FP shares the same convergence property as GWFP.

Proof. We begin by proving that our perturbation sequence is a martingale sequence w.r.t. the normalised expected
cardinality (this has no effect on rankings of agents),

Xn =
EY∼PLS

[
|Y|
]

|Y|
Based on Proposition 5, assuming a normalised payoff table, we know 0 ≤ Xn ≤ 0.5. We are to show that Sn =
1
n

∑n
i=1[Xi − µ] where µ = E[Xn] is a martingale sequence by proving that it meets the three conditions listed below one

by one.

1. Sn is a measurable function of X1, X2, ..., Xn

Sn is a measurable function as it is a partial sum of {Xi}∞i=1.

2. E[|Sn|] <∞,∀n

E[|Sn|] ≤
1

n

n∑
i=1

E[|Xi − µ|] <∞
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3. E[Sn+1|X1, ...Xn] = Sn

E[Sn+1|X1, ..., Xn] = E[Sn +
1

n
Xn+1 −

1

n
µ]

= Sn + E[
1

n
Xn+1 −

1

n
µ|X1, ..., Xn]

= Sn −
1

n
µ+ E[

1

n
Xn+1|X1, ..., Xn]

= Sn −
1

n
µ+

1

n
µ

= Sn

and therefore we have that {Sk}∞k=1 is a martingale sequence w.r.t. {Xk}∞k=1. Now we let Mk = Sk − Sk−1, k = 2, 3, ...
and show that this is a martingale difference sequence under the same three conditions.

1. Mk is a measurable function of X1, X2, ..., Xn

Mk is measurable as both Sk and Sk−1 are.

2. E[|Mk|] <∞, ∀k

E[|Mk|] ≤ E[|Sk|] + E[|Sk−1|] <∞

3. E[Mk+1|X1, ..., Xn] = 0

E[Mk+1|X1, ..., Xn] = E[Sk+1 − Sk|X1, ..., Xn]

= E[Sk+1|X1, ..., Xn]− Sk
= Sk − Sk
= 0

and we have shown that {Mk}∞k=1 is a martingale difference sequence w.r.t. {Xk}∞k=1.
Next, we show that this martingale sequence is bounded uniformly in L2. Mn is said to be bounded in L2 if:

supn[M2
n] <∞

which can be shown due to the following:

supn
[
M2
n

]
= supn

[
1

n

n∑
i=1

[
Xi − µ

]2]
<∞

as
1

n

n∑
i=1

[
Xi − µ

]2 ≤ 0.25,∀n

where the last line holds due to 0 ≤ Xi ≤ 0.5. Therefore, if Mn ∈ L2, then the martingale sequence M is bounded in L2 if
and only if: ∑

k≥1

E
[
(Mk −Mk−1)2

]
< +∞

which we can show in the following manner:∑
k≥1

E
[
(Mk −Mk−1)2

]
=
∑
k≥1

[
E[M2

k − 2MkMk−1 +M2
k−1]

]
=
∑
k≥1

[
E[M2

k ] + E[M2
k−1]− E[2MkMk−1]

]
=
∑
k≥1

[
E[M2

k ] + E[M2
k−1]

]
<∞
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as Mk ∈ L2,∀k. where we note that E[2MkMk−1] = 0 due to the martingale difference sequence properties of Mk.
Finally, as we satisfy both of the conditions of GWFP, namely that our expected cardinality function is strictly concave as
shown in Proposition 7 and the perturbation meets the condition of Eq. (5) we have that as τ → 0 our diverse FP process
will almost surely result in a GWFP process, which are known to converge in two-player zero-sum games and potential
games (Leslie & Collins, 2006). �

D.6. Proposition 9 [Gamescape Enlargement]

Proposition 9 (Gamescape Enlargement). Adding a new best-response policy Sθ via Eq. (13) strictly enlarges the
gamescape. Formally, we have

Gamescape
(
S
)
( Gamescape

(
S ∪

{
Sθ
})

Proof. According to Proposition 5 and Proposition 7, maximising the expected cardinality of the DPP implies there exists a
unique solution that makes the meta-game payoff table M full rank and increases the eigenvalues. If M is full rank, this
means that the new row in the meta game M corresponding to the new policy Sθ must be linearly independent to the other
rows and thus it must not be a convex combination of the other rows, as a result, the gamescape is strictly enlarged. Such a
result is also expected because the diversity in terms of expected cardinality promotes orthogonality, which is a stronger
property than linear independency. �

D.7. Theorem 10 [Convergence of Diverse α-PSRO]

Theorem 10 (Convergence of Diverse α-PSRO). Diverse α-PSRO with the Oracle of Eq. (14) converges to the sub-cycle
of the unique SSCC in the two-player symmetric games.

Proof. Our proof follows the same argument as (Muller et al., 2019) Proposition 3, which can be adapted in the content of
our diverse PBR oracle in Eq. (14). The uniqueness of the SSCC follows from the fact that in the single-population case,
the response graph is fully-connected. Suppose at termination of α-DPP, the α-population contains no strategy within the
SSCC, and let s be a strategy in the α-DPP population. We claim that s attains a higher value for the objective defining the
α-DPP oracle than any strategy in the α-DPP population, which contradicts the fact that α-DPP has terminated. By virtue
of being in the SSCC we have that M1(s, s′) >M2(s′, s) for all s′ outside the SSCC, and in particular for all s′ ∈ Sit,
thus the PBR objective for s is 1.

If a member of the underlying game’s SSCC appears in the α-DPP population, this member will induce its own meta-SSCC
in the meta game’s response graph which will have positive probability under the α-Rank distribution for the meta-game,
and the DPP oracle for this meta-SSCC will always return a member of the underlying game’s SSCC. This is because the
only strategies that receive a non-zero quality score are those that are members of the underlying game’s SSCC, and we
ignore strategies with a quality of zero. If the only strategy that returns a non-zero quality score, which must be a member of
the SSCC, is already in the population, the corresponding meta-SSCC already contains a cycle of the underlying SSCC.
Note that if the meta-SSCC does not contain a cycle, it must be a singleton. Either this singleton is equal to the full SSCC of
the underlying game (in which we have α-fully converged), or it is not, in which case the DPP oracle must return a new
strategy from the underlying SSCC, contradicting our assumption that is has terminated. �
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E. Additional Results on Real-World Meta-Games
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F. Empirical Result of Frobenius Norm vs. Expected Cardinality
We illustrate here a counter-example of when replacing our expected cardinality term in Eq. (13) with a Frobenius norm
measure on the meta-game M over the population S1 ∪ {Sθ} will fail to improve both the expected cardinality of M and so
be unable to break the exploitability plateau of PSRO.

Specifically, we use a 150 dimensional Random Game of Skill (Czarnecki et al., 2020) where 25 of the strategies in the
underlying game are particularly bad. In this setting, the Frobenius norm struggles as the poor-performing strategies all
induce a large norm, and are therefore selected to be added to S1. On the other hand, at worst our expected cardinality
measure will select one of these poor-performing strategies, but the remaining poor strategies are no longer diverse and are
not selected. Therefore, whilst we suspect the Frobenius norm measure can work as a diversity measure, it is not as general
as our metric and can fail under some circumstances, i.e. poor-performing strategies in the underlying game.
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G. Hyper-parameter Settings for All Experiments

The code can be found in: https://github.com/oslumbers/diverse-psro

Table 1. Hyper-parameter settings for our diverse-PSRO method vs. other baselines on four experiments.
SETTINGS VALUE DESCRIPTION

REAL-WORLD META-GAMES

ORACLE METHOD DIVERSE BEST RESPONSE SUBROUTINE OF GETTING ORACLES
LEARNING RATE 0.5 LEARNING RATE FOR AGENTS
IMPROVEMENT THRESHOLD 0.03 CONVERGENCE CRITERIA
METASOLVER FICTITIOUS PLAY METASOLVER METHOD
METASOLVER ITERATIONS 1000 # ITERATIONS FOR METASOLVER
# OF THREADS IN PIPELINE 2 # LEARNERS IN PIPELINE PSRO
# OF SEEDS 10 # TRIALS
DPP WEIGHTING 0.15 WEIGHT OF THE DPP BEST RESPONSE

NON-TRANSITIVE MIXTURE MODEL

ORACLE GRADIENT ASCENT SUBROUTINE OF GETTING ORACLES
OPTIMIZER ADAM GRADIENT ASCENT OPTIMIZER
LEARNING RATE 0.1 LEARNING RATE FOR OPTIMIZER
BETAS (0.9, 0.99) BETAS PARAMETER FOR OPTIMIZER

πi πik = exp (−(xi − µk)>Σ(xi − µk)/2) STRATEGY FROM 2D COORDINATES

GAME PAYOFF π1,>


0 1 1 1 −1 −1 −1
−1 0 1 1 1 −1 −1
−1 −1 0 1 1 1 −1
−1 −1 −1 0 1 1 1
1 −1 −1 −1 0 1 1
1 1 −1 −1 −1 0 1
1 1 1 −1 −1 −1 0

π2 + 1
2

∑7
k=1(π1

k − π2
k) PAYOFF FOR π1 AGAINST π2

Σ 1/2I COVARIANCE MATRIX FOR GAUSSIANS
µ1 (2.872,−0.025) POSITION OF THE FIRST GAUSSIAN
µ2 (1.8105, 2.2298) POSITION OF THE SECOND GAUSSIAN
µ3 (1.8105,−2.2298) POSITION OF THE THIRD GAUSSIAN
µ4 (−0.61450, 2.8058) POSITION OF THE FOURTH GAUSSIAN
µ5 (−0.61450,−2.8058) POSITION OF THE FIFTH GAUSSIAN
µ6 (−2.5768, 1.2690) POSITION OF THE SIXTH GAUSSIAN
µ7 (−2.5768,−1.2690) POSITION OF THE SEVENTH GAUSSIAN
STRATEGY INITIALISATION VARIANCE 0.12 VARIANCE OF GAUSSIAN DISTRIBUTION AT 0
METASOLVER FICTITIOUS PLAY METASOLVER METHOD
METASOLVER ITERATIONS 1000 # ITERATIONS FOR METASOLVER
ITERATIONS 50 # TRAINING ITERATIONS

DPP WEIGHT AT ITERATION t
0.7

1 + exp (−0.25(t− 25))
WEIGHT OF THE DPP BEST RESPONSE

# OF THREADS IN PIPELINE 4 # LEARNERS IN PIPELINE PSRO
# OF SEEDS 10 # OF TRIALS

COLONEL BLOTTO

ORACLE METHOD ZERO-ORDER SUBROUTINE OF GETTING ORACLES
ORACLE ITERATIONS 50 NEW STRATEGIES PER ITERATION
µ 0.1 LEARNING RATE
METASOLVER LINEAR PROGRAMMING METASOLVER METHOD
# OF SEEDS 10 # OF TRIALS
DPP WEIGHT 0.15 WEIGHT OF THE DPP BEST RESPONSE
# OF AREAS 3 # OF AREAS TO DISTRIBUTE COINS
# OF COINS 10 # OF COINS TO DISTRIBUTE

α-PSRO
ORACLE METHOD PBR / DPP-PBR SUBROUTINE OF GETTING ORACLES
METASOLVER α-RANK METASOLVER METHOD
ITERATIONS 50 # OF TRAINING ITERATIONS
# OF SEEDS 20 # OF TRIALS
α INFINITE THE α IN α-RANK

https://github.com/oslumbers/diverse-psro
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H. Implementation of Oracles
H.1. Pseudocodes

Algorithm 2 Diverse Best Response Oracle
1: Inputs:
2: Player Populations St =

∏
i∈N Sit, with Sit ∈ Sit parametrised by θSi

t

3: Metapolicies πt =
∏
i∈N π

i
t

4: Learning rate µ
5: Diversity probability λ
6:
7: function oracle(St,πt, µ, λ)
8: Compute BRqual = BRi(S−it ,π−it )
9: for each pure strategy Pj do:

10: Update meta-payoff Mj = M(Sit ∪ {Pj})
11: Compute BRdiv = arg maxPj

(
Tr
(
I− (MjM

>
j + I)−1

))
.

12: Choose BR = BRdiv with probability λ else BR = BRqual

13: Update θSi
t

= µθSi
t

+ (1− µ)θBR

14: Return: Sit

Algorithm 3 Diverse Gradient Ascent Oracle
1: Inputs:
2: Player Populations St =

∏
i∈N Sit, with Sit ∈ Sit parametrised by θSi

t

3: Metapolicies πt =
∏
i∈N π

i
t

4: Number of training updates Ntrain
5: Diversity weight λ
6:
7: function oracle(St,πt, Ntrain, λ)
8: Randomly initialise a new Strain

9: for j = 1, . . . , Ntrain:
10: Compute payoff pj of Strain

11: Compute meta-payoff Mj = M(Sit ∪ {Strain})
12: Compute diversity dj = Tr

(
I− (MjM

>
j + I)−1

)
13: Compute loss lj = −(1− λ)pj − λdj
14: Update θStrain to minimise lj using a gradient based optimization method
15: Return: Strain
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Algorithm 4 Diverse Zero-order Oracle
1: Inputs:
2: Player Populations St =

∏
i∈N Sit, with Sit ∈ Sit parametrised by θSi

t

3: Metapolicies πt =
∏
i∈N π

i
t

4: Learning rate µ
5: Noise parameter σ
6: Diversity weight λ
7:
8: function oracle(St,πt, µ, σ, λ)
9: Sample a single Sit ∈ Sit with probability πit

10: for perturbation j ∈ 1, 2, . . . do:
11: Sj = RandomPerturbation(Sit , µ, σ)
12: Update meta-payoff Mj = M(Sit ∪ {Sj})
13: Compute payoff pj of Sj
14: Compute diversity dj = Tr

(
I− (MjM

>
j + I)−1

)
.

15: Return: arg maxSj
(1− λ)pj + λdj

16: function RandomPerturbation(Sit , µ, σ)
17: Generate noise ε ∼ N (0, σ2)
18: Add noise θSi

t
= µθSi

t
+ (1− µ)ε

19: Return Sit

Algorithm 5 Diverse Reinforcement Learning Oracle
1: Inputs:
2: Player Populations St =

∏
i∈N Sit, with Sit ∈ Sit parametrised by θSi

t

3: Metapolicies πt =
∏
i∈N π

i
t,

4: Learning rate µ,
5: Noise parameter σ,
6: Diversity weight λ,
7: function oracle(St,πt, µ, σ, λ)
8: Use an RL algorithm to find BRRL = BRRL(S−it ,π−it )
9: for perturbation j ∈ 1, 2, . . . do:

10: BRj = RandomPerturbation(BRRL, µ, σ)
11: Update meta-payoff Mj = M(Sit ∪ {BRj})
12: Compute payoff pj of Sj
13: Compute diversity dj = Tr

(
I− (MjM

>
j + I)−1

)
.

14: Return: arg maxSj
(1− λ)pj + λdj

15: function RandomPerturbation(BRRL, µ, σ)
16: Generate noise ε ∼ N (0, σ2)
17: Add noise θBR = µθBRRL

+ (1− µ)ε
18: Return BR
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H.2. Time Complexity: PSRO vs. Diverse PSRO on Normal-Form Games

Time Complexity of PSRO on Solving Normal-Form Games

Input: Candidate population Π ∈ RP×D, P � D, gameG ∈ RD×D

1. Compute meta-gameM = ΠGΠ> → O(PDP +DDP ) = O(P 2D +D2P )

2. Compute metanash π of meta-gameM ∈ RP×P → O(P 3)

3. Aggregate the population of strategies q = π>Π→ O(PD)

4. For each pure strategy pi of a total of D do

• Compute payoff piGq → O(D2)

Then PSRO takes O(P 2D +D2P + P 3 + PD +D3) = O(D3)

Time Complexity of Diverse PSRO on Solving Normal-Form Games

Input: Candidate population Π ∈ RP×D, P � D, gameG ∈ RD×D

1. Compute meta-gameM = ΠGΠ> → O(PDP +DDP ) = O(P 2D +D2P )

2. Compute metanash π of meta-gameM ∈ RP×P → O(P 3)

3. Aggregate the population of strategies q = π>Π→ O(PD)

4. For each pure strategy pi of a total of D do

• Compute payoff piGq → O(D2)

• Update training strategy resulting in BRdiv → O(D)

• Compute meta-gameM = ΠGΠ> → O(PDP +DDP ) = O(P 2D +D2P )

• Compute metanash π of meta-gameM ∈ RP×P → O(P 3)

• Compute L = MM> → O(P 3)

• Compute expected cardinality of L in Proposition 4, the complexity is O(P 3)

Then Diverse PSRO takes O(P 2D +D2P + P 3 + PD +D3 +D2 + PD3 + P 2D2 + 3P 3) = O(PD3)
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